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Abstract. The uncertainty in the radiative forcing caused by
aerosols and its effect on climate change calls for research
to improve knowledge of the aerosol particle formation and
growth processes. While experimental research has provided
a large amount of high-quality data on aerosols over the last
2 decades, the inference of the process rates is still inade-
quate, mainly due to limitations in the analysis of data. This
paper focuses on developing computational methods to infer
aerosol process rates from size distribution measurements. In
the proposed approach, the temporal evolution of aerosol size
distributions is modeled with the general dynamic equation
(GDE) equipped with stochastic terms that account for the
uncertainties of the process rates. The time-dependent parti-
cle size distribution and the rates of the underlying formation
and growth processes are reconstructed based on time series
of particle analyzer data using Bayesian state estimation –
which not only provides (point) estimates for the process
rates but also enables quantification of their uncertainties.
The feasibility of the proposed computational framework is
demonstrated by a set of numerical simulation studies.

1 Introduction

Aerosols scatter and absorb solar radiation and affect the
permeability of the atmosphere to solar energy (the direct
effect). In addition, aerosol particles act as seeds for cloud
droplets (cloud condensation nuclei, CCN) and, thus, influ-
ence the properties of clouds (the indirect effect; e.g., Ra-

manathan et al., 2001). Worldwide, particulate air pollutants
are also responsible for up to 7 million premature deaths
per year (WHO 2014). The Intergovernmental Panel on Cli-
mate Change (IPCC Assessment Report 2013 by Stocker et
al., 2014, and IPCC Assessment Report 2014 by Pachauri
et al., 2014) recognized the uncertainty in the radiative forc-
ing caused by aerosols as the main individual factor limit-
ing the scientific understanding of future and past climate
changes.

Some of the uncertainty is caused by the fact that the ini-
tial stages of the new particle formation (NPF) processes
in the atmosphere are still not completely known. It has
been known for close to 100 years that photochemically
driven NPF may occur in the atmosphere (Aitken, 1889).
The fact that it occurs regularly throughout the troposphere
has, however, only become clear during the last 15 years or
so (Kulmala et al., 2004). Partly because of this, the sys-
tematic development of parameterizations describing tropo-
spheric NPF as an active research topic has only just begun.
Studies with these models suggest that tropospheric NPF
may have significant effects on CCN and, in turn, on the
general global cloud albedo effects of atmospheric aerosols
(Merikanto et al., 2010). One challenge in estimating the an-
thropogenic aerosol effect on climate is the need to know the
preindustrial conditions and dynamics, which is the baseline
of forcing estimations (Hansen et al., 1981). Very recently,
Gordon et al. (2016) made new estimations of anthropogenic
aerosol radiative forcing by assuming pure biogenic particle
formation, as suggested by Kirkby et al. (2016) based on the
Cosmics Leaving Outdoor Droplets (CLOUD) experiment at
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CERN. The increased particle formation rates under prein-
dustrial conditions increased the CCN conditions as well as
the cloud albedo – resulting in a 0.22 Wm−2 decrease in an-
thropogenic aerosol forcing. As the NPF treatment in global
climate models is typically based on parameterizing particle
formation and growth rates (GRs) from chamber experiments
such as CLOUD or from field measurements, it is of great
importance to analyze the data with care and pay attention to
uncertainties.

Most of the research dealing with NPF event analysis has
used similar methodology as outlined in the “protocol” de-
scribed by Kulmala et al. (2012) and Dada et al. (2020).
Particle formation rates, at the detection limit of the instru-
ment (typically in the range from 2 to 3 nm), are usually
estimated from the time evolution of either the total num-
ber concentration or the number concentration below a cer-
tain size (e.g., 20 nm), correcting for coagulation loss and
condensation growth with very simple and approximate bal-
ance equations. For condensational growth rate, there have
been three main approaches: (1) fitting the growing nucle-
ation mode with a lognormal function, and the growth of the
mode GR is defined as the growth of the geometric mean
size of the mode (Leppä et al., 2011); (2) the so-called “max-
imum concentration method” in which GR is estimated from
the times when each measurement channel of the instrument
reaches its maximum concentration (Lehtinen and Kulmala,
2003); and (3) the so-called “appearance time method” in
which GR is estimated from concentration rise times of each
channel (Lehtipalo et al., 2014). Methods 1 and 2 are applica-
ble to cases in which there is a clear nucleation mode grow-
ing, as is the case, for example, for the multitude of events
analyzed from the Hyytiälä forest station in Finland (Maso
et al., 2005). For chamber experiments, where the aerosol
size distribution approaches steady state (Dada et al., 2020),
these two approaches cannot be used. Method 3 can then be
applied to the transition stage of the dynamics, before steady-
state is reached. All of these methods suffer from distur-
bances by other aerosol microphysical processes (e.g., coag-
ulation and deposition) and, in addition, cannot be used to es-
timate uncertainties related to GR. Deposition rates are typ-
ically estimated by targeted experiments with either several
different experiments with different monodisperse aerosol or
in the absence of vapors and with low enough concentrations
that other microphysical processes do not affect the estima-
tion.

The last decade has been a huge leap forward in atmo-
spheric NPF research. Instrument development, especially
advances in particle detection efficiency and mass spectrom-
etry, have allowed us to measure details of the dynamics
of the smallest clusters (e.g., Almeida et al., 2013). At the
same time, however, potentially superior advanced data anal-
ysis methods have not been used. Instead, NPF and particle
growth rates have been analyzed with the abovementioned
very simple regression or balance equation approaches (an
overview of the typical methods is given in Kulmala et al.,

2012), suffering from potentially crude approximations and
permitting no proper estimation of the uncertainties. It is
likely that there are significant inaccuracies in quantities such
as particle formation and growth rates estimated previously,
and at least their uncertainties have typically not been quanti-
fied. Very recent studies by Kürten et al. (2018) have already
shown that the difference between nucleation rates estimated
by fitting a sophisticated aerosol model to data and a “tradi-
tional” simple method can be as large as a factor of 10.

Studies on applying computational inversion methods to
estimating the most important quantities of interest with re-
spect to particle fate and effects in the atmosphere, the for-
mation and growth rates, are rare. Lehtinen et al. (2004)
applied simple least-squares-based optimization of aerosol
microphysics to measured data. This method was later im-
proved (more processes, less assumptions) by Verheggen and
Mozurkewich (2006) and Kuang et al. (2012). These studies,
however, did not address the uncertainties in the estimated
parameters. Henze et al. (2004) used the method of adjoint
equations to estimate condensation rates based on measured
evolution of the aerosol size distribution. Sandu et al. (2005)
presented adjoint equations of the complete aerosol general
dynamic equation (GDE) which could be a basis for data-
assimilation of aerosol dynamics. We are, however, not aware
of the methodology being used later.

In the statistical (Bayesian) framework of inverse prob-
lems (Kaipio and Somersalo, 2006), the uncertainties of the
model quantities are modeled statistically, and it offers an
approach to uncertainty quantification, in addition to param-
eter estimation. In a time-invariant case, the Bayesian ap-
proach was adopted to estimate aerosol size distributions by
Voutilainen et al. (2001). Thus far, the only works where the
statistical approach has been taken to inverse problems in
aerosol size distribution dynamics are those on parameter es-
timation in aggregation–fragmentation models (Ramachan-
dran and Barton, 2010; Bortz et al., 2015; Shcherbacheva
et al., 2020), estimating the size distribution evolution us-
ing Kalman filtering (Voutilainen and Kaipio, 2002; Viskari
et al., 2012) and estimating evaporation rates using a Markov
chain Monte Carlo method (Kupiainen-Määttä, 2016). How-
ever, the statistical inversion framework (and Bayesian state
estimation in particular) has been applied to several other
problems which are mathematically similar to parameter esti-
mation in aerosol dynamics. Unknown coefficients have been
estimated in, for example, Fokker–Planck equations (Banks
et al., 1993; Dimitriu, 2002), age-structured population dy-
namics models (Rundell, 1993; Cho and Kwon, 1997) as
well as algal and phytoplankton aggregation models (Ack-
leh, 1997; Ackleh and Miller, 2018).

In this paper, we approach the problem of estimating un-
known rate parameters in the aerosol general dynamic equa-
tion in the framework of Bayesian state estimation. We model
the discretized particle size distribution as well as the un-
known nucleation, growth and deposition rates in GDE as
multivariate random processes, and estimate them from se-
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quential particle counter measurements using the extended
Kalman filter (EKF) and fixed interval Kalman smoother
(FIKS). The feasibility of these estimators to quantify the
process rate parameters and their uncertainties is tested with
series of numerical simulation studies.

2 Estimation of parameters in GDE

The temporal evolution of the aerosol size distribution n =

n(dp, t) can be described by a population balance equation
referred to as the GDE (Zhang et al., 1999; Prakash et al.,
2003; Lehtinen and Zachariah, 2001; Smoluchowski, 1916;
Friedlander and Wang, 1966). We write the continuous form
of the GDE as

∂n

∂t
(dp, t) = −

∂g(dp, t)n(dp, t)

∂dp
︸ ︷︷ ︸

growth by condensation

− n(dp, t)

∞∫

d∗
p

β(dp, s)n(s, t)ds

︸ ︷︷ ︸

coagulation sink

+
1

2

dp∫

d∗
p

β
(

3
√

d3
p − q3,q

)

n
(

3
√

d3
p − q3, t

)

n(q, t)dq

︸ ︷︷ ︸

coagulation source

− λ(dp, t)n(dp, t)
︸ ︷︷ ︸

loss by deposition

, (1)

where dp is the particle diameter and t is time. Further,
g = g(dp, t) denotes the condensational growth rate, β =

β(s,dp − s) is the coagulation frequency and λ = λ(dp, t) is
the deposition rate.

The boundary conditions consist of fluxes of particles in
and out of the considered size range [dmin

p ,d∞
p ]. In real-

ity, the formation of particles occurs at very low size (typ-
ically at the 1.5–2 nm scale) by nucleation; the theoretical
size at which molecule clusters start being stable is referred
to as the critical size, and it is denoted d∗

p in Eq. (1). Note
that we do not include an explicit source term in Eq. (1) to
model the true nucleation (spawning particles out of vapor)
as we are considering typical size ranges for particle mobility
measurements (differential mobility particle sizer, DMPS, or
scanning mobility particle sizer, SMPS) which are above the
nucleation size. In practice, this means that dmin

p is always
chosen to be sufficiently larger than the critical size d∗

p . The
appearance of new particles to the measurement range then
occurs by condensational growth of freshly nucleated parti-
cles from below the measurement range. This process, some-
times called apparent particle formation (e.g., Lehtinen et al.,
2007), is conveniently treated as a particle-concentration

flux, in particle-size space (cm−3 s−1), as a boundary con-
dition for the GDE. Hence, the nucleation J = J (t) is iden-
tified with the flux of particles to the smallest size class by
condensation – that is,

g
(

dmin
p , t

)

n
(

dmin
p , t

)

= J (t). (2)

Similarly, for the outward flux of particles at the largest size
class, we write

g
(

d∞
p , t

)

n
(

d∞
p , t

)

= 0, (3)

which states that the growth of particles to a size exceeding
d∞

p , the upper limit of the size range, is negligible.
The time- and/or size-dependent parameters g, β, λ and J

characterize the microphysical properties of aerosols: these
parameters, along with boundary conditions of the GDE,
completely determine the evolution of the aerosol size distri-
bution. However, the process rate parameters are usually not
known. In this paper, we aim at estimating the growth, depo-
sition and nucleation rates (g, λ and J , respectively) based
on particle size distribution measurements. For the coagula-
tion coefficient β, a fixed (known/approximate) value will be
used.

The analysis proposed in this paper is applicable to both
differential mobility particle sizer (DMPS) and scanning mo-
bility particle sizer (SMPS) measurements. For the rest of the
paper, however, we refer to measurement modality as SMPS
because the number of particle size classes is relatively high
in the numerical example cases.

An SMPS measurement is vector yk ∈ R
M that represents

an indirect observation of the particle size density n(dp, tk),
corrupted by Poisson distributed noise:

yk =
ỹk

V
, s.t. ỹk ∼ Poisson

(

V zk
)

, and zk = Hn
(

dp, tk
)

, (4)

where V is a constant (the effective volume of the sample in
the condensation particle counter), H is a device-dependent
linear operator and M is the number of channels in the parti-
cle counter. In the following, we assume that the rate of time
evolution is negligible compared with the time required to
measure M channels, or one frame, with an SMPS. We de-
note the measurement time of the kth frame by tk .

As SMPS measurements explicitly depend on the size den-
sity n alone and not on g, λ and J , a measurement yk corre-
sponding to a single time instant does not carry enough in-
formation to estimate these parameters. However, as g, λ and
J determine the temporal evolution of n, it might be possible
to estimate them on the basis of a sequence of measurements
yk corresponding to a set of time instants tk , k = 1, . . .,K .

In this section, we formulate the problem of estimating the
time-dependent size density n and the process rate parame-
ters g, λ and J as a Bayesian state estimation problem. To
this end, we first discretize the GDE with respect to size and
time, and write it in a stochastic form in order to model its
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uncertainties. We also model the process rate parameters as
discrete-time stochastic processes. This formulation allows
us to express the following questions in the Bayesian frame-
work (Gelb, 1974):

– What are the expected values of n(dp, tk), g(dp, tk),
λ(dp, tk) and J (tk) at each time tk given a set of mea-
surements Yℓ = {y1, . . .,yℓ} corresponding to discrete
times t1, . . ., tℓ?

– How large are the uncertainties of the estimated quanti-
ties?

The state estimation problems are referred to as prediction,

filtering and smoothing depending on whether ℓ < k, ℓ = k or
ℓ > k, respectively. While filtering is a suitable choice for on-
line monitoring and control problems, smoothing is usually
a preferable choice when estimates are not needed online;
the smoother estimates also utilize the future observations
yk+1, . . .,yℓ for the estimate corresponding to time tk .

The latter question refers to posterior uncertainties – that
is, uncertainties of the quantities given the measurements Yℓ.
In the Bayesian framework, these uncertainties can be quanti-
fied by computing, for example, posterior variances and cred-
ible intervals of the parameters.

In the simplest special case, where the evolution model
and observation model are linear with respect to all pa-
rameters and all error terms are additive and Gaussian, the
Bayesian filtering and smoothing problems can be solved by
Kalman filter and Kalman smoother recursions, respectively
(Kalman, 1960; Gelb, 1974). In general cases, where models
are nonlinear or non-Gaussian, only approximate solutions
are available. In principle, the best approximations of the
posterior estimates are obtained with sequential Monte Carlo
methods, known as particle filters/smoothers (Särkkä, 2013).
However, these methods are limited to small dimensional
cases, because of the high computational burden. Compu-
tationally more efficient approximations include ensemble,
unscented and extended Kalman filters/smoothers (Särkkä,
2013). In this paper, we choose the extended Kalman filter
(EKF) and fixed interval Kalman smoother (FIKS), but we
note that the other filters and smoothers developed for nonlin-
ear state estimation are applicable as well. In the next section,
the feasibility of the EKF and FIKS for the GDE parameter
estimation problem will be tested numerically.

2.1 Evolution model

2.1.1 Discretized, stochastic GDE

To approximate the GDE (1) numerically, we partition the
particle size variable dp into Q intervals (or bins) �i of
widths 1di , i = 1, . . .,Q. The discrete instants in time in
the temporal discretization are denoted by tk , k = 1, . . .,T ,
and the differences between consecutive times are denoted
by 1tk = tk+1 − tk . We denote the number concentration of
particles corresponding to the ith bin at time tk by Nk

i –

that is, Nk
i =

∫

�i
n(dp, tk)ddp, and a vector consisting of par-

ticle concentrations in all Q bins at time tk by Nk , that
is, Nk = [Nk

1 , . . .,Nk
Q]T. We discretize the condensation and

deposition rates accordingly, and write gk = [gk
1, . . .,gk

Q]T,

λk = [λk
1, . . .,λ

k
Q]T. Further, the nucleation J is discretized

with respect to time: J k denotes the nucleation rate at time
tk .

Using Euler’s method for time integration and first-order
upwind differencing for the condensation terms, we get the
discrete-time evolution model for the particle number con-
centrations in bins �i (Korhonen et al., 2004):

Nk+1
1 = Nk

1 + 1tk

(

J k −

(

gk
1

1d1
+ λ1

)

Nk
1

)

+ C1(N
k) (5)

Nk+1
i = Nk

i + 1tk

(

gk
i−1

1di−1
Nk

i−1 −

(

gk
i

1di

+ λi

)

Nk
i

)

+ Ci(N
k), (6)

for all 1 < i ≤ Q, 1 ≤ k ≤ T ,

where Ci(N
k) is a nonlinear coagulation term; for details,

see Lehtinen and Zachariah (2001). Here, the choice for ap-
proximating the derivative in the growth term in the dis-
cretization of the GDE is made, assuming that the parti-
cle growth rate is positive. The modification to cases where
the aerosols evaporate, i.e., where growth rate is negative, is
straightforward. Such a time discretization scheme can be-
come unstable; however, it is possible to apply a different
method, e.g., implicit Euler or Crank–Nicholson (Trangen-
stein, 2013). Equations (5) and (6) can be written equiva-
lently in vector form as

Nk+1 = A
(

gk,λk
)

Nk + s
(

J k
)

+ C
(

β,Nk
)

. (7)

Here, A = A(gk,λk) is a sparse matrix consisting of ele-
ments Aij :

Aij (g
k,λk) =













1 − 1tk
(

gk
i

1di
+ λi

)

i = j

1tk
gk
i−1

1di−1
i = j + 1 > 1

0 otherwise,

(8)

s = s(J k) ∈ R
Q is a vector of the form s(J k) =

[1tkJ k,0, . . .,0]T, and the nonlinear term C(β,Nk) is
defined accordingly.

Finally, we complement the discretized GDE with a
stochastic term ǫk ∈ R

Q to account for modeling errors
caused by factors such as discretization and uncertainties of
the boundary conditions, and we write

Nk+1 = f
(

Nk
)

+ ǫk, (9)

where f : RQ → R
Q is of the form f (Nk) = A(gk,λk)Nk+

s(J k) + C(β,Nk). In this paper, the stochastic state noise
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term ǫk is modeled as Gaussian, ǫk ∼ N (0,Ŵǫ), where Ŵǫ is
the covariance matrix of ǫk . Equation (9) forms a discretized,
stochastic evolution model for the particle number concentra-
tion N .

2.1.2 Models for the parameters of the GDE

All the unknown parameters of the GDE (g, λ and J ) are
known to be nonnegative. For this reason, we reparametrize
these quantities by writing gk

i = Pg(ξ
k
g,i), λk

i = Pλ(ξ
k
λ,i) and

J k = PJ (ξ k
J ), where ξg,i , ξλ,i and ξJ are the (unconstrained)

parameters, and mappings Pg , Pλ, PJ have the form of a so-
called softplus function (Dugas et al., 2001) Pϕ : R → R

+:

Pϕ(ξ k
ϕ ) =

1

α
log

(

1 + eαξ k
ϕ

)

. (10)

Note that this parameterization only constrains the param-
eter from below, but if an upper boundary is known, the
function in Eq. (10) could be changed in favor of, for ex-
ample, a logistic function which allows for both constraints
from below and from above. We denote the vectors consist-
ing of all condensation and deposition parameters at time tk
by ξ k

g = [ξ k
g,1, . . ., ξ

k
g,Q]T and ξ k

λ = [ξ k
λ,1, . . ., ξ

k
λ,Q]T, respec-

tively.
As the process rates g, λ and J in the GDE are time-

varying, the state estimation requires one to model their time
dependence. In this paper, we model ξg,i , ξλ,i and ξJ as either
first-order Markov processes,

ξ k+1
ϕ = 9ϕξ k

ϕ + ηk
ϕ, (11)

where 9ϕ is a diagonal matrix 9ϕ = rϕI, and 0 < rϕ < 1, or
as second-order Markov processes,

ξ k+2
ϕ = 91

ϕξ k+1
ϕ + 92

ϕξ k
ϕ + ηk

ϕ, (12)

with 91
ϕ = r1

ϕI and 92
ϕ = r2

ϕI. In both models, ηk
ϕ stands for

Gaussian noise ηk
ϕ ∼ N (0,Ŵηk

ϕ
). To simplify the following

description, we assume all the models to be of the form
shown in Eq. (11), but we note that the extension to second-
order models is straightforward: higher-order Markov mod-
els can be converted into the form of first-order Markov mod-
els by augmenting the state variables corresponding to more
than one time instant into a single vector. The second-order
models are suitable for some of the quantities in GDE, be-
cause they imply temporal smoothness of those processes
(Kaipio and Somersalo, 2006). The specific choices of the
state models and their parameters are discussed in Sect. 3
and specified in Appendix B.

The evolution models, such as Eqs. (11) and (12) can be
argued to be unrealistic, as they are not based on physics. The
understanding, however, is that if the (co)variances of the
driving noise processes ηk

ϕ are set high enough, such mod-

els are feasible in the sense that the actual ξ k+1
ϕ − 9ϕξ k

ϕ are

well supported by the modeled distribution of ηk
ϕ . System-

atic (state-space identification) approaches exist that allow

one to test the model’s feasibility against the driving noise
distribution (variances) (Gelb, 1974). In the next section, we
test the state estimation based on the above models in cases
where the true evolution of the quantities is not of the form
of Markov models.

2.1.3 Augmented evolution model for n, g, λ and J

To complete the evolution model, we define an augmented
state variable Xk ,

Xk =







Nk

ξ k
g

ξ k
λ

ξ k
J







, (13)

and combine the evolution models written in Sects. 2.1.1 and
2.1.2, yielding







Nk+1

ξ k+1
g

ξ k+1
λ

ξ k+1
J







=






A(Pg(ξ
k
g,i),Pλ(ξ

k
λ,i)) 0 0 0

0 9g 0 0
0 0 9λ 0
0 0 0 9J




 ×







Nk

ξ k
g

ξ k
λ

ξ k
J







+






s(PJ (ξ k
J ))

0

0

0




+






C(β,Nk)
0

0

0




+







ǫk

ηk
g

ηk
λ

ηk
J







(14)

or

Xk+1 = F
(

Xk
)

+ wk. (15)

This is the evolution model for the augmented state variable
Xk , which includes not only the number concentrations of
the size sections but also the unknown process rates. Next,
we write the observation model in terms of Xk , and then,
in Sect. 2.3, we apply Bayesian state estimation to infer Xk ,
k = 1, . . .,K based on sequential SMPS measurements.

2.2 Observation model

An SMPS consists of a differential mobility analyzer
(DMA), which classifies charged particles based on their mo-
bility in an electric field, and a condensation particle counter
(CPC) where the classified particles are grown to sizes de-
tectable, for example, optically. All particle counters provide
only discrete, indirect and noisy data on the particle size dis-
tributions. Mathematically, each channel in a particle counter
gives data that corresponds to a convolution/projection of the
particle size distribution onto a space spanned by device-
specific kernel functions; moreover, the counter data are cor-
rupted by Poisson distributed noise.
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2.2.1 SMPS transfer function

The output of each DMA is the detected number concentra-
tion in a size class; in channel i corresponding to a discrete
time index k, it is of the form

zk
i =

1

V

t0+k1t∫

t0+(k−1)1t

φa(t)

∫

ωi

9i(dp)n(dp, t)ddpdt, (16)

where 9i(dp) is a time-invariant kernel function; ωi is the
support of 9i(dp) – that is, the set of points where 9i(dp)

is nonzero; t0 is the initial time; and 1t is the duration of
counting particles in the CPC for a single channel. Further,
V is the volume of the aerosol sample that passes through
the CPC counter with a detector–sample flow rate φa(t) in
the period of time 1t – that is, V =

∫ t0+k1t

t0+(k−1)1t
φa(t)dt .

2.2.2 CPC counting model

The measurement data of the ith channel of an SMPS, yk
i ,

consist of Poisson-distributed counts given by the CPC:

yk
i =

ỹk
i

V
, with ỹk

i ∼ Poisson
(

V zk
i

)

, (17)

where V ≃ 1tφa(t0 + k1t) is the volume of sample used in
the CPC for counting. In the numerical studies of this paper,
we use this model when simulating the measurement data. In
state estimation, however, we approximate the Poisson dis-
tributed observations as Gaussian:

yk
i ∼ N

(

zk
i ,γi

)

, (18)

where γi is the approximate variance of the noise. In this
paper, we use the same approximation as in Voutilainen et al.

(2000) and write γ k
i =

yk
i

V
.

By discretizing the SMPS model (Eq. 16) and using the
above Gaussian approximation of the noise, we write an ob-
servation model of the form

yk = H̄Nk + ẽk + ιk, (19)

where yk = [yk
1 , . . .,yk

M ]T, H̄ is an observation matrix and ẽk

is the Gaussian observation noise ẽk ∼ N (0,Ŵk
ẽ
). Here, the

covariance of the observation noise is of the diagonal form
Ŵk

e = diag(γ k
1 , . . .,γ k

M). The additional noise term, ιk is in-
cluded in Eq. (19) in order to account for errors caused by the
discretization of the measurement operator in Eq. (16). Here,
ιk is simply approximated as being Gaussian distributed with
zero-mean ιk ∼ N (0,Ŵk

ι ) whose components are calculated
as mutually independent; hence, the covariance matrix Ŵk

ι

is of diagonal form. Furthermore, the approximation error
term ιk is assumed to be independent of the counting noise
ẽk; thus, the total error ek = ẽk +ιk ∼ N (0,Ŵk

e), where Ŵk
e =

Ŵk
ẽ
+Ŵk

ι . For a more rigorous approach to handling modeling
errors, we refer to the book by Kaipio and Somersalo (2006).

Finally, the model (Eq. 19) can be written in terms of the
state variable Xk defined in Eq. (13),

yk = HXk + ek, (20)

where H is a block matrix of the form H = [H̄,0,0,0].

2.3 State estimation

The nonlinear evolution model (Eq. 15) and the linear obser-
vation model (Eq. 20) form a system

Xk+1 = F
(

Xk
)

+ wk (21)

yk = HXk + ek, (22)

referred to as the state-space representation. The system
is stochastic due to the state noise and observation noise
processes, wk and ek , respectively. In addition, we model
the initial state X0 as a Gaussian random variable X0 ∼

N (X0|0,Ŵ0|0). Given this model, we can state the Bayesian
filtering and smoothing problems as follows: form the con-
ditional probability density of the random variable Xk , given
the sequence of measurements Yℓ = {y1, . . .,yℓ}. In the ex-
tended Kalman filter and smoother, these probability densi-
ties π(Xk|Yℓ), are approximated by Gaussian densities – that
is,

π(Xk|Yℓ) ≈ N (Xk|ℓ,Ŵk|ℓ), (23)

where Xk|ℓ and Ŵk|ℓ are approximations of the respec-
tive conditional expectation and covariance of Xk given Yℓ

(Gelb, 1974).
Kalman filtering gives online estimates π(Xk|Yk) based

on the data set from the beginning up to the present time k

– that is, ℓ = k, whereas in smoothing ℓ > k. In the FIKS, in
particular, ℓ = K , where K is the index of the final time step.
In other words, the FIKS estimate π(Xk|YK) at each time
k is based on the entire data set from the beginning to the
end of measurements. The EKF and FIKS estimates (approx-
imate expectations Xk|ℓ and covariances Ŵk|ℓ) are given by
the following forward and backward iterations (Gelb, 1974):
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In Algorithms 1 and 2, ∂F k denotes the Jacobian matrix of
the nonlinear mapping F at point Xk|k . Note that the FIKS
is based on a backward recursion, which starts from the filter
estimate corresponding to final state: XK|K , ŴK|K .

3 Numerical simulations

In this section, the feasibility of the proposed estimation
scheme is tested with numerical studies, where the aerosol
particle evolution is simulated by numerical approximations
of the GDE corresponding to a set of process rates, and where
synthetic SMPS data are computed by numerical modeling of
the DMA and generating the Poisson-distributed CPC data.
Two type of events are considered: in cases 1 and 2, the evo-
lution of the aerosol size distribution is governed by a nu-
cleation event (NE) and the subsequent growth of the nucle-
ation mode in a background of existing aerosols; in cases
3 and 4, new particles are formed in a continuous nucle-
ation process and their further evolution is controlled by con-
densational growth and deposition, so that the size distribu-
tion approaches a steady state (SS). In all cases, the particle
growth is dominated by condensation, and the loss of parti-
cles (caused by wall deposition, sedimentation, dilution, etc.)
depends linearly on the size distribution function. Further,
the coagulation kernel is chosen to have the form given in
the book by Seinfeld and Pandis (2016). In these numeri-
cal studies, cases 1 and 2 (NE) qualitatively represent a typi-
cal particle formation event in the atmosphere (e.g., Hyytiälä
Maso et al., 2005), whereas cases 3 and 4 (SS) represent par-
ticle formation and growth in a chamber experiment (e.g.,
CLOUD Lehtipalo et al., 2014).

3.1 Cases 1 and 2: nucleation event (NE)

3.1.1 NE: data simulation

In the numerical simulation study, the temporally evolving
particle size distribution is synthetically generated using the
(deterministic) discretized GDE model described by Eqs. (5)
and (6) with predefined process rates g,λ, β and J . In the
estimation, however, g,λ and J are, of course, not known.

In the NE case, the process rates g,λ and J are chosen
to have the following properties: the condensational growth
rate g is independent of the particle size but depends on time,
whereas the loss rate λ depends on particle size but not on

time. Further, the nucleation rate J is a time-dependent, con-
tinuous function which represents an NE in a time interval
[t0 = 5h, t1 = 10h] and is zero in all other instants within
the period of interest [0,15h]. As noted above, the coagula-
tion kernel is known, yet the coarse discretization also causes
error in this term. The detailed forms of the process rates are
shown in Table A1 (Appendix A).

When simulating the evolution of the particle distribu-
tion, the particle diameter dp ∈ [13.85nm, 1000.0nm] is
discretized into Q = 2500 logarithmically distributed bins.
Such a high size resolution is chosen in order to avoid numer-
ical diffusion effects and to obtain a good approximation of
the particle size density. The time step 1tk in the explicit Eu-
ler time integration scheme is chosen based on the Courant–
Friedrichs–Lewy condition (Courant et al., 1928; Dullemond
and Dominik, 2005):

0 < 1k
t <

1

max
i

{

gk
i

1di
+ λi

} . (24)

The CFL criterion is applied in order to keep the time inte-
gration stable with respect to condensational growth and loss.
The coagulation rates are not considered here because coagu-
lation is actually a dampening mechanism that stabilizes time
integration. The nucleation, growth and loss rates as well as
the resulting particle size density evolution for the NE cases
are illustrated in Fig. 1.

As explained in Sect. 2.2, the measurements consist of
simulated counts modeling CPC combined with DMA. The
model for the kernel functions 9i(dp) corresponds to an
SMPS 3936 device, and it accounts for the most relevant
effects (Millikan, 1923; Stolzenburg, 1989; Flagan, 1998;
McMurry, 2000; Boisdron and Brock, 1970; Wiedensohler,
1988). We skip the details here, and only visualize the ker-
nels, by plotting the size-distribution transfer function, or the
observation matrix H̄, as a color map (Fig. 2a).

We simulate the synthetic CPC measurement yk
i corre-

sponding to each CPC channel i at each time k by draw-
ing samples from a Poisson distribution, given in Eq. (17)
with mean V zk

i . As the expectation of yk
i is zk

i and its
variance is zk

i /V , the signal-to-noise ratio (SNR) of CPC
data increases with V . In order to investigate the effect of
SNR to the process rate estimates, we generate the Poisson-
distributed observations corresponding to two sample vol-
umes: V = 90cm3 (Case 1: NE, high SNR) and V = 0.9cm3

(Case 2: NE, low SNR). In Case 1, the range of SNR was
[0,6426]; in Case 2 it was [0,64.26].

3.1.2 NE: parameter estimation

In this section, we briefly describe the assumptions made
when constructing the models used for computing the state
estimates in the NE cases. The exact forms of the models as
well as choices of parameters are listed in Appendix B.
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Figure 1. Cases 1 and 2 – a nucleation event, showing true (simulated) processes: (a) particle size density (measurement), (b) nucleation
rate, (c) growth rate and (d) loss rate.

For the evolution models used in state estimation, the par-
ticle size range [14.1nm, 736.5nm] is divided into 111 bins –
that is, the size range is narrower and the discretization is sig-
nificantly coarser than when simulating the data. The GDE-
based, discrete stochastic state evolution model (Eq. 9) for
the particle number N is written as described in Sect. 2.1.1.
The covariance matrix Ŵǫ of the stochastic term ǫk is chosen
to be of diagonal form.

In this case study, we assume to know that the condensa-
tion rate is time dependent but size independent. Moreover,
both the condensation and nucleation rates are assumed to
be temporally smooth, and we model them as second-order
stochastic processes (Eq. 12). The loss factor λ is assumed to
be a smooth function of the particle size. Further, we write a
first-order Markov model (Eq. 11) for its temporal variation
– that is, although the true loss factor is time invariant, we do
not assume to know this property in state estimation. This is
done to study the stability of the estimation scheme: although
the deposition loss is modeled as varying with time, the esti-
mation should yield essentially time-invariant estimates.

The covariance of the initial state, Ŵ0|0, is chosen to be
diagonal; this signifies that the elements of X0 are mutually
independent. Moreover, the variances of X0 are chosen to
be relatively large in comparison with the variances of the
state noise vector ǫk; this indicates a high uncertainty of the
initial state. We note that the selection of the parameters in

the stochastic terms is a crucial part of the state-space model.
However, the state estimates are not extremely sensitive to
these choices; choosing parameters that are of the right order
of magnitude is usually enough, and as the stochastic models
are written for physically relevant quantities, ballpark ranges

of the parameters are often available a priori.
The size-distribution transfer function corresponding to

the discretization of the particle size in estimation is illus-
trated in Fig. 2b. The approximate observation model is used
in order to avoid so-called inverse crime, which refers to the
use of unrealistically accurate models in the inversion of sim-
ulated data. A comparison between the true transfer function
and the approximated one used in the estimation – mean over
each discretization bins – is depicted in Fig. 2c for the third
channel. Furthermore, as noted in Sect. 2.2, instead of us-
ing the Poisson model for the measurements, the observation
noise is approximated as additive and Gaussian. This choice
is made for computational convenience, as it allows for the
direct applications of EKF and FIKS into the state-space sys-
tem.

The extended Kalman filter and smoother estimates are
computed using Algorithms 1 and 2, respectively. From
the resulting state estimates Xk|ℓ, ℓ = k,K the approximate
posterior expectations of the processes are computed using
the models gk

i = Pg(ξ
k
g,i), λk

i = Pλ(ξ
k
λ,i) and J k = PJ (ξ k

J )

(see Sects. 2.1.2 and 2.1.3). We also compute approximate
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Figure 2. The size distribution transfer functions for (a) simulating
the measurement data, and (b) the observation model used in state
estimation. In the images, the horizontal axis corresponds to the size
of the particle entering the device, and the vertical axis represents
the channels of the SMPS. The colors represent the values of the
efficiency with which a given particle size will be classified in a
given bin in the particle sizer.

68 % credible intervals of the estimates, by mapping the val-

ues E(ξ k
∗,i |Y

ℓ) ±

√

var(ξ k
∗,i |Y

ℓ), to the corresponding pro-

cess rate spaces. Note, however, that due to the lineariza-
tions/Gaussian approximation behind EKF, these approxi-
mate intervals do not necessarily represent the ranges where
the true parameter value lies; these are the ranges within
which the true value most likely lies with an 0.68 probabil-
ity. In the following, we refer to these approximate credible
intervals as“posterior error intervals”.

3.1.3 NE: results and discussion

The results of Case 1 (NE, high SNR) are illustrated in Fig. 3.
The figure shows the Kalman smoother estimates for the par-
ticle size density, and the EKF and FIKS estimates for the
growth, apparent particle formation and loss rates as well as
for two instantaneous particle size densities ( 1N

1dp
at 2 and

10 h). The loss rate estimates correspond to time 10 h. For
the process rates and for the instantaneous size densities, the
figure also shows the EKF- and FIKS-based posterior error
intervals – representing the uncertainty of the estimates – as
well as the true values of the corresponding quantities.

The estimated particle size density (Fig. 3a) is in rather
good correspondence with the true size density (Fig. 1a).
However, the size density estimates corresponding to times 2
and 10 h (Fig. 3e and f, respectively) show that the peak val-
ues of the size density are somewhat underestimated by both
EKF and FIKS. Moreover, in these instants, the true values of
the size density are partly outside the approximate posterior
error intervals. Yet the 68 % posterior error intervals do not
necessarily need to contain the true values, and the error in-
tervals seem to be slightly too narrow. This underestimation
of the uncertainty is due to the linearizations/Gaussian ap-
proximation behind EKF and FIKS, as shown by Huttunen
et al. (2018), and the rather simple approximations of the er-
ror in the evolution and the measurement models – under-
estimating the covariance in the models. The errors caused
by model approximations become more influential with de-
creasing mean noise level – the remedy for such errors could
be the Bayesian approximation error method (Kaipio and
Somersalo, 2006); however, this is out of the scope of this
paper.

For the process rates, the approximate posterior means
given by both EKF and FIKS are relatively close to the true
values (Fig. 3b–d). Overall, the FIKS estimates for the pro-
cess rate parameters are more accurate than the EKF esti-
mates – this is an expected result because FIKS utilizes the
entire data set up to the end of the process, whereas EKF only
uses data up to time t when estimating the variables at time
t .

The filter and smoother also show differences in the pos-
terior error intervals of the process rate parameters: the error
intervals given by EKF are systematically wider than those
given by FIKS. This is again an expected result because the
use of the future data (FIKS) should reduce the uncertainty in
the estimated quantities. Furthermore, in almost all instants
in time, the process rate parameters (especially growth and
apparent particle formation rates) are within the posterior er-
ror intervals. This is a desired result, as it indicates that these
approximate credible intervals give realistic measures of the
estimate uncertainties in these cases.

The loss rate estimate uncertainty depends strongly on the
particle size: the posterior error intervals are wide in the low-
est and highest size ranges and rather narrow elsewhere. The
high uncertainty of the loss factor at the high particle size
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Figure 3. Case 1 – NE and high SNR. State estimates for the particle size density (a, e, f), nucleation rate (b), growth rate (c) and loss rate
(d). The image in plot (a) depicts the approximate posterior expectation for the entire time-evolution of the particle size density given by
FIKS, whereas plots (e) and (f) illustrate the EKF and FIKS estimates corresponding to times 2 and 10 h, respectively. In plots (b)–(f), the
blue and orange lines represent the approximate posterior expectations for EKF and FIKS, respectively, and the areas shaded with light blue
and orange are the respective posterior error intervals. The true values of the corresponding quantities are drawn with a green line.

range dp > 400 nm is caused by the lack of data – in this size
range, the particle density is nearly zero at all times; conse-
quently, the SMPS data do not provide information on the
loss factor. In the lowest size range, the width of the credible
interval also depends on time. From time t = 9 h, when the
nucleation event is practically over, the particle size density
in the lowest size range is almost zero, again resulting in high
uncertainty in the loss factor estimate. The loss rate estimate
and posterior error interval resulting from the FIKS are vir-
tually time invariant, even though those from the EKF show
a strong time dependence.

In Case 1, the SNR is high, and – apart from the afore-
mentioned exceptions – the estimate uncertainty is very low.
Figure 4 shows the results of Case 2, where the SNR is signif-
icantly lower. As expected, the process rate estimates become
less accurate than in Case 1. However, the change in the accu-
racy is quite small, especially for FIKS – demonstrating that
the Kalman smoother estimates tolerate measurement noise
rather well. As expected, the posterior error intervals of all
estimated quantities are clearly wider than in the case of high
SNR – this is a result of increased uncertainty in the parti-
cle counter observations. Both EKF and FIKS lead to safe
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Figure 4. Case 2 – NE and low SNR. State estimates for the particle size density (a, e, f), nucleation rate (b), growth rate (c) and loss rate
(d). The image in plot (a) depicts the approximate posterior expectation for the entire time-evolution of the particle size density given by
FIKS, whereas plots (e) and (f) illustrate the EKF and FIKS estimates corresponding to times 2 and 10 h, respectively. In plots (b)–(f), the
blue and orange lines represent the approximate posterior expectations for EKF and FIKS, respectively, and the areas shaded with light blue
and orange are the respective posterior error intervals. The true values of the corresponding quantities are drawn with a green line.

posterior error intervals for the process rate parameters, and
FIKS again gives clearly narrower posterior error intervals
than EKF. The true values of the process rate parameters are
once again within the posterior error intervals, further con-
firming the feasibility of Bayesian state estimation for quan-
tifying the uncertainties of the process rates.

One may notice the appearance of spurious oscillations in
the size distribution at low sizes during the particle formation
event in Case 2 (Fig. 4a), which were completely smoothed
out in Case 1 (Fig. 3a). These oscillations are due to the in-

stability of Eqs. (5) and (6) which are corrected during the
estimation by the assimilation of the data. However, while
the data in Case 1 allow for the estimates to be neatly recti-
fied, the data in Case 2 cannot completely make up for the
instability. Note that the tolerance with respect to such mod-
eling errors (e.g., discretization) can be further improved by
so-called approximation error analysis (Huttunen and Kai-
pio, 2007).
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Figure 5. Cases 3 and 4 – steady-state system, showing true (simulated) processes: (a) particle size density (measurement), (b) nucleation
rate, (c) growth rate and (d) wall loss rate.

3.2 Cases 3 and 4: steady state (SS)

3.2.1 SS: data simulation and parameter estimation

In the SS simulations in this paper, the condensation rate
is both size dependent and time dependent, and the wall
loss rate is time invariant but depends on size. Both the nu-
cleation and condensation rates start from zero and grow
within the first 30 min until they reach their stationary val-
ues. In such a case, the new particle formation and conden-
sational growth are compensated for by wall losses, lead-
ing to the number concentration function to reach a steady
state. The simulated process rates and the particle size den-
sity are illustrated in Fig. 5. Here, the size range of particles
is [0.87nm, 10.00nm], and it is discretized into Q = 1731
logarithmically distributed bins. Note that the value d∗

p =

0.87nm is most certainly below any physically relevant crit-
ical sizes; however, from a simulation stand point, any size
range could have been utilized to simulate a similar chamber
experiment, only the values of the parameters would require
adjustments.

The synthetic SMPS data are simulated similarly to cases 1
and 2. Again, two cases corresponding to different SNRs are

simulated by generating the Poisson-distributed observations
corresponding to two sample volumes: V = 200cm3 (Case
3: SS, high SNR) and V = 2cm3 (Case 4: SS, low SNR). In
Case 3, the range of SNR was [0,4440]; in Case 4 it was
[0,44.4].

In the state space, the lower end of the size discretization
bin (i.e., �1 in Sect. 2.1.1) is centered at 1.1 nm (its lower
boundary is about 1.08 nm). Many potential bins would sep-
arate the critical size d∗

p = 0.87nm from the lower end of

the state space dmin
p = 1.08nm. The reason that we are not

setting dmin
p = d∗

p is because, with the current technology, it
is not realistic to assume that we can acquire reliable data
down to the critical size. Note that it is possible, however, to
extend the model down to the critical size in order to esti-
mate the true nucleation rate – provided that the GDE is still
valid for such small particles. However, without measure-
ment from the lower end of the spectrum, the uncertainty will
overwhelm the estimates, rendering them non-informative.
This extension is outside of the scope of this paper.

The time evolution of the apparent particle formation and
growth rates are modeled as second-order Markov processes
(Eq. 12), whereas the wall loss rates are modeled as first-
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Figure 6. Case 3 – SS, high SNR. State estimates for the particle size density (a, e, f), nucleation rate (b), growth rate (c) and wall loss rate (d).
The images in plots (a) and (c) depict the approximate, FIKS-based posterior expectations for the entire time-evolution of the corresponding
quantities. Plots (e) and (f) illustrate the EKF and FIKS estimates for the particle size density corresponding to times 1 and 2 h, respectively.
In plots (b) and (d–f), the blue and orange lines represent the approximate posterior expectations for EKF and FIKS, respectively, and the
areas shaded with light blue and orange are the respective posterior error intervals. The true values of the corresponding quantities are drawn
with a green line.

order Markov processes (Eq. 11). The growth and wall loss
rates are assumed to be smooth with respect to size; hence,
the state noises in the corresponding evolution models are
modeled as correlated. For details of the model choices, we
refer to Appendix B.

3.2.2 SS: results and discussion

Figure 6 illustrates the estimates of the particle size density
and process rates in the case of high SNR (Case 3). For the
particle size density and condensation rate, the respective im-
ages in Fig. 6a and c show the approximate FIKS-based pos-
terior means of those time- and size-dependent variables. For
the nucleation rate as well as for the instantaneous wall loss

https://doi.org/10.5194/gmd-14-3715-2021 Geosci. Model Dev., 14, 3715–3739, 2021



3728 M. Ozon et al.: Retrieval of process rate parameters in the GDE for aerosols

Figure 7. Case 3 – SS and high SNR. Condensational growth rate estimates corresponding to four instants in time. The blue and orange lines
represent the approximate posterior expectations for EKF and FIKS, respectively, and the areas shaded with light blue and orange are the
respective posterior error intervals. The true growth rates are marked with green lines.

rate and size densities, both the filter and smoother estimates
(approximate posterior expectations and error intervals) are
plotted.

In this case, the smoother estimate for the particle size den-
sity is in very good correspondence with the true density (see
Fig. 5a). Further, the uncertainty estimates for the particle
size density are feasible: the true size density lies within the
posterior error intervals given by EKF and FIKS.

The apparent particle formation rate is well estimated by
both the EKF and the FIKS; the true value lies within the
posterior error intervals most of the time. Only at the onset of
the appearance of particles into the measured size range does
the true value not lie within the uncertainty range, around
t = 25min. Similarly to the NE cases, the FIKS estimates are
less uncertain than those from the EKF, and the SNR levels

are a major factor determining the accuracy of the estimates:
the higher the SNR, the better the estimate. While the true
nucleation rate plotted in dark green takes place at 0.87 nm,
in the state-space model, the diameter that corresponds to the
apparent particle formation, plotted in light green, is about
1.08 nm (the lower end of the smallest size bin, geometrical
center at 1.1 nm). This difference between the model used for
simulating the data and the model used in estimation causes
the systematic error – underestimation of the nucleation rate.

Figure 6c shows a clear trend in the quality of the smoother
estimate for the condensational growth rate: at an early stage
of the process (time ∼ 0.25 h), FIKS infers the growth rate
reliably only in the smallest size classes (diameter ∼ 1 nm);
in the larger particle sizes, the growth rate is heavily under-
estimated (see Fig. 5c). As time progresses, the growth rate
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Figure 8. Case 4 – SS and low SNR. State estimates for the particle size density (a, e, f), nucleation rate (b), growth rate (c) and wall
loss rate (d). The images in plots (a) and (c) depict the approximate, FIKS-based posterior expectations for the entire time-evolution of
the corresponding quantities. Plots (e) and (f) illustrate the EKF and FIKS estimates for the particle size density corresponding to times 1
and 2 h, respectively. In plots (b) and (d–f), the blue and orange lines represent the approximate posterior expectations for EKF and FIKS,
respectively, and the areas shaded with light blue and orange are the respective posterior error intervals. The true values of the corresponding
quantities are drawn with a green line.

estimates become gradually more reliable in larger and larger
size classes.

The gradual improvement in the growth rate estimates in
the larger size classes is a direct consequence of the propaga-
tion of the particle number density towards large size classes.
Indeed, comparison of Fig. 6a and c reveals that the size class
where FIKS catches the increase in the growth rate parame-
ter (light/yellow area in the condensation rate image Fig. 6c)

follows accurately the propagating front of the number den-
sity in Fig. 6a. The reason for this property of the growth
rate estimate is obvious: in the size classes where the par-
ticle number density is very low, the measurement data do
not carry information on the growth rate parameters. In the
beginning of the process, the particle number density is low
in all classes. When nucleation starts producing particles to
the smallest size class and these particles grow, the growth is
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Figure 9. Case 4 – SS and low SNR. Condensational growth rate estimates corresponding to four instants in time. The blue and orange lines
represent the approximate posterior expectations for EKF and FIKS, respectively, and the areas shaded with light blue and orange are the
respective posterior error intervals. The true growth rates are marked with green lines.

sensed by the particle size analyzer measurements. When the
particle sizes keep increasing due to condensation, the mea-
surements corresponding to increasingly larger size classes
become sensitive to the process rate parameters.

Figure 7 illustrates the EKF and FIKS estimates of the
growth rate corresponding to four instants in time. These
plots confirm the above discussion on the growth rate es-
timation: at time 1 h and 6 min, both the EKF- and FIKS-
based posterior means underestimate the growth rate in the
large size classes (above ∼ 2.5 nm), and for the subsequent
times, the EKF and especially FIKS estimates become reli-
able in gradually increasing size classes. Furthermore, Fig. 7
shows a trend in the evolution of the posterior error inter-
vals of the growth rate: at time 1 h and 6 min, the posterior
error intervals are really wide in classes > 2.5 nm, reflect-

ing high uncertainty in the growth rate estimates in this size
range. As time progresses, the size range of low uncertainty
spreads towards large size classes. This result demonstrates
that Bayesian filtering and smoothing yield feasible poste-
rior error estimates – indicating high uncertainty in the size
ranges where the posterior expectations are unreliable in this
example.

The EKF estimates of the growth rate in Fig. 7 show sim-
ilar behavior to the FIKS estimates; the main differences are
that, as expected, the posterior means given by EKF are more
biased than those in FIKS, and the posterior error intervals
are generally wider than with FIKS.

Figures 8 and 9 show the results of Case 4 – SS and low
SNR data. The properties of the state estimates are very sim-
ilar to those in Case 3, except for the anticipated differences:
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the lower accuracy of the approximate posterior means, and
wider posterior error intervals – again indicating the increase
in the uncertainty when the SNR of the measurements gets
lower.

4 Conclusions

The radiative forcing caused by aerosols – and the underly-
ing processes of new particle formation and growth – are cur-
rently understood to be the most uncertain factors in the pre-
diction of climate change. While a significant effort has been
directed into experimental campaigns for collecting data that
carry indirect information on these processes and their ef-
fects, computational methods for analyzing the data are still
insufficient for reliable estimation of the process rates.

In this paper, the problem of estimating the apparent par-
ticle formation, growth and loss rates of aerosols was cast in
the framework of Bayesian state estimation. We modeled the
dynamics of aerosol size distributions with the general dy-
namics equation and considered the (process rate) parameters
in the model as unknown state variables. These size- and/or
time-dependent variables were estimated together with the
particle number density based on sequential particle counter
measurements using the extended Kalman filter (EKF) and
fixed interval Kalman smoother (FIKS). Furthermore, to
quantify the uncertainties of the estimated variables, we also
computed posterior error intervals for the process rate param-
eters.

The approach was tested with a set of numerical simula-
tion studies, where two processes of different types were con-
sidered: (1) a nucleation event, which qualitatively represents
a typical particle formation event in the atmosphere, and (2)
a process approaching steady state, which is representative
of a particle formation and growth in a chamber experiment.

The EKF- and especially FIKS-based estimates for the
process rates were generally reliable, even in cases of low
SNR data. Moreover, the posterior error intervals were fea-
sible – that is, the true process rates lie mostly within the
approximate error intervals. The reason why FIKS estimates
are generally superior to EKF estimates is that Bayesian
smoothers also use future data when estimating a quantity
at given time t , whereas filter estimates are based on only
the data up to the point t . In online and control applications,
of course, the future data are not available; however, in the
applications targeted in this paper, the data analysis is done
after the experiment – that is, the entire data set is available
for Bayesian smoothing. The results of the numerical stud-
ies support the feasibility of the proposed approach to esti-
mating the aerosol formation, growth and deposition rates,
and quantifying their uncertainties. Based on these findings,
we conclude that Bayesian state estimation (combined with
aerosol particle dynamics modeling) offers a reliable tool for
analyzing sequentially measured particle counter data. The
estimated aerosol process rates and their uncertainties can
improve the analysis of the experimental data and provide
better insight on the particle formation and growth in the
atmosphere. In the future, such analysis can potentially of-
fer improved assessment of the radiative forcing by aerosols
and its uncertainty. Eventually, this can lead to improved pre-
dictions and uncertainty quantification of the climate change
via a combination of the enhanced process rate estimates and
their uncertainties with global aerosol–climate models.
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Appendix A: Parameters in data simulation

Table A1. Summary of the models and parameters used for simulating data in nucleation event (NE) and steady-state (SS) cases. Here, the
growth rate g is assumed to be a product of a size- and time-dependent parts – that is, g = gd (dp)gt (dt ). “evol.” denotes “evolution”, and
“obs.” represents “observed”.

Model/parameter Nucleation event (NE) Steady state (SS)

g [nmh−1] gd (dp) 9 5 · tanh(0.17 · (109 · dp + 0.8))

gt (dt )

{
1
2 ·

(

1 − cos
(

2π
t−t0
t1−t0

))

, t ∈ [t0, t1]

0 , otherwise

{
1
2 ·

(

1 − cos
(

2πt
t1

))

, t ∈ [0, t1]

1 , otherwise

λ [s−1] 2.5 · 10−4
(

rdp

dmin
p

)− 3
2

+ 5·10−5

1+exp

(

−
dp−dmin

p
σd

)
1.31·10−12

dp

J [cm−3 s−1]

{

20 ·

(

1 − cos
(

2π
t−t0
t1−t0

))

, t ∈ [t0, t1]

0 , otherwise

{

50 ·

(

1 − cos
(

2πt
t1

))

, t ∈ [0, t1]

1 , otherwise
β [cm3 s−1] (Seinfeld and Pandis, 2016) (Seinfeld and Pandis, 2016)

GDE (evol. model) 1t 3 s 3 s
d0 13.85nm 0.87nm
di+1
di

1.0017 1.0014

Q 2500 1731

Particle counter (obs. model) 1t 120s 120s
d0 14.1nm 1.1nm
di+1
di

1.0366 1.0469

M 111 50
V 0.9,90cm3 2,200cm3

Table A1 lists the models and parameters used for simu-
lating the nucleation, condensation and deposition processes,
and the particle size density, as well as modeling the particle
counter data.
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Appendix B: Model details and parameters in state

estimation

Table B1. Qualitative description of the models used in state estimation for nucleation event (NE) and steady-state (SS) cases.

Process NE (cases 1 and 2) SS (cases 3 and 4)

Growth rate (g) Size dependence – Smooth
Time dependence Second-order Markov process Second-order Markov process

Deposition rate (λ) Size dependence Smooth Smooth
Time dependence First-order Markov process First-order Markov process

Nucleation rate (J ) Size dependence – –
Time dependence Second-order Markov process Second-order Markov process

Coagulation frequency (β) Size dependence Known Known
Time dependence – –

In this Appendix, we describe the choices of models and
parameters made for state estimation in the numerical ex-
amples (Sect. 3). We start by qualitatively summarizing the
choices of models for the process rates in the two example
cases, a nucleation event (NE) and steady state (SS), see Ta-
ble B1.

In the following, we first describe how the smoothness of
the size-dependent parameters is formulated. Next, we dis-
cuss modeling the time dependence of the parameters by
first- and second-order Markov models. Finally, we list all
parameter values chosen for each test case.

B1 Size-dependent processes: smoothness

The size-dependent process rate variables – loss rate (λ)
in all test cases and the growth rate (g) in the SS cases –
are assumed to be smooth functions of size. As these vari-
ables also depend on time, we model them as multivari-
ate stochastic processes, particularly first-order Markov pro-
cesses, as described below. The smoothness in size is ac-
counted for by modeling elements of each of the associ-
ated random variables (size-discretized process rate variables
ξ k

ϕ = [ξ k
ϕ,1, . . ., ξ

k
ϕ,Q]T, ϕ = λ,g) at a given time k as mutu-

ally correlated.

Ŵξ k
ϕ
(i,j) =

√

σ 2
ϕ,i

√

σ 2
ϕ,j exp

(

−
|i − j |

δϕ

)

,

for 1 ≤ i,j ≤ M (B1)

where σ 2
ϕ,i is the variance of ξ k

ϕ,i , and δϕ is a parameter defin-

ing how steeply the cross-covariance between elements ξ k
ϕ,i

and ξ k
ϕ,j decreases as a function of the difference between

indices i and j .
Figure B1 shows the covariance matrices of the two

size-dependent variables: loss rate (λ) in cases 1 and 2 and
growth rate (g) in cases 3 and 4. We note here that σ 2

λ,i

is constant in cases 1 and 2, whereas σ 2
g,i increases with

particle size in cases 3 and 4. Details of parameter values are
given in the following.

B2 Time-dependence: first-order Markov processes

Assume next that the process rate variable ξ k
ϕ is modeled as

a first-order Markov process. Here, we fix the covariance of
ξ k

ϕ first, as well as the temporal smoothness (first- or second-
order Markov process). We then determine the covariance of
the driving noise process.

When the covariance matrix Ŵξ k
ϕ

of ξ k
ϕ is time invariant,

we can calculate the covariance matrix of the state noise ηk
ϕ

using Eq. (11) as follows:

Ŵηk
ϕ

= Ŵξ k
ϕ
− 9ϕŴξ k

ϕ
9T

ϕ . (B2)

In cases of size-dependent variables, we construct the co-
variance matrix Ŵξ k

ϕ
as described above, fix the state transi-

tion matrix 9ϕ = rϕI, by choosing the parameter rϕ ∈]0,1[,
and, finally, compute the state noise covariance matrix using
Eq. (B2). Note, however, that in the case of a scalar variable
modeled as a first-order Markov process ϕ, which does not
depend on size, the state-transition matrix and the covariance
are simply 9ϕ = rϕ and Ŵξ k

ϕ
= σ 2

ϕ,i , respectively.

B3 Time-dependence: second-order Markov processes

As shown in Table B1, the size-independent variables in
cases 1 and 2 (g and J ) are modeled as second-order Markov
processes. For these variables, we choose the root param-
eters r1

ϕ and r2
ϕ in the evolution models using an approach

adopted from the analysis of second-order systems, such as
damped oscillators. We first define a characteristic time is Tϕ

and damping ratio ζϕ , and then calculate r1
ϕ and r2

ϕ by solving
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Figure B1. Covariance matrices of (a) the deposition rate λ in cases 1 and 2 and (b) growth rate g in cases 3 and 4.

Table B2. Parameters used in state estimation for nucleation event (NE) and steady-state (SS) cases.

Process NE (cases 1 and 2) SS (cases 3 and 4)

Growth rate (g) ξ
0|0
g 0ms−1 −22.810−13 ms−1

Ŵ
0|0
ξg

(52.810−13)2 (ms−1)2 (162.810−13 tanh(0.17 · (109 · dp + 0.8)))2 (ms−1)2

σ 2
ηg (52.810−13)2 (ms−1)2 (82.810−13 tanh(0.17 · (109 · dp + 0.8)))2 (ms−1)2

Tg 1800 s 300 s
ζg 0.95 0.95
δg Not applicable 50

Deposition rate (λ) λ0|0 610−5 s 1.31·10−12

dp
s

Ŵ
0|0
ξλ

(10−3)2 s−2 (0.1λ0|0)2 s−2

rλ 1 1

σ 2
λ,i

(10−3)2 s−2 (10−3)2 s−2

δλ 10 10

Nucleation rate (J ) ξ
0|0
J

0cm−3 s−1 0cm−3 s−1

Ŵ
0|0
ξJ

0.22 (cm−3 s−1)2 102 (cm−3 s−1)2

σ 2
ηJ

0.22 (cm−3 s−1)2 52 (cm−3 s−1)2

TJ 1800 s 300 s
ζJ 0.95 0.95

Number density (N ) N0|0 H̄Ty1 cm−3 0cm−3

Ŵ
0|0
N

4 y1+100
V

(cm−3)2 4 y1+100
V

(cm−3)2

Ŵǫ 1 (cm−3)2 4 (cm−3)2

Modeling error (ιk) Ŵι
100
V

(cm−3)2 100
V

(cm−3)2
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the set of equations:

r1
ϕ + r2

ϕ = 2

(

1 − ζϕ

2π1tk

Tϕ

)

(B3)

r1
ϕr2

ϕ = 1 − 4πζϕ

1tk

Tϕ

+ 4π2
(

1tk

Tϕ

)2

. (B4)

These parameters, along with separately chosen variances of
the state noises ηk

g and ηk
J as well as the expectations and

variances of the initial states ξ0
g and ξ0

J , define the properties
of the second-order Markov models.

B4 Parameter choices

All parameter values chosen for state estimation in each test
case are listed in Table B2.
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Code and data availability. The current version of the code used
to generate the data as well as the implementation of the es-
timation method are available under the MIT Expat License at
https://doi.org/10.5281/zenodo.4061728 (Ozon, 2020). The exact
version of the code used to produce the results in this paper will
be the initial version of the code.
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