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Abstract

We address recognition and localization of human ac-

tions in realistic scenarios. In contrast to the previous work

studying human actions in controlled settings, here we train

and test algorithms on real movies with substantial vari-

ation of actions in terms of subject appearance, motion,

surrounding scenes, viewing angles and spatio-temporal ex-

tents. We introduce a new annotated human action dataset

and use it to evaluate several existing methods. We in par-

ticular focus on boosted space-time window classifiers and

introduce “keyframe priming” that combines discrimina-

tive models of human motion and shape within an action.

Keyframe priming is shown to significantly improve the per-

formance of action detection. We present detection results

for the action class “drinking” evaluated on two episodes

of the movie “Coffee and Cigarettes”.

1. Introduction

Human actions are frequent and essential events within

the content of feature films, documentaries, commercials,

personal videos, and so forth. “Did Frodo throw the ring

into the volcano?” “Did Trinity kiss Neo?” The answers

to these and many other questions are hidden exclusively

in the visual representation of human actions. Automatic

recognition of human actions, hence, is crucial for video

search applications and is particularly urged by the rapidly

growing amounts of professional and personal video data

(BBC Motion Gallery, YouTube, Video Google).

Interpretation of human actions is a well recognized

problem in computer vision [2, 3, 1, 6, 9, 10, 16, 17, 19,

20, 22, 25, 26, 27]. It is a difficult problem due to the in-

dividual variations of people in expression, posture, motion

and clothing; perspective effects and camera motions; illu-

mination variations; occlusions and disocclusions; and the

distracting effect of the scene surroundings. Figure 1 illus-

trates some of these difficulties on examples of drinking and

smoking actions from the movie “Coffee and Cigarettes”.

To delimit the problem, previous work used a number of

simplifying assumptions for example (a) restricted cam-
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Figure 1. Examples of two action classes (drinking and smoking)

from the movie “Coffee and Cigarettes”. Note the high within-

class variability of actions in terms of object appearance (top) and

human motion (bottom). Note also the similarity of both action

classes in the gross motion and the posture of people.

era motion; (b) specific scene context, e.g. in field sports

or surveillance scenes; (c) reliable spatial segmentation;

and (d) restricted variation of view points. Notably, action

recognition has not yet been addressed in unrestricted sce-

narios such as in feature films.

To deploy action recognition in video indexing applica-

tions, one needs to make a step from restricted scenarios

and laboratory setups towards action recognition in generic

videos. The main contribution of this paper is to undertake

such a step and to address action class recognition and local-

ization in movies with realistic variations of actions due to

the changes of subjects, scenes, viewing angles, scales and

other factors. To somewhat restrict the problem, however,

we will focus on the “atomic” actions or events with a rea-

sonably well-defined structure in time. Examples of such

actions include “entering a room”, “answering a phone”,

“shaking hands” and “drinking from a glass”. In this pa-

per we particularly study the detection of “drinking” actions

and use movies “Coffee and Cigarettes” and “Sea of Love”

for training and testing.
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To assess the difficulty of the problem and the relative

performance of different methods, we first study the task

of recognizing pre-segmented samples of drinking actions

among other human actions and motion patterns. As a

promising method for action detection, we select a boosted

space-time window classifier similar to the one proposed by

Ke et al. [10]. We investigate the combination of shape and

motion information and extend [10] to a joint shape-motion

classifier. We also test two alternative methods either in

terms of space-time interest points [16] or by recognizing

actions from their static keyframes.

We next turn to the problem of action detection. We ap-

ply action classifiers to test videos in all space-time win-

dows with variable spatial size and temporal extent. While

such an exhaustive approach is shown to have a limited per-

formance, we introduce a technique called Keyframe Prim-

ing that combines a space-time classifier with the static

keyframe detection. Keyframe Priming is shown to signif-

icantly improve action detection and constitutes the second

contribution of the paper. All detection results are reported

for two test episodes of the movie “Coffee and Cigarettes”

with 36,000 frames in total.

The rest of the the paper is organized as follows. In the

next section we review related work. Section 2 presents the

annotated action dataset. In Section 3 we describe action

representations and methods for action classification. We

study classification performance in Section 4 and introduce

Keyframe Priming in Section 5. Results of action detection

are reported in Section 6. Section 7 concludes the paper.

1.1. Related Work

A substantial body of work has been devoted to action

recognition in the past. Due to the difficulty of the gen-

eral problem, a number of simplifying assumptions are usu-

ally applied. 3D human tracking and 3D action recogni-

tion [22, 26] usually rely on the available tracks of body

parts. An accurate segmentation of people from back-

grounds is assumed in several methods, e.g. [2, 1] analyzing

actions by the evolutions of silhouettes in time. Such meth-

ods assume in addition that actions can be recognized from

the outlines of the body which is not always the case for

many actions such as drinking actions studied in this pa-

per. A number of methods exploit motion descriptors in the

regions of actions [25, 27, 6, 16, 3, 17]. These methods

often rely on external localization of people prior to action

recognition with exception to [16, 3, 17]. All these methods

are restricted to limited view variations while most of them

have not been tested on datasets with large within-class vari-

ations of actions.

Learning discriminative action models appears to be a

promising approach to handle the variation within action

classes. To this end the methods [10, 19] present interest-

ing alternatives to action detection and recognition and are

closer to our approach in this paper. The method in [19],

however, provides action localization in time only while

in [10] action detection was studied for simple scenes with

restricted view variations. The idea of Keyframe priming in

Section 5 is related to [20] where human actions are recog-

nized and tracked using a set of key postures.

2. Dataset and annotation

The importance of representative and annotated datasets

for visual learning and recognition has been recently em-

phasized in the context of object class recognition [15].

Whereas for object recognition there now exist comprehen-

sive datasets with thousands of realistic images for tens or

hundreds object classes (Caltech 256, PASCAL VOC2006),

the situation is different in action recognition where the ex-

isting datasets [16, 24] provide only a few action classes

recorded in controlled and simplified settings with simple

backgrounds, single action per scene, static camera, etc.

This stands in sharp contrast to the fact that the within-class

variability is likely to be higher for actions than for objects

due to the additional time dimension in the data and to the

involvement of multiple objects (e.g., hand, face and con-

tainer in drinking).

2.1. Training and test sets

One reason for the lack of comprehensive and realistic

action datasets is the difficulty of collecting and annotating

videos of real human actions. To overcome this problem in

this paper we make use of human actions in movies both for

the training and testing purposes. In particular, we exploit

the movie “Coffee and Cigarettes” (2003) providing an ex-

cellent pool of natural samples for action classes “drinking”

(105 samples) and “smoking” (141 samples). These actions

appear in different scenes, they are performed by different

people while being recorded from different view points.

For the training of class “drinking” we use 41 drink-

ing samples from 6 episodes of the movie “Coffee and

Cigarettes”1. In addition we use 32 drinking examples from

the movie “Sea of Love” and 33 drinking samples recorded

in our lab. For the test we use the episodes “Cousins?”

and “Delirium” from “Coffee and Cigarettes” containing 38

drinking actions and the total of 36,000 frames. The train-

ing and the test sets have no overlap in subjects or scenes.

Figure 2 illustrates the large within-class variability of our

drinking samples as well as the difference between the train-

ing and the test subsets. A few examples of scenes in Fig-

ure 6 illustrate the large variability of scales, locations and

view-points as well as the typical “background clutter” with

surrounding people acting in various ways.

1The training episodes from “Coffee and Cigarettes” are entitled

“Strange to meet you”, “Those things’ll kill you”, “No problem”, “Jack

shows Meg his tesla coil”, “Cousins” and “Champagne”.



Figure 2. Selected examples of annotated actions of class “drink-

ing” from the training episodes (left) and test episodes (right).

2.2. Annotation

We use annotation of drinking actions both for the align-

ment of training samples as well as for the evaluation of

detection performance on the test set. Each drinking action

is associated with a space-time volume defined by a cuboid

R = (p,∆p) with location p = (X,Y, T )⊤ and the spatio-

temporal extent ∆p = (∆X,∆Y,∆T )⊤ as illustrated in

Figure 3. The spatial parameters of the cuboid are inferred

by scaling and translating the manually annotated rectan-

gle of the head such that ∆X = 1.6w for head width w

and ∆Y = 1.3h for head height h. To delimit actions in

time, we manually select the frames corresponding to the

start/end motion of a hand to/from the face. We also de-

fine the keyframe of an action by the time when the hand

reaches the mouth. Temporal extents of drinking actions in

our training set vary between 30 and 200 frames with the

mean length of 70 frames. For each training action we gen-

erate several slightly randomized temporal annotations and

in this way make the final classifier robust to the uncertainty

of temporal extents of the action. Our action annotation is

publicly available online2.

3. Modeling

Treatment of generic video scenes imposes constraints

on the choice of suitable methods for action interpretation.

For example, we should not commit to the pre-defined lo-

cations and scales of actions in the scene, neither should we

rely on static backgrounds nor on the presence of only one

action at any time. Given the current progress in the respec-

tive domains, it may also not be appropriate to rely on the

segmentation of human silhouettes nor on the precise local-

ization of body parts. On the other hand, the chosen meth-

2http://www.irisa.fr/vista/Equipe/People/Laptev/actiondetection.html

Figure 3. (Top): action volume in space-time represented by three

frames of a drinking action. Arrows on the frames correspond

to the computed optic flow vectors. Transparent blocks in red

demonstrate some of the space-time features of a boosted space-

time classifier. (Bottom): Three types of features with different ar-

rangement of histogram blocks. Histograms for composed blocks

(Temp-2, Spat-4) are concatenated into a single feature vector.

ods should be sufficiently efficient to enable the processing

of several hours of video.

3.1. Boosted action classifier

In this paper we wish to exploit the consistent structure

of “atomic” human actions in space-time. We build upon

the intuition that such events in video can be treated simi-

larly to the objects in images (see [21] for the related dis-

cussion in psychology). By taking this approach, we can

benefit from the recent progress achieved in object class de-

tection and recognition [4, 8, 11, 23]. In particular, we use

discrete AdaBoost [7, 23] to learn a cascade of boosted ac-

tion classifiers C

C(z) = sgn(
m∑

i=1

αihi(fi(z))),

withC making use of a linear combination ofmweak learn-

ers hi(fi) defined for action features fi(z) of video z. Sim-

ilar to [11] we use Fisher discriminant for the weak learners

in combination with histogram features that represent ac-

tions as described below.

3.2. Motion and shape features

We wish to exploit appearance and motion of actions for

action recognition. Shape representations in terms of his-

tograms of image gradients have shown excellent perfor-

mance on object recognition problems [4, 11, 13]. In this

paper we use histograms of spatial gradient discretized in



Figure 4. Video features. (a): All space-time features of OF5 classifier overlayed. High intensity values indicate high density of features;

(b): Feature density for OF5 classifier projected on spatial coordinates (top) superimposed on the sample frame of a drinking action in (d)

(bottom); (c): Spatial feature density for Keyframe classifier (top); superimposed on the keyframe of a drinking action in (d) (bottom);

(d)-(e): Examples of drinking and smoking actions from the movie “Sea of Love” and corresponding detections of STIP features [12].

four orientations bins denoted by Grad4. To represent mo-

tion, we use 5-bin histograms of optical flow [14, 5] denoted

by OF5 with four bins corresponding to four discrete mo-

tion directions and the last bin corresponding to no motion.

Our action features f are OF5 or Grad4 histograms ac-

cumulated in space-time blocks of the normalized action

cuboid as illustrated in Figure 3. We assume that action

annotation (Section 2.2) brings normalized action samples

into a rough alignment in space and time and provides the

correspondence for action features. Each feature fθ(·),
θ = (x, y, t, δx, δy, δt, β, ψ) is defined by the space-time

location (x, y, t) and the space-time extents (δx, δy, δt)
of the histogram block, by the type of the block β ∈
{Plain, Temp-2, Spat-4} (see Figure 3) and by the type of the

histogram ψ ∈ {OF5,Grad4}.

The normalized action cuboid in our experiments has the

size of 14 × 14 × 8 histogram units with each unit corre-

sponding to 5 × 5 × 5 pixels. The number of all features

fθ(·) defined on such a grid is > 106. To enable efficient

learning, at each boosting round we select 103 features with

random positions and space-time extents. Our experience

indicates that the random pre-selection of features does not

decrease the performance of the final classifier which is con-

sistent with similar conclusions made in [18].

To investigate the influence of shape information on ac-

tion recognition we learn two classifiers, one with optic flow

features only (OF5 classifier) and another one with shape

and motion features (OFGrad9 classifier). OF5 classifier is

closely related to the method by Ke et al. [10]. To efficiently

compute feature vectors we use integral video histograms

represented by the integral videos [10] for each histogram

bin. To account for scale variations in the data we use a

pyramid of integral video histograms with several spatial

and temporal resolutions.

3.3. Keyframe classifier

It is reasonable to ask the question if an action such as

drinking can be recognized from a single frame using the

state-of-the-art methods of object recognition. To inves-

tigate this possibility, we use a boosted histogram classi-

fier [11] and train it on the keyframes of drinking actions

while scanning random video frames excluding drinking to

collect training examples for the background class (see Fig-

ure 3 and Section 2.2 for the definition of keyframes). The

rectangular histogram features of the classifier are defined

on keyframes represented by 14×14 grids of gradient orien-

tation histogram blocks. The keyframe cascade classifier is

trained until the false positive rate on the training set drops

below 5 · 10−5.

3.4. STIP-NN classifier

Space-time interest points (STIP) have been recently in-

troduced [12] and applied to action recognition in [16]. This

type of local motion descriptors does not rely on motion

segmentation or other preprocessing steps and can be ap-

plied in complex scenes. We consider STIP in combina-

tion with the Nearest Neighbour (NN) classifier (see [16]

for more details) as an alternative method for action recog-

nition in this paper. STIP features for drinking and smoking

actions are illustrated in Figure 4(d)-(e).

4. Classification

In this section we study the relative performance of clas-

sification methods introduced in Section 3. To assess the

difficulty of the problem we in particular analyze the clas-

sification of drinking actions among either random motion

patterns or among similar actions of the class “smoking”.



(a) (b) (c)

Figure 5. Classification of drinking actions vs. (a): smoking actions and (b): random motion patterns. (c) is a magnified part of (b). ROC

curves are obtained by thresholding on the confidence values of test samples. For boosted classifiers the confidence is defined by the

number of passed cascade stages. For STIP-NN classifier the confidence is the normalized distance to the closest negative training sample.

4.1. Classifier properties

To better understand the performance of different meth-

ods we first study their properties. For space-time action

classifiers (Section 3.1) the regions of features selected by

boosting indicate the parts of the action that receive most of

attention in classification. In Figure 4(a) we show all 559

features selected for the optic flow based classifier (OF5) in

transparent color. From the density of color over time it is

evident that this classifier has low activity at the keyframe

while being primarily concerned with the motion at the start

and the end of the action. When the selected space-time fea-

tures are projected onto the x-y-plane in Figure 4(b,top) we

observe the high concentration of features at the lower part

of the action image. The most “active” parts of the classi-

fier are, hence, associated with the regions of hand motion

as illustrated in Figure 4(b,bottom).

A similar analysis for the keyframe classifier (Sec-

tion 3.3) shows most of its selected (spatial) features be-

ing located at the upper part of the keyframe as illustrated

in Figure 4(c,top). This classifier is, hence, mostly con-

cerned with the head and the face regions on the keyframe

as evident from the Figure 4(c,bottom). Interestingly, the

learned keyframe classifier appears to be complementary to

the space-time classifier by the location of selected features

both in space and time. We use this property to combine

classifiers in Section 5.

We also illustrate space-time interest points (STIP) used

with the Nearest Neighbour classifier in Section 3.4. STIP

features are detected at regions with high spatio-temporal

variation of image values. In Figure 4(d)-(e) the detected

STIP features of drinking and smoking actions often corre-

spond to the moment of contact between the hand and the

face. Such features, hence, may provide additional infor-

mation for event classification.

4.2. Classification results

To challenge the recognition methods, we tested classi-

fication performance for two similar action classes “smok-

ing” and “drinking”. Test samples for both action classes

were obtained from the test episodes of “Coffee and

Cigarettes”. The annotation of smoking samples followed

the procedure described in Section 2.2. All test samples

were cropped and normalized to the common rectangular

cuboid in space-time. All classifiers were trained using

the same set of (positive) drinking samples. The negative

training samples for boosted cascade classifiers were ob-

tained by collecting false positives from the training video

episodes (see Section 2.1). For the STIP-NN classifier we

explicitly provided negative training samples of smoking

actions.

The classification results are illustrated in Figure 5(a) in

terms of ROC curves and equal error rate (EER) values. The

best results are obtained for the boosted OF5 and OFGrad9

space-time classifiers. The STIP-NN and the keyframe clas-

sifier failed this test given the close to chance performance

for both methods. The performance of the keyframe clas-

sifier did not improve significantly even after explicitly re-

training it on the negative action samples of smoking.

In the second test we classified drinking actions among

other random motion samples obtained from the test

episodes. As illustrated in Figures 5(b)-(c), the performance

in this simpler test has been improved for all methods with

the particularly high improvement for the STIP-NN and the

keyframe classifier.

In conclusion we make two observations. First, the ex-

tension of OF5 classifier by shape information in OFGrad9

classifier did not improve classification performance in both

tests despite our initial expectations. Second, the relatively

high performance of all methods in the second test suggests

that an improved performance can be achieved by a combi-

nation of complementary classifiers.



Figure 6. Keyframe priming. (Left): Examples of the training scenes from the movie “Sea of Love”. False positive detections of the

keyframe classifier (red) are used as negative examples during training of action classifiers. Keyframe detections are not shown for positive

training samples (cyan). (Right): Examples of test scenes from the movie “Coffee and Cigarettes”. The Keyframe primed action classifier

correctly classifies drinking actions (cyan) among the detected keyframes (red).

5. Keyframe priming

This section describes a combination of the space-time

action classifier and the keyframe classifier defined in Sec-

tions 3.1 and 3.3 respectively. The combination is moti-

vated by the complementary properties of both classifiers

observed in Section 4.1. More specifically our aim is to

combine the discriminative model for the shape of people in

drinking postures provided by the keyframe classifier with

the discriminative model for the motion of people in action

provided by the space-time classifier.

The combination in this paper is achieved by Keyframe

priming and proceeds as follows. We bootstrap the space-

time classifier and apply it to keyframes detected by the

keyframe detector. The keyframe detector is first applied

to all positions, scales and all frames of the video while be-

ing set to the rather high false positive (FP) rate 10−3 to

ensure detection of all true positives (priming procedure).

We then generate action hypotheses in terms of space-time

blocks aligned with the detected keyframes and with dif-

ferent temporal extents to account for actions with different

length in time. Each such block is classified according to the

space-time classifier. Keyframe priming is used both to col-

lect false positive samples for the negative training set dur-

ing training as well as the priming stage of the final action

detector. Keyframe-primed event detection is illustrated in

Figure 6.

An acceptable FP rate for an action classifier in video

is lower than for an object classifier in still images due to

the temporal correlation of adjacent video frames. Reach-

ing low values of FP rate, however, is computationally hard.

With our current implementation we are able to learn a

space-time classifier with FP rate rst ≈ 5 · 10−4. When us-

ing keyframe priming with the efficient implementation of

keyframe detection adjusted to the FP rate rkf = 10−3, the

FP rate of the combined action classifier becomes rstrkf ≈
5 · 10−7 which is a significant improvement. Hence, be-

sides the combination of complementary models, Keyframe

priming provides an additional and crucial benefit for the

training of the action classifier. It also speeds up the detec-

tion at the test phase.

6. Detection

We next evaluate the performance of action detection ob-

tained by space-time classifiers with and without Keyframe

priming on the test set. For OF5 and OFGrad9 classifiers

without Keyframe priming we generate and evaluate an ex-

haustive set of action hypotheses for a discrete set of spatio-

temporal locations and plausible spatio-temporal scales in



the test video. For action classifiers with Keyframe priming

we follow the detection procedure described in the previous

section. For each method we cluster multiple action detec-

tions with similar positions and sizes in space-time and use

the size of the cluster as the detection confidence.

The performance for four tested detection methods is

illustrated in Figure 7 in terms of precision-recall curves

and average precision (AP) values. From this plot we ob-

serve a rather low performance of the two methods without

Keyframe priming. It is worth noting that OFGrad9 method

outperforms OF5 method due to the additional shape infor-

mation.

Keyframe priming results in the significant improvement

of the detection performance. The combination of shape

and motion information, hence, indeed appears to be cru-

cial for action recognition. The experiments indicate an ad-

vantage of learning shape and motion models separately (as

in OF5 and keyframe classifiers) rather than jointly (as in

OFGrad9 classifier).

To compare these results with previous methods, we note

that Keyframe priming achieves a particularly strong im-

provement compared to the OF5 method without Keyframe

priming. As mentioned earlier, OF5 classifier is closely re-

lated to [10]. Hence, we expect Keyframe priming would

improve the performance of [10] significantly.

Twenty strongest detections obtained with the Keyframe

primed OF5 classifier and sorted in the decreasing confi-

dence order are illustrated in Figure 8. Most of the detec-

tions correspond to correctly retrieved actions with a sub-

stantial variation in subject appearance, motion, surround-

ing scenes, view points and scales in the video. We also

observed many similar non-drinking actions (e.g. answer-

ing a phone) being correctly rejected by the detector.3

The detection speed for the Keyframe primed methods is

currently around 3 seconds per frame using our implemen-

tation partly running in Matlab. We believe the detection

speed can be improved with the faster implementation at

least by the factor of ten.

7. Conclusion

We addressed recognition and localization of human

actions in realistic scenarios with substantial variation in

subject appearance, motion, surrounding scenes and view

points. The variation in the data was handled either im-

plicitly through learning or explicitly by searching actions

at different space-time video resolutions. We in particular

investigated the combination of shape and motion cues for

action recognition and demonstrated improvement by com-

bining discriminative models for human appearance and

motion in action. We also introduced a new dataset with

3See a video with detection results at

http://www.irisa.fr/vista/Equipe/People/Laptev/actiondetection.html

Figure 7. Precision-recall curves illustrating the performance of

drinking action detection achieved by the four tested methods.

the annotation of human actions in movies.

While this work examined one class of actions (drink-

ing), we expect the presented analysis to generalize to other

“atomic” actions and interactions such as “shaking hands”,

“kissing”, etc. One of the current obstacles for action recog-

nition is the lack of annotated data for natural human ac-

tions. This problem should be considered in the future.

Concerning Keyframe priming, we believe that this tech-

nique could be extended by automatic methods for selecting

possibly several keyframes for an action in order to improve

detection performance and to reduce annotation efforts. The

integration of other methods such as STIP [16] and behav-

ior based similarity measure [17] may further improve de-

tection performance.
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Figure 8. Detections of drinking actions (yellow: true positives,

red: false positives) sorted in the decreasing confidence order and

obtained with the OF5 Keyframe primed event detector.


