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Abstract We consider the use of medial surfaces to repre-
sent symmetries of 3-D objects. This allows for a qualita-
tive abstraction based on a directed acyclic graph of compo-
nents and also a degree of invariance to a variety of trans-
formations including the articulation of parts. We demon-
strate the use of this representation for 3-D object model re-
trieval. Our formulation uses the geometric information as-
sociated with each node along with an eigenvalue labeling
of the adjacency matrix of the subgraph rooted at that node.
We present comparative retrieval results against the tech-
niques of shape distributions (Osada et al.) and harmonic
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spheres (Kazhdan et al.) on 425 models from the McGill
Shape Benchmark, representing 19 object classes. For ob-
jects with articulating parts, the precision vs recall curves
using our method are consistently above and to the right of
those of the other two techniques, demonstrating superior
retrieval performance. For objects that are rigid, our method
gives results that compare favorably with these methods.
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average outward flux-based skeletons, medial surfaces,
graph spectra

1 Introduction

3-D object recognition has long been a mainstay of the ob-
ject recognition community, with excellent surveys found in
[4,11,10]. With an explosive growth in the number of 3-D
object models stored in web repositories and other databases,
this problem has more recently attracted interest from the
graphics community. Recent advances include query-based
search engines which employ promising measures including
spherical harmonic descriptors [25] and shape distributions
[35]. Such systems can yield impressive results on databases
including hundreds of 3-D models, in a matter of a few sec-
onds.

Thus far the emphasis has broadly been on the use of
qualitative measures of shape that are typically global. Such
measures are robust in the sense that they can deal with
noisy and imperfect models, and at the same time are simple
enough so that efficient algorithmic implementations can be
sought. However, an inevitable cost is that such measures are
inherently coarse, and can be sensitive to the deformation or
articulation of object parts. As a motivating example, con-
sider the 3-D models in Fig. 1. These four exemplars of an
object class were created by combining part articulation with
changes in pose. For such examples, the notion of a center
of mass or an extrinsic reference point [1], which is required
for the computation of descriptions such as shape histograms
(sectors or shells) [3] or spherical extent functions [59], can
be non-intuitive. In fact, the centroid of such models may
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actually lie in the background. To complicate matters, it is
unclear how to obtain a global alignment of such models.
As well, measures based on reflective symmetries [24], and
signatures based on 3-D moments [18] or chord histograms
[35] are not invariant under such transformations.

The computer vision community has grappled with the
problem of generic level object recognition by suggesting
representations based on volumetric parts, including gener-
alized cylinders, superquadrics and geons [6,31,37,5]. Such
approaches build a degree of robustness to deformations and
movement of parts, but their representational power is lim-
ited by the vocabulary of geometric primitives that are se-
lected. Motivated in part by such considerations there have
been attempts to encode 3-D shape information using prob-
abilistic descriptors. These allow intrinsic geometric infor-
mation to be captured by low dimensional signatures. An
elegant example of this is the geodesic shape distribution of
[20] where information theoretic measures are used to com-
pare probability distributions representing 3-D object sur-
faces. In the domain of graph theory there have also been at-
tempts to address the problem of 3-D shape matching using
representations based on Reeb graphs [48,21]. These allow
for topological properties to be captured, at least in a coarse
sense.

An alternative approach is to use 3-D medial loci (3-D
skeletons), obtained by considering the locus of centers of
maximal inscribed spheres along with their radii [7]. As sug-
gested by Blum, this offers the advantage that a graph of
parts can be inferred from the medial manifolds, which cap-
ture local symmetries of the object. To motivate this idea,
consider once again the human forms of Fig. 1. A medial
surface-based representation (bottom row) provides a natu-
ral decomposition, which is largely invariant to the articula-
tion and bending of parts.

Whatever the representation, an efficient indexing mech-
anism is required to select a few promising candidates for a
more costly verification. If the models in the database are or-
ganized judiciously, an exhaustive search can be avoided. A
decision tree [22,32] is a mechanism for hierarchically par-
titioning a database. A query shape is matched to the root,
and depending on the results of the match, the process is
applied recursively to one of its children. At each step, the
space of possible models is reduced. Within this framework,
a spectral graph decomposition was reported by Sengupta
and Boyer for the partitioning of a database of 3-D models,
where nodes in a graph represent 3-D surface patches [45].

A closely related approach to the partition (decision tree)
scheme described above is to organize the database into a
set of prototypes (clustering). In this case, the database is
organized by grouping similar objects and choosing a repre-
sentative (prototype) for each group. This idea can be recur-
sively applied, forming a hierarchical representation of the
database. Shapiro and Haralick [46] used a simple relational
distance metric, followed by either clustering by similar val-
ues of the metric or by constructing a binary decision tree, to
organize a large database of relational models. Sengupta and
Boyer [44] presented one of the earliest frameworks for ob-

ject recognition through a hierarchically structured database
of parametric structural description graphs. The hierarchical
structure was constructed through clustering and computing
representative members of each cluster.

The decision tree and hierarchical organization approaches
described above attempt to reduce the complexity of the query
(indexing) process by reducing the number of database com-
parisons that need to be made. Further indexing efficiency
can be gained through a reduction in the dimensionality of
the index. If the query takes the form of a vector, then classi-
cal nearest-neighbor search can be used to find similar candi-
dates in sublinear time; examples include Turk and Pentland
[58], Murase and Nayar [33], Sclaroff and Pentland [42],
and Lowe [29]. If the query takes the form of a structured
(e.g., graph) representation, it must be abstracted to a vector.
Sossa and Horaud [55] and Shokoufandeh et al. [51] have
proposed powerful spectral abstractions of graph structure
that support efficient indexing.

In this article, we build on a recent technique to compute
medial surfaces [52] by proposing an interpretation of its
output as a directed acyclic graph (DAG) of parts. We then
use refinements of algorithms based on graph spectra [51]
to tackle the problems of matching and indexing 3-D object
models. These and related algorithms have already shown
promise in the computer vision community for generic level
view-based object indexing and matching using 2-D skele-
tal graphs [54,50,36,43]. They have also been demonstrated
in the context of matching 3-D object models with tubu-
lar parts, using a centerline approximation of the 3-D me-
dial surface into a curve skeleton. In [57], skeletal fragments
were mapped to nodes in an undirected graph, and a precur-
sor to the matching algorithm described in this paper was
used to compare query and model graphs. Later, in [12], an
improved curve skeleton yielded graphs which were mapped
many-to-many, allowing the restriction of one-to-one node
correspondence to be overcome.

We demonstrate the significant potential for medial surface-
based 3-D object retrieval with experimental results on 425
models representing 19 object classes from the McGill Shape
Benchmark [60], including exemplars of both rigid objects
and ones with significant articulation of parts. Comparative
results using the information retrieval notion of precision

versus recall demonstrate that for objects with articulated
parts this method outperforms the techniques of shape dis-
tributions [35] and harmonic spheres [25]. To our knowledge
these are the first comprehensive empirical results on the use
of medial surfaces and their graph spectra in the context of
3-D object model matching and indexing.

2 Medial Surfaces and DAGs

We now review the salient aspects of medial surfaces and the
average outward flux-based algorithms for computing them
that are the basis for the 3D object retrieval experiments re-
ported in this article. We point the interested reader to the
book [53], which provides a comprehensive coverage of the
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Fig. 1 Exemplars of the object class “human” created by changes in pose and articulations of parts (top row). The medial surface (or 3-D
skeleton) of each is computed using the algorithm of [52] (bottom row). The medial surface is automatically partitioned into distinct parts, each
shown in a different color.

mathematics, algorithms and applications of medial repre-
sentations.

Recent approaches for computing 3-D skeletons include
those which use Voronoi techniques [34,2,28,13] and those
based on distance functions [39,9,52]. Methods in the first
class have the advantage that they can be employed on input
data in the form of points sampled from (or meshes describ-
ing) an object’s surface. Unfortunately, automatic segmen-
tation of the resulting skeletons into their constituent com-
ponents remains an unsolved problem. Methods in the sec-
ond class are typically based on digital distance functions
[8] and hence assume that the object models have first been
voxelized. Whereas this adds a computational burden these
methods provide the advantage that the digital classifica-
tion of [30] allows for the taxonomy of generic 3-D skeletal
points [19] to be interpreted on a rectangular lattice, leading
to a graph of parts. In the current article we choose to employ
the average outward flux-based method of [52] which uses
limiting properties of the gradient of the Euclidean distance
function. The mathematical and computational properties of
this approach, in comparison against Voronoi methods and
those based on height ridges, are further developed in [38].
Whereas the implementation we use in the current article re-
quires a voxelized model as input, an extension is now avail-
able which can handle 3D objects with surfaces described
by polyhedral meshes [56].

2.1 Average Outward Flux

Let D be defined as the Euclidean distance function of each
point within a 3-D object to the closest point on the object’s

Fig. 2 Voxelized models of a cup, an airplane and a deer (top row).
Their medial surfaces are computed using the algorithm of [52] and are
automatically partitioned into distinct parts, each shown in a different
color (bottom row).

boundary. It is well known that the singularities of D coin-
cide with the skeleton. Let S = ∂R be the bounding surface
of a region R within the object, with surface area element dS.
The outward flux of the vector field ∇ D through S is defined
as the surface integral

OF =
∫ ∫

S
∇ D ·N dS,
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Fig. 3 A voxelized human form and chair (left) and their segmented medial surfaces (middle). A hierarchical interpretation of the medial surface,
using a notion of part saliency, leads to a directed acyclic graph DAG (right). The nodes in the DAGs have labels corresponding to those on the
medial surface, and the saliency of each node is also shown.

where N is the unit outward normal at each point of S. The
divergence theorem relates the outward flux to the diver-
gence of ∇ D
∫ ∫ ∫

div(∇ D) dV ≡
∫ ∫

S
∇ D ·N ds, (1)

where dV is a volume element. The average outward flux is
defined by normalizing the outward flux by the surface area
of S.

AOF =

∫ ∫

S
∇ D ·N dS

area(S)
. (2)

It is a standard fact that the outward flux measures the
degree to which the flow generated by ∇ D is volume pre-
serving in 3-D, for the region over which it is computed. To
elaborate, the outward flux (and hence also the average out-
ward flux) is negative if the volume enclosed by the region
∂R is shrinking under the action of the flow, positive if it is
growing and zero otherwise. This quantity is clearly strongly
dependent on the shape of the region R. When considering a
region R that contains a medial point, unfortunately the stan-
dard form of the divergence theorem does not apply since
the vector field ∇ D is multi-valued. Instead, the limiting be-
havior of the average outward flux as the region R shrinks
to a point can be considered. If R is a convex region shrunk
by a constant factor in every direction, [14] has shown that
for non-medial points, this limit is zero and that for medial
points there is a constant cR > 0, depending on the shape of

the region R, such that the average outward flux approaches
a strictly negative number bounded above by cR < ∇ D ·N′ >,
where N′ is now a one-sided normal to the medial set. The
outward flux on the other hand tends to zero at every point,
medial or not. The proof of these results relies on an alter-
nate form of the divergence theorem that can be applied in
regions intersecting the medial set1, and which is developed
in some detail in [16,14,15].

Under the assumption that the initial model is given in
triangulated form, we begin by scaling all the vertices so
that they fall within a rectangular lattice of fixed dimension
and resolution. We then sub-divide each triangle to generate
a dense intersection with this lattice, resulting in a binary
(voxelized) 3-D model. The average outward flux of ∇ D is
computed through unit spheres centered at each rectangular
lattice point, using Algorithm 1. The choice of an isotropic
region R (a sphere) is appropriate in the absence of any prior
information, and has the additional feature that the limiting
value of the average outward flux then has the property that
it reveals the object angle, as explained in [16,15]. Thus, this
quantity may be viewed as a type of flux invariant for both
obtaining the medial locus and for determining the geome-
try of the bounding surface implied by it. Note that whereas
Algorithm 1 uses a coarse sampling of the sphere, based a
digital neighborhood, this could be refined for more precise
calculations. In particular, the extension proposed in [56]

1 Such a form is necessary because the divergence of ∇ D is not de-
fined at medial points, where ∇ D is multi-valued.
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uses computational geometry techniques to sample points
densely on a shrinking sphere and for these sampled points,
close to exact distance D to the boundary mesh is used.

Algorithm 1: Average Outward Flux.

Data : Voxelized 3-D Object Model.

Result : Average Outward Flux Map.

Compute the Euclidean distance transform D of the model ;
Compute the gradient vector field ∇ D;
Compute the average outward flux of ∇ D:

For (each point x) AOF(x) =
1

26

26

∑
i=1

< Ni, ∇ D(xi) >;

(where xi is a 26-neighbor of x in 3-D and Ni is the outward
normal at xi of the unit sphere centered at x)

2.2 Topology Preserving Thinning

The average outward flux measure is used to drive a thinning
process (Algorithm 2) that does not alter the digital topology
of the object. This is done by identifying each simple or re-
movable point x, for which a characterization based on the
26-neighborhood of each lattice point x is provided in [30].
With O being the set of points in the interior of the voxelized
object and N∗

26 being the 26-neighborhood of x, not includ-
ing x itself, this characterization is based on two numbers:

1. C∗: the number of 26-connected components 26-adjacent
to x in O∩N∗

26, and

2. C̄: the number of 6-connected components 6-adjacent to
x in Ō∩N18.

It can be shown that a digital point x is simple if C∗(x) = 1
and C̄(x) = 1.

The taxonomy of generic 3-D skeletal points in the con-
tinuum, i.e., those which are stable under small perturba-
tions of the object, is provided in [19]. Using the notation
Ak

n, where n denotes the number of points of contact of the
maximal inscribed sphere with the surface and k the order of
these contacts, the taxonomy includes: 1) A2

1 points which
form a smooth medial manifold, 2) A3 points which corre-
spond to the rim of a medial manifold, 3) A3

1 points which
represent the intersection curve of three medial manifolds,
4) an A4

1 point at the intersection of four A3
1 curves, and 5)

an A1A3 point at the intersection between an A3 curve and an
A3

1 curve.
It is clear from this classification that 3-D skeletons are

essentially comprised of medial manifolds, their rims and
intersection curves, and this is why we refer to this as a
medial surface representation. As shown in [30], the num-
bers C∗ and C̄ can also be used to classify surface points,
rim points, junction points and curve points on a rectangu-
lar lattice. These results are summarized in Table 1. This
suggests the following 3-step approach for segmenting the
(voxelized) medial surface into a set of connected parts:

Algorithm 2: Topology Preserving Thinning.

Data : 3-D Object Model, Average Outward Flux Map.

Result : 3-D Skeleton (Medial Surface).

for (each point x on the boundary of the object) do
if (x is simple) then

insert(x, maxHeap) with AOF(x) as the sorting key
for insertion;

while (maxHeap.size > 0) do
x = HeapExtractMax(maxHeap);
if (x is simple) then

if (x is an end point) and (AOF(x) < Thresh) then
mark x as a medial surface (end) point;

else
Remove x;
for (all neighbors y of x) do

if (y is simple) then
insert(y, maxHeap) with AOF(y) as the
sorting key for insertion;

1. Identify all manifolds comprised of 26-connected sur-
face points and border points.

2. Use junction points to separate these manifolds, but al-
low junction points to belong to all manifolds that they
connect.

3. Form connected components with the remaining curve
points, and consider these as parts as well.

This process of automatic skeletonization and segmentation
is illustrated for three models in Fig. 2. Qualitatively the
segmented medial surfaces provide intuitive part decompo-
sitions. However, these decompositions are not perfect be-
cause the topological labeling uses only local (digital) con-
nectivity, but no geometric information. As one example, the
head and neck region of the deer model are not separated
from the two ears because on a discrete lattice the voxels in
the connecting regions correspond to the same manifold. We
shall discuss this issue further in Section 6. However, we em-
phasize that our matching and indexing techniques [54,51],
which use an eigenvalue labeling to characterize the topo-
logical structure of parts, can tolerate a degree of variation
in part decomposition.

C̄ C∗ TYPE

0 any interior point
any 0 isolated point
1 1 border (simple) point
1 2 curve point
1 > 2 curves junction
2 1 surface point
2 > 2 surface-curve(s) junction

> 2 1 surfaces junction
> 2 ≥ 2 surfaces-curves junction

Table 1 The topological classification of Malandain et al.
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2.3 From Medial Surfaces to DAGs

We now propose an interpretation of the segmented medial
surface as a directed acyclic graph (DAG), where we shall
treat each component as a node. This will in turn allow the
subsequent matcher and indexer to cope with both changes
in part structure, as reflected by connectivity in the graph,
and changes in part shape, as reflected by the geometric
information associated with each node. We begin by intro-
ducing a notion of saliency which captures the relative im-
portance of each component. Consider that the envelope of
maximal inscribed spheres of appropriate radii placed at all
skeletal points reconstructs the original object’s volume [7].
The contribution of each component to the overall volume
can thus be used as a measure of its significance. Since the
spheres associated with adjacent components can overlap,
an objective measure of component j’s saliency is given by

Saliency j =
Voxels j

∑Nc
i=1 Voxelsi

,

where Nc is the number of components and Voxelsi is the
number of voxels uniquely reconstructed by component i.
We propose the following construction of a DAG, using each
component’s saliency. Consider the most salient component
as the root node (level 0), and place components to which it
is connected as nodes at level 1. Components to which these
nodes are connected are placed at level 2, and this process is
repeated in a recursive fashion until all nodes are accounted
for. The graph is completed by drawing edges between all
pairs of connected nodes, in the direction of increasing lev-
els, hence avoiding the occurrence of any cycles. However,
to allow for 3-D models comprised of disconnected parts we
introduce a single dummy node as the parent of all DAGs
for a 3-D model.

This process is illustrated in Fig. 2 (right column) for
the human and chair models, with the saliency values shown
within the nodes. Note how this representation captures the
intuitive sense that the human is a torso with attached limbs
and a head, a chair is a seat with attached legs and a back,
etc. Our DAG representation of the medial surface is quite
different than the graph structure that follows from a direct
use of the taxonomy of 3-D skeletal points in the continuum
[19]. Our motivation is to be able to exploit the hierarchi-
cal structure indexing and matching algorithms reported in
[54,51]. However, this conversion carries with it some limi-
tations and we shall return to discuss these in Section 6.

3 Indexing

A linear search of the 3-D model database, i.e., comparing
the query 3-D object model to each 3-D model and select-
ing the closest one, is inefficient for large databases. An in-
dexing mechanism is therefore essential to select a small
set of candidate models to which the matching procedure is
applied. When working with hierarchical structures, in the
form of DAGs, indexing is a challenging task, and can be

formulated as the fast selection of a small set of candidate
model graphs that share a subgraph with the query. But how
do we test a given candidate without resorting to subgraph
isomorphism and its intractability? The problem is further
compounded by the fact that due to perturbation and noise,
no significant isomorphism may exist between the query and
the (correct) model. Yet, at some level of abstraction, the
two structures (or two of their substructures) may be quite
similar. Thus, our indexing problem can be reformulated as
finding model (sub)graphs whose structure is similar to the
query (sub)graph.

Choosing the appropriate level of abstraction with which
to characterize a DAG is a challenging problem. We seek
a description that, on the one hand, provides the low di-
mensionality essential for efficient indexing, while on the
other hand, is rich enough to prune the database down to
a tractable number of candidates. In recent work [51], we
draw on the eigen space of a graph to characterize the topol-
ogy of a DAG with a low-dimensional vector that will facil-
itate an efficient nearest-neighbor search in a database. The
eigenvalues of a graph’s adjacency matrix encode important
structural properties of the graph, characterizing the degree
distribution of its nodes. Moreover, we have shown that the
magnitudes of the eigenvalues are stable with respect to mi-
nor perturbations of graph structure due to, for example,
noise, segmentation error, or minor within-class structural
variation [51].

We can now proceed to define an index based on the
eigenvalues. One simple structural abstraction would be a
vector of the sorted magnitudes of the eigenvalues of a DAG’s
adjacency matrix2. However, for large DAGs, the dimen-
sionality of the index would be prohibitively large (for effi-
cient nearest-neighbor search), and the descriptor would be
global (prohibiting effective indexing of query graphs with
extraneous or missing parts). This problem can be addressed
by exploiting eigenvalue sums rather than the eigenvalues
themselves, and by computing both global and local struc-
tural abstractions [54]. Let V be the root of a DAG whose
maximum branching factor is ∆ , as shown in Fig. 4. Con-
sider the subgraph rooted at node a, the first child of V , and
let the out-degree of a be k1. We compute the sum S1 of the
magnitudes of the k1 largest eigenvalues of the adjacency
sub-matrix defined by the subgraph rooted at node a, with
the process repeated for the remaining children of V . The
sorted Si’s become the components of a ∆ -dimensional vec-
tor χ(V ), called a topological signature vector (TSV), as-
signed to V . If the number of Si’s is less than ∆ , the vector
is padded with zeroes. We can recursively repeat this pro-
cedure, assigning a vector to each nonterminal node in the
DAG, computed over the subgraph rooted at that node.

In summing the magnitudes of the eigenvalues, some
uniqueness has been lost in an effort to reduce dimension-
ality. The ki largest eigenvalues are chosen for two reasons:
1) the largest eigenvalues are more informative of subgraph
structure, and 2) by summing ki elements, the sums are ef-

2 Since the eigenvalues of an antisymmetric matrix are complex we
utilize the magnitude of an eigenvalue.
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Fig. 4 Forming a Low-Dimensional Vector Description of Graph
Structure. At node a, we compute the sum of the magnitudes of the
k1 largest eigenvalues of the adjacency sub-matrix defined by the sub-
graph rooted at a. The sorted sums Si become the components of χ(V ),
the topological signature vector (or TSV) assigned to V .

fectively normalized according to the local complexity of the
subgraph root, thereby distinguishing subgraphs that have
richer part structure at coarser levels. The dimensionality of
the TSV, χ , is bounded by the maximum branching factor
in the graph, which is typically small, and not by the size
of the graph, which can be large for complex 3-D models.
The TSV therefore represents a low-dimensional abstraction
of the degree distribution (shape) of a DAG. Moreover, the
TSV is robust to minor topological deformations of the DAG
due to within-class variation, or due to imperfections in the
skeletonization and segmentation process.

Indexing now amounts to a nearest-neighbor search in a
model database, as shown in Fig. 5. In our experiments, we
have used the SR-tree technique proposed by Katayama and
Satoh [23]. The TSV of each non-leaf node (the root of a
graph “part”) in each model DAG defines a vector location
in a low-dimensional Euclidean space (the model database)
at which a pointer to the model containing the subgraph
rooted at the node is stored. At indexing time, a TSV is com-
puted for each non-leaf node, and a nearest-neighbor search
is performed using each “query” TSV. Each TSV “votes” for
nearby “model” TSVs, thereby accumulating evidence for
models that share the substructure defined by the query TSV.
Indexing could, in fact, be accomplished by indexing solely
with the root of the entire query graph. However, in an effort
to accommodate large-scale perturbation (which corrupts all
ancestor TSVs of a perturbed subgraph), indexing is per-
formed locally (using all non-trivial subgraphs, or “parts”)
and evidence combined. The result is a small set of ranked
model candidates which are verified more extensively using
the matching procedure described next. Both the TSV con-
struction and indexing algorithm are described in detail in
[51].

4 Matching

Each of the top-ranking candidates emerging from the index-
ing process must be verified to determine which is most sim-
ilar to the query. If there were no noise, our problem could

Fig. 5 Indexing Mechanism. Each non-trivial (non-leaf) node (whose
TSV encodes a topological abstraction of the subgraph rooted at the
node) votes for models sharing a structurally similar subgraph. Mod-
els receiving strong support are candidates for a more comprehensive
matching process.

be formulated as a graph isomorphism problem for vertex-
labeled graphs. With limited noise, we would search for the
largest isomorphic subgraph between query and model. Un-
fortunately, with the presence of significant noise, in the form
of the addition and/or deletion of graph structure, large iso-
morphic subgraphs may simply not exist. This problem can
be overcome by using the same eigen-characterization of
graph structure we use as the basis of our indexing mech-
anism [54].

As we know, each node in a graph (query or model) is
assigned a TSV, which reflects the underlying structure in
the subgraph rooted at that node. If we simply discarded
all the edges in our two graphs, we would be faced with
the problem of finding the best correspondence between the
nodes in the query and the nodes in the model; two nodes
could be said to be in close correspondence if the distance
between their TSVs (and the distance between their domain-
dependent node labels) was small. In fact, such a formula-
tion amounts to finding the maximum cardinality, minimum
weight matching in a bipartite graph spanning the two sets
of nodes. At first glance, such a formulation might seem like
a bad idea (by throwing away important graph structure) un-
til one recalls that the graph structure is effectively encoded
in the node’s TSV. Is it then possible to reformulate a noisy,
largest isomorphic subgraph problem as a simple bipartite
matching problem?

Unfortunately, in discarding all the graph structure, the
underlying hierarchical structure has also been discarded.
There is nothing in the bipartite graph matching formula-
tion that ensures that hierarchical constraints among cor-
responding nodes are obeyed, i.e., that parent/child nodes
in one graph don’t match child/parent nodes in the other.
This reformulation, although softening the overly strict con-
straints imposed by the largest isomorphic subgraph formu-
lation, is perhaps too weak. Since no polynomial-time so-
lution is known to exist for enforcing the hierarchical con-
straints in the bipartite matching formulation, an approxi-
mate solution to finding corresponding nodes between two
DAGs, subject to hierarchical constraints and accommodat-
ing perturbations, is sought [54,49].
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Fig. 6 Matching Algorithm. Given two graphs to be matched (a), form
a bipartite graph (b) spanning their nodes but excluding their edges.
The edge weights W(i,j) not only encode node content similarity (see
Section 4), but the structural similarity of their underlying subgraphs,
as encoded by the difference in their respective TSV’s. The best match-
ing pair is identified, the two nodes are removed from their respective
graphs and added to the solution set of correspondences, and the pro-
cess applied recursively to their subgraphs (c).

The key idea is to use a modification of Reyner’s algo-
rithm [40], that combines the above bipartite matching for-
mulation with a greedy, best-first search in a recursive pro-
cedure to compute the corresponding nodes in two rooted
DAGs, as shown in Fig. 6. As in the above bipartite match-
ing formulation, the maximum cardinality, minimum weight
matching in the bipartite graph spanning the two sets of nodes
from the query and model graphs, is computed, as shown in
Fig. 6(a). Edge weight encodes a function of both topolog-
ical similarity as well as domain-dependent node similarity,
described in the following subsection. The result will be a
selection of edges yielding a mapping between query and
model nodes. As mentioned above, the computed mapping
may not obey hierarchical constraints. We therefore greedily
choose only the best edge (the two most similar nodes in the
two graphs, representing in some sense the two most simi-
lar subgraphs), as shown in Fig. 6(b), add it to the solution
set, and recursively apply the procedure to the subgraphs de-
fined by these two nodes, as shown in Fig. 6(c). Unlike a
traditional depth-first search, which backtracks to the next
statically-determined branch, this algorithm effectively re-
computes the branches at each node, always choosing the
next branch to descend in a best-first manner. In this way,
the search for corresponding nodes is focused in correspond-
ing subgraphs (rooted DAGs) in a top-down manner, thereby
ensuring that hierarchical constraints are obeyed. The struc-
tural abstraction offered by the TSV effectively unifies the
indexing and matching procedures, providing an efficient
model retrieval mechanism. Details can be found in [49,51].

4.1 Node Similarity

The above matching algorithm requires a node similarity
function that compares the shapes of the 3-D parts associated
with two nodes. A variety of the measures used in the liter-
ature as signatures for indexing entire 3-D models could be
used to compute similarities between medial surface-based
parts (nodes) [35,3,59,18,24], because their shapes are likely
to be relatively simple; significant protrusions or elongations
will lead to distinct parts being formed. Some care has to

be taken in the implementation of methods which require a
form of global alignment. In the experiments carried out in
this article we have opted for a 1D signature vector, which is
based on the use of a mean curvature histogram. The essen-
tial idea is to compute a distribution of mean curvature val-
ues over all the level sets of the Euclidean distance function
within the interior of a part. Such a signature can distinguish
between components that have very different average mean
curvatures, such as elongated, blob-like or flat parts. As well,
it is somewhat robust to moderate amounts of part bending
or twisting. The mean curvature histogram is implemented
as follows.

First, consider the volumetric part that a node i repre-
sents, along with its Euclidean distance function D. At any
point within this volume, the mean curvature of the iso-distance

level set is given by div( ∇ D
||∇ D||). On a voxel grid with unit

spacing the detectable mean curvatures are in the range [−1,1].
We compute a histogram of the mean curvature over all vox-
els in the volumetric part, over this range, using a fixed num-
ber of bins Nb. A mean curvature histogram vector M̂i is
then constructed with entries representing the fraction of to-
tal voxels in each bin. The similarity between two nodes i

and j is then based on an L2 distance between their mean
curvature histogram vectors:

Similarity(i, j) = [1−

√
√
√
√

Nb

∑
k=1

[M̂i(k)− M̂ j(k)]2]

︸ ︷︷ ︸

Distance(i, j)

.

By construction, this similarity function is in the interval
[0,1]. We have found the L2 metric to give good empirical
results, but other metrics could also be used. Furthermore,
this measure could be modified to take into account overall
part sizes. In our experiments we choose not to do this since
our object models have undergone a global size normaliza-
tion.

5 Experimental Results

5.1 The McGill Shape Benchmark

In order to test our 3-D object retrieval algorithms we have
considered using the Princeton Shape Benchmark [47]. This
standardized database, which contains 1,814 3-D object mod-
els organized by class, is an effective one for comparing
the performance of a variety of methods including those in
[24,35,3,59,18]. However, a majority of the models in the
database correspond to rigid, man-made objects. The natural
objects include a variety of animals, trees, plants, humans
and body parts. However, only a limited number of these
have articulated parts. When such models are present, the
precise nature of part articulation typically defines a unique
base level category. For example, animal-biped-human con-
tains human models which are upright, animal-biped-human-

arms-out contains similar models with outstretched hands
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significant articulation moderate or no articulation

Fig. 7 The McGill Shape Benchmark: 5 exemplars are shown from
each of the 19 object classes. Exemplars from classes on the left have
significant part articulation, whereas those on the right have moderate
to no part articulation. The full database of 455 models can be viewed
at http://www.cim.mcgill.ca/∼shape.

and animal-biped-human-walking contains those in a walk-
ing pose. Results reported in [47] indicate that a number of
global shape descriptors perform suitably at such base lev-
els of classification, but degrade rapidly at coarser levels,
e.g., the classification human. In the context of generic 3-D
model retrieval, such coarser levels in fact correspond to the
notion of a basic level or entry level categorization [41,5],
whose exemplars might reflect a variety of complex poses
and articulations, such as those seen in Fig. 1. Our matching
and indexing algorithms have the potential to accommodate
part articulation and deformation, because the medial sur-
face DAG is a part-based representation.

To demonstrate this, we have constructed the McGill Shape
Benchmark [60], adopting several of the models in the Prince-
ton repository, but also adding a substantial number of our
own. The database includes 455 models that are available
both in voxelized and mesh form. The exemplars span 19
basic level object classes: hands, humans, teddy bears, spec-
tacles, ants, octopuses, snakes, crabs, spiders, tables, chairs,
cups, airplanes, birds, dolphins, dinosaurs, four-legged ani-
mals, and fish. These classes are divided into two categories,
those with significant part articulation, and those with mod-
erate or no part articulation. Fig. 7 depicts 5 representative
exemplars from each of the object classes. The full database
can be downloaded from http://www.cim.mcgill.ca/∼shape.

Fig. 8 Indexing Results: Percentage Recall. For several rank thresh-
olds, N = 10,20, ..., we plot the percentage of models in the database
in the same category as the query (not including the query itself) with
indexing rank ≤ N. The results averaged across all classes are shown
along with error bars depicting +/- 1 standard deviation.

Fig. 9 Indexing Results: Average Ranks. For all queries in a class the
rank of all other objects in that class are computed. The ranks aver-
aged across that class are shown, along with error bars depicting +/- 1
standard deviation.

5.2 Indexing Results

In order to test our indexing algorithm, which utilizes only
the topological structure of medial surface-based DAGs, we
carried out two types of experiments, using 320 models from
the McGill Shape Benchmark (we excluded the categories
ants, octopuses, snakes, crabs and spiders). In the first we
evaluated percentage recall. For a number of rank thresholds
the percentage of models in the database in the same cate-
gory as a query (not including the query itself) with higher
indexing rank, are shown in Fig. 8. The results indicate that
on average 70% of the desired models are in the top 80 (25%
of 320) ranks. In the second experiment we examine the av-
erage ranks according to object classes. For all queries in a
class the rank of all other objects in that class is computed.
The ranks averaged across that class are shown in Fig. 9.
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The results indicate that for 9 of the 13 object classes the
average rank is in the top 80 (25% of 320). The higher av-
erage ranks for the remaining classes are due to the fact that
certain categories have similar part decompositions. In such
cases topological structure on its own is not discriminating
enough, and part shapes also have to be taken into account.

It should be emphasized that the indexer is a fast screener
which can quickly prune the database down to a much smaller
set of candidates to which the matcher can be applied. Fur-
thermore, the eigen-characterization used to compute the in-
dex is also used at matching time, so the same eigen structure
calculation is exploited for both steps. The systems against
which we will evaluate the matcher quantitatively in Section
5.4 run a linear search on the entire database for each query.
This approach may not scale well, since the indexing prob-
lem is essentially ignored.

5.3 Matching Results

For the same set of 320 models used to evaluate the in-
dexer in the previous section, we show the average similar-
ity scores obtained using our medial surface-based matcher
(MS) in Table 5.3, organized by object class. Red and blue
boxes are drawn, respectively, around the two highest simi-
larity scores. In all cases the highest score coincides with the
correct object class. In most cases there is also a significant
difference between the top two average similarity scores. In
Figure 10 we provide examples of the correspondences that
the matcher finds between two models. In the first case both
models are taken from the class humans and the matcher
finds intuitive part correspondences despite significant part
articulation. In the second one model is a table and the other
is a chair. The part correspondences found are nonetheless
intuitive with the surface of the table matching the seat of
the chair, and the legs matching legs. These results illustrate
the significant potential of medial surface based represen-
tations and their graph spectra for generic level 3-D model
retrieval.

5.4 Comparative Matching Results: Precision Versus Recall
Curves

We now carry a more thorough evaluation of the matcher by
providing comparative matching results using a more com-
plete set of 425 of the 455 models in the McGill Shape
Benchmark. This selection includes exemplars from each
of the 19 object classes in Fig. 7, but we merge the cate-
gories “four-legged” and “dinosaurs”, treating them as a sin-
gle category “four-limbs”. The results obtained using me-
dial surfaces (MS) were compared against those obtained
using harmonic spheres (HS) [25] and shape distributions
(SD) [35]. Since these competing approaches lack an index-
ing mechanism, and therefore match the (extracted features
of the) query to (the extracted features of) each model in the
database, we turn off our indexing mechanism and perform

Fig. 10 An illustration of the part correspondences found by the
matcher for two cases: a within class match and a between class match.
In both examples the nodes of the medial surface-based DAGs are
shown with different colors and lines are drawn between corresponding
components.

a similar linear search. On a large database, we envision run-
ning the indexing strategy first to obtain a smaller subset of
candidate 3-D models and to match the query only against
these. However, given the moderate size of our database we
were able to generate the 425×425 = 180,625 matches us-
ing medial surfaces (MS) in a matter of 25-30 minutes on a
3.0 GHz desktop PC.

For both HS and SD we used as input a mesh represen-
tation of the bounding voxels of the voxelized model used
for MS. The pair-wise distances between models using har-
monic spheres were obtained using Kazhdan’s executable
code (http://www.cs.jhu.edu/∼misha) and those using shape
distributions were based on our own implementation of the
algorithm described in [35]. For this latter implementation
we took care to sample points uniformly and randomly on
each outward face of each boundary voxel so that the sig-
nature curves were faithful. In particular, we were able to
reproduce several of the D2 shape distributions in Fig. 3 of
[35]. The comparisons between the three techniques were
performed using the standard information retrieval notions
of precision and recall. Given a query object model, a rel-
evant database object model is considered to be one that
belongs to the same category, while an irrelevant database
model is one from a different category. Given a number of
queries, recall refers to the ratio of the number of relevant
models retrieved to the total number of relevant models in
the database. Precision refers to the ratio of the number of
relevant models retrieved to the total number of (relevant and
irrelevant) models retrieved. In a precision versus recall plot
it is customary to plot the precision values for each level of
recall. Curves shifted upwards and to the right indicate su-
perior retrieval performance. In the results that follow, the
precision versus recall plots are grouped according to the
category of the query object models.



Retrieving Articulated 3-D Models Using Medial Surfaces 11

Instance

.61 .37 .00 .45 .23 .20 .02 .02 .10 .00 .09 .16 .26

.37 .38 .00 .21 .25 .18 .12 .10 .18 .02 .18 .23 .25

.00 .00 .51 .29 .17 .15 .07 .03 .00 .15 .02 .00 .07

.45 .21 .29 .64 .34 .23 .04 .04 .00 .01 .05 .04 .28

.23 .25 .17 .34 .43 .24 .16 .15 .12 .04 .22 .06 .19

.20 .18 .15 .23 .24 .28 .20 .22 .14 .07 .26 .05 .14

.02 .12 .07 .04 .16 .20 .51 .46 .37 .08 .45 .00 .09

.02 .10 .03 .04 .15 .22 .46 .53 .29 .03 .47 .02 .06

.10 .18 .00 .00 .12 .14 .37 .29 .58 .04 .31 .02 .23

.00 .02 .15 .01 .04 .07 .08 .03 .04 .48 .08 .15 .07

.09 .18 .02 .05 .22 .26 .45 .47 .31 .08 .56 .02 .12

.16 .23 .00 .04 .06 .05 .00 .02 .02 .15 .02 .71 .21

.26 .25 .07 .28 .19 .14 .09 .06 .23 .07 .12 .21 .40

Table 2 Average Matching Results Using MS. Each object in the database is matched against all the other objects in the database. Each cell
shows the average similarity between objects selected from two fixed object classes. In each row red and blue boxes are drawn, respectively,
around the two highest average similarity scores. In all cases the highest score coincides with the correct object class. In most cases there is also
a very significant difference between the top two average similarity scores.

The results for objects with articulating parts are pre-
sented in Fig. 11. For the category teddy bears both MS
and HS give excellent results. However, for all other cate-
gories MS outperforms the other two techniques. For most
of these models part structure is largely preserved, but parts
articulate and deform. A particularly interesting case is the
category snakes, whose exemplars consist of a single tube
like structure that is deformed in a variety of ways, causing
significant difficulty for both HS and SD.

Fig. 12 shows the results for objects with moderate or
no part articulation. For categories in the top row MS gives
superior results. For categories in the middle row HS and
MS give comparable results, with the exception of dolphins
for which HS gives superior results. For categories in the
third row the results are comparable for birds, but for four-
limbs and fishes, both HS and SD outperform MS. The HS
technique does particularly well on these categories, taking
advantage of the pose alignment of the four-limbed mod-

els, and the “flat” mass distribution of the fish models. The
MS technique would requires a degree of regularization to
handle categories with changing part structure, and we shall
discuss this limitation further in Section 6.

6 Discussion and Conclusion

Medial representations have the potential to advance the state-
of-the-art in 3-D object model retrieval, particularly when
exemplars within the same object class undergo significant
part articulation (assuming moderate changes to the part struc-
ture). In this article, using average outward flux based meth-
ods for computing and segmenting medial surfaces, we have
proposed a DAG representation which captures a notion of
part saliency. We have then built on algorithms in the com-
puter vision literature to address the problem of 3-D model
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Fig. 11 Precision (y axis) versus Recall (x axis): Objects with artic-
ulating parts. The results using medial surfaces (MS) are shown with
red circles, those using harmonic spheres (HS) with blue squares and
those using shape distributions (SD) with green crosses. TOP ROW:
Ants and crabs. MS gives superior results. SECOND ROW: Snakes and
hands. MS gives superior results. THIRD ROW: Humans and glasses.
MS gives superior results. FOURTH ROW: Octopuses and spiders. MS
gives superior results. FIFTH ROW: Pliers and teddy bears. The three
methods give comparable results for pliers. HS gives slightly better
results than MS for teddy bears.

matching and indexing in a uniform framework and have
presented retrieval results on the McGill Shape Benchmark.
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Fig. 12 Precision (y axis) versus Recall (x axis): Objects with mod-
erate or no articulation. The results using medial surfaces (MS) are
shown with red circles, those using harmonic spheres (HS) with blue
squares and those using shape distributions (SD) with green crosses.
TOP ROW: Tables and cups. MS gives superior results. SECOND ROW:
Chairs and airplanes. MS and HS give comparable results. THIRD

ROW: Dolphins and birds. For dolphins HS gives superior results. The
three methods give comparable results for birds. FOURTH ROW: Four-
limbed and fishes. MS and SD give superior results.

The major current limitations of our approach include: 1)
the assumption that the original object models can be vox-
elized, 2) the coarse nature of the part similarity measure
based on mean curvature histograms, and 3) the assumption
that objects with complex part topologies can yield stable
graph structures using medial surface decompositions on a
digital lattice. We discuss each of these weaknesses in turn.

First, it is feasible to “patch” models with a few miss-
ing triangles, so that voxelization becomes possible. How-
ever, for models with incomplete surfaces and large holes,
and hence no well defined notion of an interior and an exte-
rior, medial surface-based DAGs would not be appropriate.
We have recently developed an extension of the average out-
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ward flux-based skeletonization method that can be applied
directly to a mesh [56]. It might also be fruitful to explore
Voronoi methods for computing medial surface-based DAGs
that could in principle be applied directly to point clouds,
provided that the sampling density is high enough [2] or to
use the shock scaffold technique [28].

With regard to the second limitation, we expect that the
performance of graph theoretic algorithms for comparing
medial surface based representations will improve with more
discriminating part similarity measures, and any one of a
number suggested in the literature can be investigated.

The third concern, as exemplified by the poorer results
on the four-limbed animals and the fishes, points to some
limitations of the current representation and its computation.
One aspect has to to do with the assumption that we have
made in converting a medial surface to a DAG, that an ob-
ject has a well-defined part hierarchy. Such an assumption
can fail for objects which have several main parts of compa-
rable sizes (e.g., a caterpillar). Since this property would in
turn be reflected in component parts with approximately the
same node saliency, such models could at least be flagged.
A second aspect has to do with instabilities in the branching
topology of a medial surface based DAG, e.g., the precise
manner in which the limbs attach to the torso can change
with part deformation and movement. This latter aspect can
be dealt with, at least in part, by exploring coarser represen-
tations based on the medial surface, e.g., by incorporating
Blum’s notion of ligature [7], which has helped to regular-
ize 2D shock graphs. It might be fruitful to explore the use
of a coarser DAG where only salient regions of the medial
surface were retained [17]. A third aspect has to do with
the sensitivity of segmentation techniques that use only dig-
ital labeling on a rectangular lattice. These can suffer from
discretization artifacts. The extended average outward flux-
based method developed in [56] has the advantage that the
points on the shrinking sphere used to measure the average
outward flux can be sampled densely and furthermore the
rectangular lattice at which these spheres are centered can
be refined in a coarse-to-fine manner. As a consequence, the
medial surfaces so obtained are more precise. Preliminary
evidence suggests that this improved method may allow for
estimates of the differential geometry to be used to aid in
the segmentation process, since at medial surface junctions
there is an expected discontinuity in the tangent plane.

Beyond addressing the above limitations, in future work
we would like to explore the construction of a coarse-to-fine
medial representation that represents the shape of an object
at different levels of abstraction [31]. Such models facili-
tate efficient coarse-to-find matching strategies and offer a
powerful mechanism for further hierarchical database orga-
nization. In fact, such models can be automatically learned
from examples, e.g. [26,27].
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acterization and Recognition of 3D Organ Shape in Medical Image
Analysis Using Skeletonization. In: IEEE Workshop on Mathe-
matical Methods in Biomedical Image Analysis (1996)

35. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape Dis-
tributions. ACM Transactions on Graphics 21(4), 807–832 (2002)

36. Pellilo, M., Siddiqi, K., Zucker, S.W.: Matching Hierarchical
Structures Using Association Graphs. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 21(11), 1105–1120 (1999)

37. Pentland, A.: Perceptual Organization and the Representation of
Natural Form. Artificial Intelligence 28, 293–331 (1986)
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