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Abstract. We consider the use of medial surfaces to represent symmetries of

3-D objects. This allows for a qualitative abstraction based on a directed acyclic

graph of components and also a degree of invariance to a variety of transforma-

tions including the articulation and deformation of parts. We demonstrate the use

of this representation for both indexing and matching 3-D object models. Our for-

mulation uses the geometric information associated with each node along with an

eigenvalue labeling of the adjacency matrix of the subgraph rooted at that node.

We present comparative results against the techniques of shape distributions [17]

and harmonic spheres [12] on a database of 320 models representing 13 object

classes. The results demonstrate that medial surface based graph matching sig-

nificantly outperforms these techniques for objects with articulating parts.

Keywords: 3-D model matching, indexing, medial surfaces, graph spectra.

1 Introduction

With an explosive growth in the number of 3-D object models stored in web reposito-

ries and other databases, the graphics community has begun to address the important

and challenging problem of 3-D object retrieval and matching, a problem which tra-

ditionally falls in the domain of computer vision research. Recent advances include

query-based search engines which employ promising measures including spherical har-

monic descriptors [12] and shape distributions [17]. Such systems can yield impressive

results on databases including hundreds of 3-D models, in a matter of a few seconds.

Thus far the emphasis in the computer graphics community has broadly been on the

use of qualitative measures of shape that are typically global. Such measures are robust

in the sense that they can deal with noisy and imperfect models, and at the same time are

simple enough so that efficient algorithmic implementations can be sought. However,

an inevitable cost is that such measures are inherently coarse, and are sensitive to de-

formations of objects or their parts. As a motivating example, consider the 3-D models

in Fig. 1. These four exemplars of an object class were created by articulations of parts

and changes of pose. For such examples, the very notion of a center of mass or a rigid

reference point[1], which is crucial for the computation of descriptions such as shape

histograms (sectors or shells) [3] or spherical extent functions [30], can be nonintuitive

and arbitrary. In fact, the centroid of such models may actually lie in the background.
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Fig. 1. Exemplars of the object class “human” created by changes in pose and articulations of

parts (top row). The medial surface (or 3-D skeleton) of each is computed using the algorithm of

[27] (bottom row). The medial surface is automatically partitioned into distinct parts, each shown

in a different color.

To complicate matters, it is unclear how to obtain a global alignment of such models.

As well, measures based on reflective symmetries [11], and signatures based on 3-D

moments [7] or chord histograms [17] are not invariant under such transformations.

The computer vision community has grappled with the problem of generic level

object recognition by suggesting representations based on volumetric parts, including

generalized cylinders, superquadrics and geons [5, 16, 19, 4]. Such approaches build a

degree of robustness to deformations and movement of parts, but their representational

power is limited by the vocabulary of geometric primitives that are selected. Motivated

in part by such considerations there have been attempts to encode 3D shape informa-

tion using probabilistic descriptors. These allow intrinsic geometric information to be

captured by low dimensional signatures. An elegant example of this is the geodesic

shape distribution of [9] where information theoretic measures are used to compare

probability distributions representing 3D object surfaces. In the domain of graph the-

ory there have also been attempts to address the problem of 3D shape matching using

representations based on Reeb graphs [24, 10]. These allow for topological properties

to be captured, at least in a coarse sense.

An alternative approach is to use 3-D medial loci (3-D skeletons), obtained by con-

sidering the locus of centers of maximal inscribed spheres along with their radii [6]. As

pointed out by Blum, this offers the advantage that a graph of parts can be inferred from

the underlying local mirror symmetries of the object. To motivate this idea, consider

once again the human forms of Fig. 1. A medial surface-based representation (bottom

row) provides a natural decomposition, which is largely invariant to the articulation and

bending of parts.

In this article, we build on a recent technique to compute medial surfaces [27] by

proposing an interpretation of its output as a directed acyclic graph (DAG) of parts.

We then use refinements of algorithms based on graph spectra [26] to tackle the prob-

lems of indexing and matching 3-D object models. These and related algorithms have

already shown promise in the computer vision community for generic level view-based
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object indexing and matching using 2-D skeletal graphs [28, 25, 18, 22]. They have also

been demonstrated in the context of matching 3-D object models with tubular parts,

using a centerline approximation of the 3-D skeleton [29]. We demonstrate their signif-

icant potential for medial surface-based 3-D object retrieval with experimental results

on a database of 320 models representing 13 object classes, including exemplars of

both rigid objects and ones with significant articulation of parts. Comparative results

using the information retrieval notion of precision versus recall demonstrate that this

method significantly outperforms the popular techniques of shape distributions [17] and

harmonic spheres [12] for objects with articulating parts. To our knowledge these are

the first comprehensive empirical results on the use of medial surfaces and their graph

spectra in the context of 3-D object model retrieval and indexing.

2 Medial Surfaces and DAGs

Recent approaches for computing 3-D skeletons include the power crust algorithm [2],

the shock scaffold [13] and average outward flux-based skeletons [27]. The first two

methods have the advantage that they can be employed on input data in the form of

points sampled from an object’s surface, and theoretical guarantees on the quality of the

results can be provided. Unfortunately, automatic segmentation of the resulting skele-

tons remains a challenge. The last method assumes that objects have first been vox-

elized, and this adds a computational burden. However, once this is done the limiting

behavior of the average outward flux of the Euclidean distance function gradient vector

field can be used to characterize 3-D skeletal points. We choose to employ this latter

method since it has the advantage that the digital classification of [15] allows for the

taxonomy of generic 3-D skeletal points [8] to be interpreted on a rectangular lattice,

leading to a graph of parts.

Under the assumption that the initial model is given in triangulated form, we begin

by scaling all the vertices so that they fall within a rectangular lattice of fixed dimension

and resolution. We then sub-divide each triangle to generate a dense intersection with

this lattice, resulting in a binary (voxelized) 3-D model. The average outward flux of

the Euclidean distance function’s gradient vector field is computed through unit spheres

centered at each rectangular lattice point, using Algorithm 1. This quantity has the prop-

erty that it approaches a negative number at skeletal points and goes to zero elsewhere

[27], and thus can be used to drive a digital thinning process, for which an efficient

implementation is described in Algorithm 2. This thinning process has to be imple-

mented with some care, so that the topology of the object is not changed. This is done

by identifying each simple or removable point x, for which a characterization based on

the 26-neighborhood of each lattice point x is provided in [15]. With O being the set of

points in the interior of the voxelized object and N∗
26 being the 26-neighborhood of x,

not including x itself, this characterization is based on two numbers:

1. C∗: the number of 26-connected components 26-adjacent to x in O∩N∗
26, and

2. C̄: the number of 6-connected components 6-adjacent to x in Ō∩N18.

It can be shown that a digital point x is simple if C∗(x) = 1 and C̄(x) = 1.

The taxonomy of generic 3-D skeletal points in the continuum, i.e., those which are

stable under small perturbations of the object, is provided in [8]. Using the notation
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Algorithm 1: Average Outward Flux

Data : Voxelized 3-D Object Model.

Result : Average Outward Flux Map.

Compute the Euclidean distance transform D of the model ;

Compute the gradient vector field ∇D;

Compute the average outward flux of ∇D:

For (each point x) AOF(x) =
1

26

26

∑
i=1

< N̂i,∇D(xi) >;

(where xi is a 26-neighbor of x in 3-D and N̂i is the outward normal at xi of the unit

sphere centered at x)

Algorithm 2: Topology Preserving Thinning

Data : 3-D Object Model, Average Outward Flux Map.

Result : 3-D Skeleton (Medial Surface).

for (each point x on the boundary of the object) do

if (x is simple) then

insert(x, maxHeap) with AOF(x) as the sorting key for insertion;

while (maxHeap.size > 0) do

x = HeapExtractMax(maxHeap);

if (x is simple) then

if (x is an end point) and (AOF(x) < Thresh) then

mark x as a medial surface (end) point;

else

Remove x;

for (all neighbors y of x) do

if (y is simple) then

insert(y, maxHeap) with AOF(y) as the sorting key for insertion;

Ak
n, where n denotes the number of points of contact of the maximal inscribed sphere

with the surface and k the order of these contacts, the taxonomy includes: 1) A2
1 points

which form a smooth medial manifold, 2) A3 points which correspond to the rim of a

medial manifold, 3) A3
1 points which represent the intersection curve of three medial

manifolds, 4) an A4
1 point at the intersection of four A3

1 curves, and 5) an A1A3 point at

the intersection between an A3 curve and an A3
1 curve.

It is clear from this classification that 3-D skeletons are essentially comprised of

medial manifolds, their rims and intersection curves, and this is why we refer to this as a

medial surface representation. As shown in [15], the numbers C∗ and C̄ can also be used

to classify surface points, rim points, junction points and curve points on a rectangular

lattice. These results are summarized in Table 1. This suggests the following 3-step

approach for segmenting the (voxelized) medial surface into a set of connected parts:
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Table 1. The topological classification of [15]

C̄ C∗ TYPE

0 any interior point

any 0 isolated point

1 1 border (simple) point

1 2 curve point

1 > 2 curves junction

2 1 surface point

2 > 2 surface-curve(s) junction

> 2 1 surfaces junction

> 2 ≥ 2 surfaces-curves junction

Fig. 2. A voxelized human form and chair (left) and their segmented medial surfaces (middle).

A hierarchical interpretation of the medial surface, using a notion of part saliency, leads to a

directed acyclic graph DAG (right). The nodes in the DAGs have labels corresponding to those

on the medial surface, and the saliency of each node is also shown.

1. Identify all manifolds comprised of 26-connected surface points and border points.

2. Use junction points to separate these manifolds, but allow junction points to belong

to all manifolds that they connect.

3. Form connected components with the remaining curve points, and consider these

as parts as well.

This process of automatic skeletonization and segmentation is illustrated for two object

classes, a chair and a human form, in Fig. 2.

We now propose an interpretation of the segmented medial surface as a directed

acyclic graph (DAG), where we shall treat each component as a node. This will in turn

allow the subsequent matcher and indexer to cope with both changes in part structure, as

reflected by connectivity in the graph, as well as changes in part shape, as reflected by

the geometric information associated with each node. We begin by introducing a notion
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of saliency which captures the relative importance of each component. Consider that the

envelope of maximal inscribed spheres of appropriate radii placed at all skeletal points

reconstructs the original object’s volume [6]. The contribution of each component to

the overall volume can thus be used as a measure of its significance. Since the spheres

associated with adjacent components can overlap, an objective measure of component

j’s saliency is given by:

Saliency j =
Voxels j

∑
N
i=1 Voxelsi

,

where N is the number of components and Voxelsi is the number of voxels uniquely re-

constructed by component i. We propose the following construction of a DAG, using each

component’s saliency. Consider the most salient component as the root node (level 0),

and place components to which it is connected as nodes at level 1. Components to which

these nodes are connected are placed at level 2, and this process is repeated in a recursive

fashion until all nodes are accounted for. The graph is completed by drawing edges be-

tween all pairs of connected nodes, in the direction of increasing levels, hence avoiding

the occurrence of any cycles. However, to allow for 3-D models comprised of discon-

nected parts we introduce a single dummy node as the parent of all DAGs for a 3-Dmodel.

This process is illustrated in Fig. 2 (right column) for the human and chair models,

with the saliency values shown within the nodes. Note how this representation captures

the intuitive sense that the human is a torso with attached limbs and a head, a chair is a

seat with attached legs and a back, etc. Our DAG representation of the medial surface is

quite different than the graph structure that follows from a direct use of the taxonomy

of 3-D skeletal points in the continuum [8]. Our motivation is to be able to exploit the

hierarchical structure indexing and matching algorithms reported in [28, 26].

3 Indexing

A linear search of the 3-D model database, i.e., comparing the query 3-D object model

to each 3-D model and selecting the closest one, is inefficient for large databases. An

indexing mechanism is therefore essential to select a small set of candidate models to

which the matching procedure is applied. When working with hierarchical structures,

in the form of DAGs, indexing is a challenging task, and can be formulated as the fast

selection of a small set of candidate model graphs that share a subgraph with the query.

But how do we test a given candidate without resorting to subgraph isomorphism and its

intractability? The problem is further compounded by the fact that due to perturbation

and noise, no significant isomorphisms may exist between the query and the (correct)

model. Yet, at some level of abstraction, the two structures (or two of their substruc-

tures) may be quite similar. Thus, our indexing problem can be reformulated as finding

model (sub)graphs whose structure is similar to the query (sub)graph.

Choosing the appropriate level of abstraction with which to characterize a DAG is

a challenging problem. We seek a description that, on the one hand, provides the low

dimensionality essential for efficient indexing, while on the other hand, is rich enough

to prune the database down to a tractable number of candidates. In recent work [26], we

draw on the eigen-space of a graph to characterize the topology of a DAG with a low-

dimensional vector that will facilitate an efficient nearest-neighbor search in a database.
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Fig. 3. Indexing Mechanism. Each non-trivial node (whose TSV encodes a topological abstraction

of the subgraph rooted at the node) votes for models sharing a structurally similar subgraph.

Models receiving strong support are candidates for a more comprehensive matching process.

The eigenvalues of a graph’s adjacency matrix encode important structural properties of

the graph, characterizing the degree distribution of its nodes. Moreover, we have shown

that the magnitudes of the eigenvalues are stable with respect to minor perturbations

of graph structure due to, for example, noise, segmentation error, or minor within-class

structural variation. For every rooted directed acyclic subgraph (i.e., part) of the orig-

inal DAG, we compute a function of the eigenvalues of the subgraph’s antisymmetric

{0,1,−1} node-adjacency matrix which yields a low-dimensional topological signa-

ture vector (TSV) encoding of the “shape” of the subgraph. Details of the TSV, along

with an analysis of its stability, can be found in [26].

Indexing now amounts to a nearest-neighbor search in a model database, as shown in

Fig. 3. The TSV of each non-leaf node (the root of a graph “part”) in each model DAG

defines a vector location in a low-dimensional Euclidean space (the model database)

at which a pointer to the model containing the subgraph rooted at the node is stored.

At indexing time, a TSV is computed for each non-leaf node, and a nearest-neighbor

search is performed using each “query” TSV. Each TSV “votes” for nearby “model”

TSVs, thereby accumulating evidence for models that share the substructure defined

by the query TSV. Indexing could, in fact, be accomplished by indexing solely with

the root of the entire query graph. However, in an effort to accommodate large-scale

perturbation (which corrupts all ancestor TSVs of a perturbed subgraph), indexing is

performed locally (using all non-trivial subgraphs, or “parts”) and evidence combined.

The result is a small set of ranked model candidates which are verified more extensively

using the matching procedure described next.

4 Matching

Each of the top-ranking candidates emerging from the indexing process must be veri-

fied to determine which is most similar to the query. If there were no noise our problem

could be formulated as a graph isomorphism problem for vertex-labeled graphs. With

limited noise, we would search for the largest isomorphic subgraph between query and

model. Unfortunately, with the presence of significant noise, in the form of the addition

and/or deletion of graph structure, large isomorphic subgraphs may simply not exist.
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This problem can be overcome by using the same eigen characterization of graph struc-

ture we use as the basis of our indexing mechanism [28].

As we know, each node in a graph (query or model) is assigned a TSV, which

reflects the underlying structure in the subgraph rooted at that node. If we simply dis-

carded all the edges in our two graphs, we would be faced with the problem of finding

the best correspondence between the nodes in the query and the nodes in the model; two

nodes could be said to be in close correspondence if the distance between their TSVs

(and the distance between their domain-dependent node labels) was small. In fact, such

a formulation amounts to finding the maximum cardinality, minimum weight match-

ing in a bipartite graph spanning the two sets of nodes. In a modification of Reyner’s

algorithm [20], we combine the above bipartite matching formulation with a greedy,

best-first search in a recursive procedure to compute the corresponding nodes in two

rooted DAGs which, in turn, yields an overall similarity measure that can be used to

rank the candidate. Details of the algorithm can be found in [28, 14].

4.1 Node Similarity

The above matching algorithm requires a node similarity function that compares the

shapes of the 3-D parts associated with two nodes. A variety of the measures used in the

literature as signatures for indexing entire 3-D models could be used to compute sim-

ilarities between two parts (nodes) [17, 3, 30, 7, 11]. Some care would of course have

to be taken in the implementation of methods which require a form of global align-

ment. We have opted for a much simpler measure, which is based on the use of a mean

curvature histogram.

First, consider the volumetric part that a node i represents, along with its Euclidean

distance function D. At any point within this volume, the mean curvature of the iso-

distance level set is given by div( ∇D
||∇D|| ). On a voxel grid with unit spacing the observ-

able mean curvatures are in the range [−1,1]. We compute a histogram of the mean

curvature over all voxels in the volumetric part, over this range, using a fixed number

of bins N. A mean curvature histogram vector M̂i is then constructed with entries rep-

resenting the fraction of total voxels in each bin. The similarity between two nodes i

and j is then given by the following measure, which uses the sum of squared distances

between the corresponding entries k of each node’s mean curvature histogram vector:

Similarity(i, j) = [1 −

√
N

∑
k=1

[M̂i(k)− M̂ j(k)]2]

︸ ︷︷ ︸

Distance(i, j)

.

By construction, this similarity function is in the interval [0,1]. This measure could be

further modified to take into account overall part sizes. In our experiments we choose

not to do this since our object models have undergone a global size normalization.

5 Experimental Results

In order to test the power of our indexing and matching algorithms using medial surface-

based DAGs, we have considered using the Princeton Shape Benchmark [23]. This
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significant articulation moderate or no articulation

Fig. 4. Database Exemplars. 20 members are shown from each of the object classes (with the

exception of the class dolphins which has fewer exemplars). Exemplars from classes on the left

have significant part articulation of a complexity not seen in the Princeton Shape Benchmark.

Note that we treat the dinosaurs and the four-legged animals as members of a single object class

“four-limbs”.
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standardized database, which contains 1,814 3-D object models organized by class,

is an effective one for comparing the performance of a variety of methods including

those in [11, 17, 3, 30, 7]. A majority of the models in the database correspond to rigid,

man-made objects for which a notion of a centroid applies. The natural objects include

a variety of animals (including humans), trees, plants and body parts. However, only

a limited number of these have articulated or deformed parts. When such models are

present, the precise nature of part articulation typically defines a unique base level cat-

egory. For example, animal-biped-human contains human models which are upright,

animal-biped-human-arms-out contains similar models with outstretched hands and

animal-biped-human-walking contains those in a walking pose. Results reported in [23]

indicate that a number of global shape descriptors perform suitably at such base levels

of classification, but degrade rapidly at coarser levels, e.g., the classification human.

In the context of generic 3-D model retrieval, such coarser levels in fact correspond to

the notion of a basic level or entry level categorization [21, 4], whose exemplars might

reflect a variety of complex poses and articulations, such as those seen in Fig. 1. Our

matching and indexing algorithms have the potential to work at this more challenging

level, because they use intuitive part-based representations.

To demonstrate this, we have constructed our own database adopting some of the

models in the Princeton repository, but adding several of our own. Our database includes

a total of 320 exemplars taken from several basic level object classes (hands, humans,

teddy bears, glasses, pliers, tables, chairs, cups, airplanes, birds, dolphins, dinosaurs,

four-legged animals, fish). A large number of these models are shown in Fig. 4. We

divide these classes into two categories, those with significant part articulation, and

those with moderate or no part articulation. In our experiments we merge the categories

“four-legged” and “dinosaurs”, treating them as a single category “four-limbs”

Fig. 5. Indexing Results: Percentage Recall. For several rank thresholds, N = 10,20, ..., we plot

the percentage of models in the database in the same category as the query (not including the

query itself) with indexing rank ≤ N. The results averaged across all classes are shown along

with error bars depicting +/- 1 standard deviation.
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Indexing Results: In order to test our indexing algorithm, which utilizes only the topo-

logical structure of medial surface-based DAGs, we carried out two types of experi-

ments. In the first we evaluated percentage recall. For a number of rank thresholds the

percentage of models in the database in the same category as a query (not including the

Fig. 6. Indexing Results: Average Ranks. For all queries in a class the rank of all other objects

in that class are computed. The ranks averaged across that class are shown, along with error bars

depicting +/- 1 standard deviation.
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Fig. 7. Precision (y axis) versus Recall (x axis): Objects with articulating parts. The results using

medial surfaces (MS) are shown in red, those using harmonic spheres (HS) are shown in blue

and those using shape distribution (SD) are shown in green. The results obtained using MS are

superior for all categories with the exception of the category “teddy” for which both HS and MS

give excellent results.
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query itself) with higher indexing rank, are shown in Fig. 5. The results indicate that on

average 70% of the desired models are in the top 80 (25% of 320) ranks. In the second

experiment we examine the average ranks according to object classes. For all queries in

a class the rank of all other objects in that class is computed. The ranks averaged across

that class are shown in Fig. 6. The results indicate that for 9 of the 13 object classes the

average rank is in the top 80 (25% of 320). The higher average ranks for the remain-

ing classes are due to the fact that certain categories have similar part decompositions.

In such cases topological structure on its own is not discriminating enough, and part

shapes also have to be taken into account.

It should be emphasized that the indexer is a fast screener which can quickly prune

the database down to a much smaller set of candidates to which the matcher can be

applied. Furthermore, the eigen characterization used to compute the index is also used

at matching time, so the same eigen structure calculation is exploited for both steps.
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Fig. 8. Precision (y axis) versus Recall (x axis): Objects with moderate or no articulation. The

results using medial surfaces (MS) are shown in red, those using harmonic spheres (HS) are

shown in blue and those using shape distribution (SD) are shown in green. For categories in the

top row MS gives superior results. For categories in the middle row HS gives slightly better results

than MS, but both are superior to SD. For categories in the third row the results are comparable

for birds, but for four-limbs and fishes, both HS and SD out perform MS.
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The systems against which we evaluate the matcher in the following section run a linear

search on the entire database for each query. This approach does not scale well, since

the indexing problem is essentially ignored.

Matching Results: On a large database we envision running the indexing strategy first

to obtain a smaller subset of candidate 3-D models and to match the query only against

these. However, given the moderate size of our database we were able to generate the

320×320 = 102,400 pairs of matches in a matter of 15-20 minutes on a 3.0 GHz desk-

top PC. We compare the results using medial surfaces (MS) with those obtained using

harmonic spheres (HS) [12] and shape distributions (SD) [17]. The pair-wise distances

between models using harmonic spheres were obtained using Michael Kazhdan’s exe-

cutable code (http://www.cs.jhu.edu/˜ misha) and those using shape distributions were

based on our own implementation of the algorithm described in [17]. For both HS and

SD we used as input a mesh representation of the bounding voxels of the voxelized

model used for MS. The comparisons are performed using the standard information re-

Table 2. Average Matching Results Using MS. Each object in the database is matched against all

the other objects in the database. Each cell shows the average similarity between objects selected

from two fixed object classes. In each row red and blue boxes are drawn, respectively, around

the two highest average similarity scores. In all cases the highest score coincides with the correct

object class. In most cases there is also a very significant difference between the top two average

similarity scores.

Instance

.61 .37 .00 .45 .23 .20 .02 .02 .10 .00 .09 .16 .26

.37 .38 .00 .21 .25 .18 .12 .10 .18 .02 .18 .23 .25

.00 .00 .51 .29 .17 .15 .07 .03 .00 .15 .02 .00 .07

.45 .21 .29 .64 .34 .23 .04 .04 .00 .01 .05 .04 .28

.23 .25 .17 .34 .43 .24 .16 .15 .12 .04 .22 .06 .19

.20 .18 .15 .23 .24 .28 .20 .22 .14 .07 .26 .05 .14

.02 .12 .07 .04 .16 .20 .51 .46 .37 .08 .45 .00 .09

.02 .10 .03 .04 .15 .22 .46 .53 .29 .03 .47 .02 .06

.10 .18 .00 .00 .12 .14 .37 .29 .58 .04 .31 .02 .23

.00 .02 .15 .01 .04 .07 .08 .03 .04 .48 .08 .15 .07

.09 .18 .02 .05 .22 .26 .45 .47 .31 .08 .56 .02 .12

.16 .23 .00 .04 .06 .05 .00 .02 .02 .15 .02 .71 .21

.26 .25 .07 .28 .19 .14 .09 .06 .23 .07 .12 .21 .40
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trieval notion of recall versus precision, where curves shifted upwards and to the right

indicate superior performance.

The results for objects with articulating parts are presented in Fig. 7. For the cat-

egory “teddy” both MS and HS give excellent results and for all other categories MS

outperforms the other two techniques. Fig. 8 shows the results for objects with mod-

erate or no part articulation. For categories in the top row MS gives superior results.

For categories in the middle row HS gives slightly better results than MS, but both are

significantly superior to SD. For categories in the third row the results are comparable

for birds, but for four-limbs and fishes, both HS and SD out perform MS. In Table 2 we

show the average similarity scores using MS, organized by object class. Red and blue

boxes are drawn, respectively, around the two highest similarity scores. In all cases the

highest score coincides with the correct object class. Overall these results demonstrate

the significant potential of medial surface based representations and their graph spectra

for generic level 3-D model retrieval, despite substantial articulation of parts.

6 Conclusion

We advance the state-of-the-art in 3-D object model retrieval by: 1) introducing a mod-

ification of a Euclidean distance function-based method for computing and segmenting

medial surfaces, 2) proposing a DAG representation of the medial surface which cap-

tures a notion of part saliency, 3) building on algorithms in the computer vision literature

to address the problem of 3-D model indexing and matching in a uniform framework

and 4) presenting indexing and matching results on a database of object models orga-

nized according to an entry level of categorization, with categories having significant

part articulation. Whereas all the pieces of this system have been developed in past work,

putting them together and demonstrating them in the context of 3-D model retrieval with

comparative results against competing methods has been the focus of this article.

The major current limitations of our work include: 1) the assumption that the origi-

nal object models can be voxelized, 2) the coarse nature of the part similarity measure

based on mean curvature histograms, and 3) the assumption that objects with complex

part topologies can yield stable graph structures using medial surface decompositions

on a digital lattice. First, it is feasible to “patch” models with a few missing triangles, so

that voxelization becomes possible. It might also be fruitful to explore Voronoi methods

for computing medial surface-based DAGs that could in principle be applied directly to

point clouds, provided that the sampling density is high enough [2] or to use the shock

scaffold technique [13]. However, for models with incomplete surfaces and large holes,

and hence no well defined notion of an interior and an exterior, medial surface-based

DAGs would not be appropriate. With regard to the second limitation, indeed we expect

that the performance of graph theoretic algorithms for comparing medial surface based

representations will improve with more discriminating part similarity measures, and any

one of a number suggested in the literature can be investigated. Finally, the third con-

cern (as exemplified by the poorer results on the four-limbed animals) points to some

limitations of the current representation. It is well known that certain regions of the me-

dial locus are less stable than others, such as Blum’s ligatures [6]. Thus, there is more

work to be done both in the direction of developing robust techniques for segmenting

3D skeletons as well as in selecting its stable manifolds for building representations.
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