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Retrieving functional pathways of biomolecules
from single-particle snapshots
Ali Dashti1,9, Ghoncheh Mashayekhi1,9, Mrinal Shekhar 2,3, Danya Ben Hail4, Salah Salah4,5,6,

Peter Schwander 1, Amedee des Georges 4,5,6✉, Abhishek Singharoy 3✉, Joachim Frank 7,8✉ &

Abbas Ourmazd 1✉

A primary reason for the intense interest in structural biology is the fact that knowledge of

structure can elucidate macromolecular functions in living organisms. Sustained effort has

resulted in an impressive arsenal of tools for determining the static structures. But under

physiological conditions, macromolecules undergo continuous conformational changes, a

subset of which are functionally important. Techniques for capturing the continuous con-

formational changes underlying function are essential for further progress. Here, we present

chemically-detailed conformational movies of biological function, extracted data-analytically

from experimental single-particle cryo-electron microscopy (cryo-EM) snapshots of ryano-

dine receptor type 1 (RyR1), a calcium-activated calcium channel engaged in the binding of

ligands. The functional motions differ substantially from those inferred from static structures

in the nature of conformationally active structural domains, the sequence and extent of

conformational motions, and the way allosteric signals are transduced within and between

domains. Our approach highlights the importance of combining experiment, advanced data

analysis, and molecular simulations.
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I
n principle, a macromolecule with N atoms has (3N-6) degrees
of conformational freedom. Barring exceptions such as
intrinsically disordered proteins, biological function involves

coordinated changes in structural blocks, e.g., an alpha helix, or
an entire molecular domain. Conformational motions can thus be
described in terms of a small number of so-called conformational
coordinates, each describing the concerted motions of a large
number of atoms. The choice of conformational coordinates is
not unique; the bending of a person’s arm, for example, can be
described in terms of the angle subtended by the elbow, or the
hand-to-shoulder distance. No choice of conformational coordi-
nates is inherently linear, but mutually orthogonal coordinates
are the most convenient. All choices will reveal the same move-
ments, but not necessarily at the same local rate of change. The
number and nature of the degrees of freedom exercised during
unperturbed function, and the conformational coordinates rele-
vant to function must be extracted from the data.

In equilibrium, each conformational state of a macromolecule is
occupied with a statistical weight, e� Ei=kBTð Þ, where Ei is the free
energy of the conformational state i, kB the Boltzmann constant, and
T the temperature. Given appropriate sampling of the conforma-
tional space, single-particle snapshots of a sufficiently large number
of macromolecules will include all thermally accessible conforma-
tional states. The energy of each observed conformational state can
be determined from the number of times it has been sighted,
through the so-called inverse-Boltzmann relation between the sta-
tistical weight and the energy of the state1–3 (see also “Methods”).

It has long been recognized that energy landscapes offer a
powerful framework for studying conformational changes in
macromolecules (see refs. 4–6), with function unfolding along
heavily populated minimum free-energy paths7–11. Based pri-
marily on molecular simulations, this realization has yielded
important insights into biological function, ranging from protein
folding to small-molecule binding and motor action12,13.

The majority of experimentally determined energy landscapes
have involved one conformational coordinate14,15, have been
compromised by low spatial resolution16,17, and/or limited by the
inability to account for the multiple energy landscapes associated
with the vast variety of biological functions involving ligands and
cofactors17.

The combination of recent resolution improvements in cryo-
EM with new data-analytical and molecular simulation techni-
ques now offers an unprecedented opportunity to identify func-
tional paths on multiple experimentally determined energy
landscapes, and compile all-atoms movies of complex biological
functions, including those involving ligands and cofactors.

At present, cryo-EM is widely used to infer functional infor-
mation from static structures obtained by powerful maximum-
likelihood classification methods18,19, which sort single-particle
snapshots into a user-defined number of discrete conformational
clusters. These methods incorporate continuous conformations as
admixtures of orientationally independent, rigid domain struc-
tures20. In general, the positions and sequence of these structures
in the macromolecular work cycle are unknown, and it is not
always easy to assess the relevance of these structures to function.
Under such circumstances, the functional inference is based on
interpolations between static structures, if only conceptually. In
the absence of additional information, arranging such discrete
structures along a functionally relevant pathway is difficult. Since
the number of ways in which two discrete structures can be
transformed into each other is essentially unlimited, reliable
functional inference by discrete clustering is not straightforward.

The primary goals of this paper are as follows: (i) demonstrate
that energy landscapes associated with complex biological func-
tion can be extracted from experimental data, and corroborated

by molecular simulations, (ii) elucidate the conformational paths
associated with complex biological function in all-atoms detail,
including possible routes for transitions between different land-
scapes, (iii) establish that motions associated with functional
paths on energy landscapes can be significantly different from
those inferred by discrete clustering methods, (iv) outline the new
biological insights gained by studying the continuous conforma-
tional changes associated with function, and (v) render the
algorithms used in this paper widely accessible.

We use cryo-EM single-particle snapshots of ryanodine recep-
tor type 1 (RyR1) to exemplify the discovery process facilitated,
and the new insights revealed by our approach. RyRs are calcium-
activated calcium channels critical to excitation/contraction cou-
pling in heart and skeletal muscle. Malfunctions in RyR1 and
RyR2 can lead to calcium leaks deleterious to heart and skeletal
muscle function21. Insights into RyR channel function and reg-
ulation are therefore critical in understanding the role of disease-
causing mutations and identifying pharmacological leads21.

The architecture of the ryanodine receptor can be divided into
three major regions: the channel pore, responsible for calcium
efflux from the sarcoplasmic reticulum; an activation core, which
binds activating ligands and is responsible for channel activation;
and a large cytoplasmic shell serving as a platform for the binding
of many regulatory proteins22. Ca2+, ATP, and caffeine are well-
characterized activators of RyR, synergistically activating the
channel by inducing a rotation of its activation core and pore
opening. Still, the allosteric mechanism by which rotation of the
activation domain renders pore opening possible remains
unknown. We therefore set to reanalyze with our manifold-based
geometric machine-learning approach17,23–26 the ligand-free
snapshots and those with all three ligands (Ca2+, ATP, and caf-
feine) previously examined by clustering techniques22,27.

Our results allow us to contrast the ligand-binding pathways
revealed by our approach17,23–26 with results obtained from the
same dataset by interpolating between discrete RyR1 structures
obtained by clustering techniques (see refs. 22,27–30). This com-
parison reveals major differences in the delineation of function-
ally active structural domains, the nature, sequence, and extent of
motions associated with RyR1 function, and the propagation of
allosteric signal to functionally important remote sites.

Results
Energy landscapes. The 791,956 cryo-EM snapshots of RyR1
molecules analyzed in this study comprised about the same
number of molecules in equilibrium with a thermal bath with and
without ligands (Ca2+, ATP, and caffeine) prior to cryo-
freezing22 (see “Methods”). These snapshots were first aligned
to a common 3D reference by standard iterative procedures
implemented in RELION19. Based on these alignment para-
meters, snapshots were grouped into 1117 uniformly spaced
orientational bins for manifold-based analysis (see “Methods”).
The RyR1-EGTA structure EMD-8391 was filtered to 40-Å
resolution and used for orientation recovery for both data sets.

Assuming the association dynamics of the ligands are faster
than the functionally relevant conformational motions of the
protein31, pooling data from the two experiments allows both
RyR1 species (with and without ligands, henceforth ± ligand) to be
described in terms of the same set of conformational coordinates.
Manifold-based analysis17,26 of the pooled data revealed four
conformational coordinates above the noise plateau, each
describing a particular set of continuous conformational changes.
A further detailed analysis was restricted to only the two strongest
conformational coordinates (CC1 and CC2 for short) because the
lower-power coordinates were too weak to yield meaningful
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results (see “Methods”). Broadly speaking, conformational
changes along CC1 involve the cytoplasmic shell, the activation
core, and the pore; those along CC2 involve only the cytoplasmic
shell (See Supplementary Note 1 and Supplementary Fig. 9).

The resulting ±ligand energy landscapes (Fig. 1a) reveal the
heavily populated, functionally important conformational con-
duits7–11 relevant to ligand association and binding. Molecular
simulations are then employed to elucidate the association
pathways and reversible binding kinetics (see below).

Molecular movies of ligand binding in RyR1. Based on a master
equation approach32,33, we estimate the probability of a transition

between iso-conformational points on the two landscapes shown
in Fig. 1a to be the product of the density of occupied states on
the upper landscape and the density of unoccupied states on the
lower landscape (see “Methods”). This estimate is expected to be
reasonable, as long as ligand dynamics are fast compared with the
rate of conformational changes in RyR1. Of course, association
pathways derived from this approach offer an incomplete
description of the binding pathway. Capturing the reversible
binding process requires a proper description of the ligand-
dissociation dynamics, which involves coupled protein motions,
and is often rate-determining34.

Subject to the above limitations, the interlandscape transition
probability displays specific “hotspot” regions (Fig. 1b). The most
probable routes to ligand association then start from the region of
lowest energy on the –ligand landscape (“START” in Fig. 1a),
reaching one of the hotspot transition zones (“HOT”) with a
probability of ~2%. (To be clear, this value refers to the
probability of finding the hotspot occupied on the upper
landscape, not the interlandscape transition probability shown
in Fig. 1b.)

At the hotspot, the trajectory crosses over to the +ligand
landscape with ~0.24% of the probability of association with a
ligand, terminating in the region of lowest energy on the +ligand
landscape (“FINISH”). Three-dimensional (3D) movies compiled
along heavily populated conduits from the START point on the
−ligand landscape to FINISH point on the +ligand landscape
(the white curve in Fig. 1a) reveal the conformational motions
relevant to ligand association, in some regions with near-atomic
resolution (Supplementary Movies 1–6, see “Methods” for more
detail). Conformational changes at the binding sites of the ligands
Ca2+, ATP, and caffeine as ligand binding proceeds are
represented in Figs. 2–5 (The 50-frame movies of conformational
changes along the route connecting the two minima include
excursions from these minima to the “north” and “south” on the
upper and lower landscapes, respectively, in order to facilitate
accurate distance measurements at key binding sites (see below)).

We note, however, that the binding probability, while
correlated with the association probability, can demonstrate very
different trends. We therefore use MD simulations to establish
the validity of the ligand-association landscape derived directly
from cryo-EM35.

Molecular dynamics simulations. The movies of ligand asso-
ciation were further refined in all-atoms detail by molecular
dynamics (MD), multi-conformation continuum electrostatics
(MCCE), and free-energy simulations (see “Methods”). Building
upon the visualization of the association conduits (irreversible
pathways of ligand entry into the binding pockets) directly from
experimental data, MD reveals the mechanism of reversible
ligand binding (capturing the quasi-equilibrium ensemble of
structures along the ligand entry and exit pathway). This free-
energy analysis was augmented by MCCE, which monitors the
change in ligand-binding affinity along the conduit. Thus, starting
with cryo-EM data, the thermodynamics of a reversible binding
process is captured in MD simulations, elucidating ligand asso-
ciation, dissociation, and coupled transitions of the protein (see
“Methods”).

MD simulations were performed at six successive points along
the functional path of Fig. 1a connecting the START and FINISH
points. These simulations indicate that the high-energy cost of
Ca2+ binding renders binding unlikely between the conforma-
tional states 1 and 2 (S1 and S2) (Supplementary Note 3 and
Supplementary Figs. 1–3). In qualitative agreement with the
experimentally estimated association probabilities, the binding
interactions become favorable from state 3 (“S3”) onward,
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becoming most probable at the FINISH conformation (Fig. 1a).
In the absence of an associating Ca2+, the energy of a transition
from S1 → S6 increases, corroborating the experimentally
determined trend in Fig. 1a (Supplementary Fig. 1). The rapid
decrease in conformational energy and binding affinity between
states 2 and 3 implies minimal protein conformational changes
during the Ca2+ association. As illustrated further in Supple-
mentary Fig. 4, the binding affinity of Ca2+ to each one of the
cryo-EM models calculated by MCCE reveals that the energy cost
of switching between the +ligand and –ligand landscapes is
initially high, but rapidly decreases as the interlandscape
transition region is approached.

Functional paths vs. interpolation between discrete clusters.
The curved nature of the route to binding (the white line con-
necting START to FINISH in Fig. 1a) shows that conformational
motions relevant to binding involve an elaborate and changing
admixture of conformational coordinates, which cannot be
determined from the START and FINISH structures alone. This
underscores the difficulty of deducing functional information
from discrete structures.

The experimentally determined energy landscapes make it
possible to compile molecular movies along functional paths, and
compare the results with the changes inferred by maximum-
likelihood clustering36 of the same snapshots22,27. The RyR1 data
analyzed here were previously clustered with RELION 3D
classification into 16 discrete conformational classes, 2 of which
were labeled as “junk”22. For each class, the positions and
distribution of the snapshots on the energy landscapes are shown
in Fig. 6a and Supplementary Fig. 6. It is difficult to discern a
systematic relationship between the positions of the different
discrete classes on the energy landscapes. Class 2 (no ligands) and
class 3 (with ligands) were taken in the previous cluster-based
analysis22,27 to represent the functionally relevant extremes of the
conformational range. Functional information was then inferred
by interpolating between the 3D structures obtained from these
two classes. Below we compare the conformational changes
deduced from such interpolation with the changes associated with
the functional trajectory on the energy landscapes (Fig. 1a).

Before doing so, however, we note two important points. First,
the extent to which maximum-likelihood clustering is based on
functionally relevant conformational coordinates is unknown.
The position of a discrete cluster on the relevant energy landscape
(Fig. 6a) thus represents a projection from an unknown space
onto space spanned by the two most important conformational
coordinates relevant to ligand binding. As a result, the minimum-
energy conformations (START and FINISH) observed on the
energy landscapes may differ from the conformations observed
with discrete clustering. Second, interpolation (“morphing”)
between two or more static structures along a putative functional
path is widely acknowledged as invalid, but nonetheless often
used, because discrete classification methods provide no informa-
tion about the functional path traversed between the different
discrete structures. Sometimes elastic network models or steered
or targeted MD are employed to derive functional pathways.
While better than linear morphs, such approaches are also known
to manifest serious free-energy artifacts.

We now turn to the conformationally active structural domains
and their motions. Figure 6 and Supplementary Movies 3 and 4
compare the displacements revealed along the functional path
(“functional analysis” for short) with those inferred from
interpolating between the two discrete classes, viz. ligand-free
closed, and ligand-bound open conformations, as described in a
previous study22. These two discrete classes lie close to the energy
minima on the ±ligand energy landscapes, i.e., the START and

FINISH points of the functional path. As such, the comparison
offers the most optimistic assessment of functional inference from
discrete clusters.

There are major differences between the results obtained from
landscape-based functional analysis and those inferred from
interpolation between the discrete clusters. These differences
include the structural domains involved in motion, as well as the
sequence and extent of displacements (Fig. 6b, c and Supple-
mentary Movies 3–6). For example, in contrast to the results from
cluster analysis22,27, functional analysis shows that: (a) the N-
terminal domains (NTD) lead the sequence of motions; (b) a
significant part of the macromolecule remains rigidly static
during function; and (c) the motions in the activation core and
shell are coupled (Fig. 6b and Supplementary Movies 3–6).

Discussion
The conformational changes derived from functional analysis are
significantly different from those inferred by interpolating
between the discrete structures, even though the clusters used are
close to the termini of the functional path. For example, while the
importance of NTD for RyR1 function has long been recog-
nized37–39, conformational changes specific to the NTD have not
been described in previous high-resolution cryo-EM studies, or
have specific elements of the shell been shown to be more rigid
than others22,29,40.

Notably, the energetically uphill motions of opening the Ca2+-
binding pocket in the –ligand state cannot be captured by brute-
force targeted MD simulations, when only the START and
FINISH conformations are provided. Information from at least
six structures along the functional route on the energy landscapes
was needed to identify a thermally accessible pathway by MD-
based piecewise free-energy simulations (see “Methods”). This
clearly demonstrates that discrete cluster analysis, even aug-
mented with MD, is unable to trace a meaningful functional
pathway.

We now discuss the implications of our results for the allosteric
mechanisms responsible for channel pore opening upon binding
of activating ligands. This discussion is facilitated by distance
measurements at important sites, which quantify the con-
sequences of functional motions.

First, our results elucidate longstanding questions regarding
“population shift” vs. “induced fit” models of allosteric ligand
binding. Broadly speaking, “population shift”41 requires a con-
formational change before, “induced fit”42 a conformational
change after ligand binding. The higher-energy conformations are
occupied thermally via “population shift”. The exact apportion-
ment of the conformational changes before and after association
depends, of course, on the point at which the transition to the
+ligand landscapes takes place. Although transitions can occur
over a relatively broad region, the highest association probabilities
are concentrated at a few “hotspots” (Fig. 1b). The positions of
the ±ligand energy minima relative to the broad region of sig-
nificant transition probability indicate that most ligand-binding
events in RyR1 involve a greater element of “population shift”
than “induced fit”, as suggested by Nussinov et al.43.

Second, Figs. 2–5 and Supplementary Figs. 10–13 reveal the
conformational changes at the binding sites of Ca2+, ATP, and
caffeine, as ligand binding proceeds (see Supplementary Note 2).
It is known that ligand binding stabilizes the activation domain in
a conformation suitable for pore opening22. Our results show this
activated state can also be present in the ligand-free state, albeit
with low or no conductance. Consistent with the independently
measured low probability of channel opening in the absence of
calcium and ATP44, the energy landscape shows only a small
fraction of RyR1 molecules assume the activated conformation in
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the ligand-free state. Further pore opening requires the binding of
a ligand followed by an “induced fit” to the minimum-energy
conformation of the ligand-bound receptor. The relatively broad
+ligand energy minimum (Fig. 1a) is also consistent with other
measurements: Brownian motions of the shell27–29 give rise to
conformational dispersion along CC2; and the spikes in con-
ductance, interpreted as channels flickering between the open and
closed states44, cause dispersion along CC1.

Third, despite extensive work (see ref. 22), it has proved diffi-
cult to clarify how the conformational changes associated with
ligand binding in the activation domain lead to gating and pore
opening. Our distance measurements reveal potentially important
atomic motions as the functional trajectory is traversed, most
strikingly along a previously unobserved allosteric conduit con-
necting the ligand-binding sites in the Csol domain to the EF

hand (Fig. 4). Frame-by-frame measurements indicate the dis-
placements begin at the calcium-binding site, and propagate
along a narrow “vein” to the EF-hand (Fig. 6c and Supplementary
Movies 5, 6). The movement of the EF hand described above is in
line with earlier observations22,29. Our analysis uncovers a pre-
viously unobserved allosteric conduit between the ligand-binding
sites and the EF hand, identifying the mechanical motions
underlying signal transduction (Supplementary Movie 5). In
contrast, the displacements inferred from discrete cluster analysis
are distributed uniformly over large regions, with no special
feature indicating targeted signal transduction (Supplementary
Movie 6). The functional analysis shows the narrow band of
displacements first appears on the –ligand landscape, i.e., before
ligand binding. This further supports “population-shift” in the
first part of the ligand-binding process, whereby a ligand
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stabilizes fleeting conformational fluctuations present before
ligand binding.

The observed coupling of the EF-hand movement to ligand
binding highlights the potential role of the EF hand in gating, or in
its regulation. This movement leads to an interaction between the
EF-hand and the S2S3 domain of the pore pseudo-voltage sensor.
The small movement of the S2S3 domain associated with the EF-
hand pair interaction suggests that this subtle movement of S2S3
may be relevant to gating, and should be further investigated. As
noted earlier, the NTD is among the first domains affected by the
transition between ligand-free and ligand-bound states (Fig. 6b and
Supplementary Movies 3, 4), indicating a potentially important role
in gating for NTDs. Indeed, the NTDs give rise to important
interprotomer interactions, which are lost during channel dilation
and subsequent pore opening, and a number of disease-causing
mutations are located at these interfaces38,45,46. It is thus important
to understand whether NTDs and other inter-domain contacts
involved in the gating mechanism are destabilized by the binding of
ligands prior to pore opening, or they are sufficiently weak to be
broken by Brownian motions during pore opening, a mechanism
known as the “zipper hypothesis”47. To clarify this question, we
investigated the distance between interprotomer contacts as the
functional path is traversed. The analysis was limited to backbone-
to-backbone distances, as the resolution of our present study is
limited by the number of available snapshots to ~4.5 Å in the core of

the channel, precluding reliable measurement of side-chain positions
(see “Methods”).

Two interprotomer contacts display significantly nonlinear
behavior, suggesting that they are modulated by ligand binding
and may have a possible role in gating (Figs. 4 and 5). The first
such contact is formed between the EF-hand and the S2S3
domain of the neighboring protomer, as outlined above. We
observe a stepwise motion bringing these two domains into close
proximity well before the transition to the ligand-bound state and
pore opening (Fig. 4). The EF-hand pair movement is, therefore,
correlated with channel activation, rather than pore opening. This
observation further supports the observation made earlier of an
allosteric conduit between the calcium-binding site and the EF
hand, and points to an important functional role for the EF-hand
pair, which has thus far remained elusive. It has been shown that
the deletion of the EF hand does not affect channel activation by
calcium48. The EF-hand pair may instead either have a critical
role in the channel regulation by other proteins49, or in channel
inactivation at high calcium concentrations50. The fact that the
EF-hand pair is allosterically linked to the activation domain
means that a ligand binding to the EF-hand pair and influencing
its conformation could have a strong influence on calcium affinity
to the activation domain, and therefore on channel activation by
calcium. This allosteric relationship between the EF-hand pair
and activation domain may explain the sometimes contradicting
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results obtained on the role of the EF-hand pair in channel
activation by calcium48–50.

The second significant contact is situated between the NTD
β8–β9 loop and the activation domain. These two domains move
apart by ~1.5 Å in a stepwise fashion as the interlandscape
transition point is approached (Fig. 5). The loop, containing a
number of charged residues suitable for ionic interactions, has
been suggested to play an important role in gating38,46. This
contact is thus a “gate” candidate, where strong ionic interactions
would prevent pore opening before ligand binding. The contact
would be broken by conformational changes in the activation
domain upon ligand binding to allow pore opening. Other,
weaker “zipper” interactions would then be broken and reformed
at intervals by the Brownian motion of the channel, accounting
for the observed “flickering” behavior of RyR1. This offers an
important hypothesis for the RyR1 gating mechanism.

In a number of positions, the distance change between inter-
protomer contact points shows either very small motions, or a
linear behavior. For instance, distance measurements between
opposite residues at the pore gate (Ile4937) show an approxi-
mately linear increase from the beginning to the end of the
reaction path (Fig. 4). We also note that the beginning and
endpoints of the “functional” trajectory are different from those
of the two extreme classes selected from the RELION classifica-
tion (Fig. 4, interpolation). The distance change between Calpha

of opposite protomers shows a pore dilation of ~4 Å along the
least-action path, which is about 2 Å less than the dilation
observed between the classes chosen from the clustering analysis
and to the previous reports22. While this may seem surprising, it
should be noted that the previous analysis focused on the tran-
sition between free and bound ligand states, and did not explore
the energy landscape of each dataset independently. The path
explored goes through the minimum-energy point of each land-
scape, which probably corresponds to a partially open state for
the minimum energy of the ligand-bound state. Further
exploration of the conformational landscape of the ligand-bound
state by itself, or of the pore domain more specifically would
probably uncover the full range of pore radii, but this is outside
the scope of this study.

Finally, the IP3 receptor, with a homologous calcium activation
mechanism, does not have EF-hands and an S2S3 domain, but its
NTD are homologous to the RyR1 NTDs, where the activating
ligand IP3 binding site is located51,52. The IP3 receptor could thus
have a homologous mechanism, by which binding of calcium and
IP3 leads to conformational changes in the activation domain and
NTD of IP3R, followed by pore opening.

As noted earlier, inferring a biological function from the
structure is a paramount goal of structural biology. The results
presented here highlight the importance of basing functional
inference on energy landscapes and conformational coordinates
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derived from the data. Our approach is based on three concepts
of general significance. First, biological function involves a rich
set of continuous conformational changes inadequately described
by discrete structures of unknown relationship. Linear inter-
polations between the X-ray or cryo-EM structures can produce a
qualitative understating of some large-scale motions, but almost
always fail to reveal the changes along the minimum free-energy
pathway of a conformational transition35. Elastic network53 or
flexible-fitting methods represent the next logical steps, but the
energetics, and functional pathways of protein-ligand binding are
difficult to resolve with these methods. Second, thermal fluctua-
tions in equilibrium lead to sightings of all states up to an energy
limit set by the number of snapshots in the dataset. This makes it
possible to compile the energy landscapes needed for a rigorous
description of the thermodynamics of function. This data-guided
approach can be further enhanced with important sampling
methods, such as string simulations with swarms of trajectories54,
Markov state models55, meta-dynamics a la meta-inferencing56,
or adaptive biasing forces applied here. No external steering is
required to induce a rare event. Third, conformational changes
underlying complex biological function can be determined from
experimental data by combining advanced data analytical tech-
niques with powerful simulation approaches. We believe the
power of our approach is demonstrated by the energy landscapes,
the interlandscape transition maps, the new information on
conformationally active structural domains, and the nature,
sequence, and extent of important displacements involved in

function. The approach is applicable to a wide range of systems
and processes.

Methods
The upper limit on the energy of accessible conformational states. The dif-
ference in the Gibbs free energy ΔG between two states with populations NA and
NB is given by the Boltzmann relation, viz. NB/NA= exp (−ΔG/kBT), with kB the
Boltzmann constant, and T the absolute temperature. Using an ensemble of N
snapshots, the state sighted only once lies at an energy ΔGmax above the lowest
energy state of the ensemble. Under these conditions, NB= 1 and NA=N −1 ≈N.
Thus, the highest energy observed in an ensemble of N particles corresponds to
ΔGmax= kBT log N. For the dataset analyzed in this paper, N

−ligand= 293,619 and
N+ligand= 262,022, yielding a theoretical upper limit ΔGmax ~7 kcal/mol. This
inverse-Boltzmann approach for deducing free energies performs well and is used
widely (see refs. 1–3,16).

Effect of coarse graining on the energy landscapes. Here we address the effect
of coarse-graining on the resulting energy landscapes. From Maxwell–Boltzmann
statistics of noninteracting particles in thermal equilibrium, the occupation prob-
ability of a discrete state c is given by:

Pc ¼
gce
�Ec=KT

Z
;with partition sum Z ¼

X

gce
�Ec=KT : ð1Þ

gc is the degeneracy of the state c, specifically, the number of experimentally
indistinguishable conformational states assigned to energy Ec, which may
nevertheless be distinguished from each other by some other means, E=U, H, or
G, (internal, Helmholtz, or Gibbs free energy, respectively). The sum extends over
all possible states.

Conformational sorting yields the number of sightings (snapshots) of each
conformation. Each sighting represents a conformational state occupied in thermal
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equilibrium. A conformational bin contains all conformations indistinguishable by
the experimental and data-analytical pipeline used (“coarse-graining”).

The experimental observable, namely the number of sightings of a
conformational state c is given by:

nc ¼ NsnapshotsZ
�1gce

�
Ec
KT : ð2Þ

In principle, Eq. (2) provides a direct link between the number of sightings
(snapshots) of a conformation, and its energy.

However, the degeneracy gc induced by coarse-graining is unknown, and, in
general, conformation-dependent. gc can be absorbed into the exponent via an
entropy term, viz.

nc ¼ NsnapshotsZ
�1e
�

Ec�TS
cg
c

KT

� �

¼ NsnapshotsZ
cg�1 e

�
E
cg
c
KT

� �

: S
cg
c ¼ k log gc

ð3Þ

with the superscript cg short for coarse-graining.
Equations (2) and (3) implicitly assume that all conformations coarse-grained

into the same conformational class have the same energy. This need not be the
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case. Without further information or assumptions, it is not possible to determine
energy differences between conformational classes from Eqs. (2) or (3).

Mapping conformational landscapes without regard to the degeneracy induced
by coarse-graining (as commonly practiced) is predicated on the further
assumption that the variance of Ec dominates over that of TScgc , viz.

X

c

ð Ech i � EcÞ
2 � T

X

c

ð Scgc
� �

� Scgc Þ
2: ð4Þ

In this work, Eq. (3) is used subject to the assumption that Eq. (4) holds.

Input data, preprocessing steps, and analytical pipeline. The details of the data
used for the present analysis have been described elsewhere22,27. Here, we provide a
brief outline for the reader’s convenience.

Rabbit skeletal muscle RyR1 purification. Purified RyR1 was prepared from
rabbit (Oryctolagus cuniculus) skeletal muscle using the following procedure,
modified from57 Snap-frozen rabbit skeletal muscle (100 g) was blended in cold
buffer containing 10 mM Tris-maleate pH-6.8, 1 mM DTT, 1 mM EDTA, 150 μM
PMSF, and 1 mM benzamidine, and centrifuged for 10 min at 8000×g. The
supernatant was centrifuged for 20 min at 40,000×g. Pellets were solubilized in
50 ml of buffer containing 10 mM HEPES pH= 7.5, 1% CHAPS, 1M NaCl, 2 mM
EGTA, 2 mM TCEP, and protease inhibitors cocktail (Roche). The solubilized
membranes were then diluted 1:1 in the same buffer without the NaCl, and cen-
trifuged for 30 min at 100,000×g. The supernatant was then passed through a 0.2-
micron filter and allowed to bind overnight at 4 °C to a pre-equilibrated 5-ml
GSTrap (GE Healthcare) column with bound GST-Calstabin1. The column was
then washed with modified solubilization buffer (0.5% CHAPS and 0.5 M NaCl),
and RyR1 was eluted with two column volumes of 10 M calstabin2 in the same
buffer. The protein was eluted using calstabin2 (also known as FKBP12.6), rather
than the physiological binding partner calstabin1 (FKBP12), owing to the higher
affinity of the former for the RyR1 channel. The eluent was pre-cleared with 0.5 ml
glutathione beads and treated with calf intestinal alkaline phosphatase (CIP, NEB,
100 Uml−1) for 4 h at room temperature. RyR1 was then concentrated on a
100,000 kDa cutoff centrifugation filter and run through a size-exclusion column
(tosoh G4SWxl) with a solubilization buffer with the following alterations and
substitutions: 5 mM EGTA, 0.25% (w/v) CHAPS, and 0.001% (w/v) DOPC
(Avanti). The mono-disperse peak was then concentrated on a 100,000 kDa cutoff
centrifugation filter to ~5–10 mgml−1.

Residual Ca2+ concentration in the no-ligands solution. The buffer (0.5 M
NaCl) was potentially contaminated with 0.002% Ca2+, corresponding to 10 μM
Ca2+ in solution. In total, 5 mM of EGTA was added to chelate the solution. A
small concentration of Ca2+ ions remains in the no-ligands solution after such
treatment. According to https://somapp.ucdmc.ucdavis.edu/pharmacology/bers/
maxchelator/CaMgATPEGTA-TS-Plot.htm, this free Ca2+ concentration is
0.2 nM. Similar concentrations are reported in http://onlinelibrary.wiley.com/doi/
10.1113/jphysiol.1968.sp008413/epdf.

We now investigate whether binding of residual Ca2+ contamination is
responsible for displacing the RyR1 molecules from the no-ligand minimum-
energy region to functionally significant, higher-energy regions of the no-ligands
landscape. Ca2+ contamination in “no-ligands” solution: 2 × 10−10M, Total RyR1
in “no-ligands” solution (5 mgml−1, 2.3 MDa): 2 × 10−6M, number of RyR1 at no-
ligands transition point (2% of total): 4 × 10−8M, Assuming all Ca2+ is bound, the
ratio [no. of Ca2+-contaminated RyR1 molecules]/[no. of RyR1 molecules at
transition point] is: 2 × 10−10/4 × 10−8= 5 × 10−3= 0.5%.

The concentration of Ca2+ contaminants is ~0.5% of the number of RyR1
molecules in functionally important, high-energy regions of the landscape, such as
the interlandscape transition points. The role of any Ca2+ contamination is thus
negligible.

Cryo-EM. It should be noted that in this study, we used the cryo-EM micrographs
from two previous studies22,27, in which the RyR-EGTA and RyR-30 μM Ca2+-
ATP-caffeine samples were prepared on holey carbon grids (C-flat CF-1.2/1.3-2C-
T, Protochips Inc, NC). In all, 3 μL of each sample was applied to holey-gold grids,
blotted for 3.5–4 s and vitrified by rapidly plunging into liquid ethane with a
Vitrobot (FEI). Data were acquired using an FEI Tecnai F30 Polara (FEI, Eind-
hoven) operating at 300 kV with the automated data collection software Leginon58

on a K2 Summit direct electron detector camera (Gatan, Pleasanton, CA) at a
nominal magnification of ×31,000, corresponding to a calibrated pixel size of
1.255 Å. For experiments using carbon grids, images were recorded in dose-
fractionated mode, each image being fractionated into 20 frames. The total expo-
sure time was 4 s, yielding a total accumulated dose of 25 electrons/Å2 on the
specimen. The beam diameter was set at ~500 nm in order to capture two images
per hole using the image shift. As normal in cryo-EM, only processes slow com-
pared with the freezing time can be faithfully captured.

Image processing. Dose-fractionated image-stacks collected with a Gatan K2
Summit camera were aligned using MotionCorr59, and the sum of aligned frames
was used for further preprocessing. The particles were picked with RELION

1.319 reference-based automated particle-picking procedure60, and their defocus
values were estimated by ctffind461. Particles were subjected to 3D classification
using RELION 1.3 to select the good particles. This process removed particles
that did not have the appearance of a receptor. In this way, 366,000 particles
from the ligand-free data set and 450,000 particles from the ligand-bound data
set were selected. No symmetry was imposed in the 3D classification and
particle-picking stage. Each data set was then further classified in 3D into eight
classes without symmetry imposed to observe the structural heterogeneity of the
particles, and compare these results with the outcome of analysis by the mani-
fold approach.

Orientation recovery. The orientation parameters for each of the two data sets
were refined separately using RELION 1.3 with the same starting reference and no
symmetry imposed. The RyR-EGTA structure EMD-8391 was filtered to 40-Å
resolution and used for orientation recovery of both data sets. These alignment
parameters were subsequently used for the manifold-based analysis, as described in
refs. 17,62. In brief, aligned, centered snapshots were divided into projection
directions, specifically, into groups falling onto tessellations of a spherical shell
subtending a semi-cone angle of two Shannon angles (defined as spatial resolution
(0.4 nm)/particle diameter (32 nm)).

Geometric (manifold-based) analytical pipeline. Following orientation recovery,
snapshots from RyR with and without ligands were pooled and analyzed
(“embedded”) together. Under these circumstances, the algorithm finds the con-
formational coordinates best able to describe both datasets. If the two data sets are
“very different”, the algorithm yields two well-separated clusters. Each cluster can
then be investigated independently in terms of its own coordinates.

Embedding the snapshots in each projection direction by Diffusion Map63

revealed two clusters, one corresponding to an “artifact class” of unusually low
contrast (Supplementary Fig. 7a). This class was excluded, leaving
791,956 snapshots for further analysis. The manifold obtained from these
remaining snapshots is shown in Supplementary Fig. 7b.

The manifold-based analytical pipeline, including the effect of noise, is
described in detail in ref. 17. In outline, the pipeline consists of the following steps:
diffusion map embedding of ±ligand snapshots in each projection direction,
nonlinear Laplacian spectral analysis (NLSA)24 along the eigenfunctions for each
projection direction, conformational coordinate propagation across projection
directions, metric homogenization across projection directions, compiling the
energy landscape for each of the ±ligand data sets with snapshots in all projection
directions, mapping the interlandscape transition probability over the landscape,
using the formalism described below, compiling 3D movies along functional
trajectories on the energy landscapes. To validate the approach, we simulated a
system with two degrees of freedom, generated synthetic cryo-EM snapshots with
and without noise for many projection directions, and combined the information
from these projection directions to obtain the final energy/occupancy landscape
(Supplementary Methods and Supplementary Figs. 14–16).

Limitations. We note that the alignment procedure leads to some signal loss in
two ways:

All particles are aligned iteratively to a common reference in RELION. This
common reference represents the average of all conformations present in the
datasets. In such cases, particles will align primarily either to the rigid set of
domains with the largest mass, to the center of mass of the complex, or to a
combination of both. In the case of RyR1, both pore and cytoplasmic domains are
large, and particles are aligned approximately to the center of mass of the molecule.
The center of mass corresponds approximately to the core of the channel, with the
extremity of the cytoplasmic shell blurred out by differences in conformation
between particles. But because the cytoplasmic shell represents a large portion of
the channel mass, the center of mass is also affected by changes in the
conformation of the cytoplasmic shell. As a result, the pore of the channel may be
somewhat misaligned. Because particle alignment is passed onto the subsequent
steps of the analytical pipeline without further refinement, these caveats need to be
considered in the analysis and interpretation of the output data. Particle
misalignment with respect to a particular domain will also dampen the observed
conformational differences in this domain. To increase the signal from subtle
conformational differences within specific domains, all particles should be aligned
to these domains independently prior to the geometric analytical pipeline. While
recognizing the issue, we believe such an analysis is beyond the scope of the
present paper.

The fact that the geometric analytical pipeline is performed on aligned, centered
snapshots assigned to projection directions means that the signal from
conformational variability is dampened by the width of the Shannon angle used to
define the angular width of each projection direction. The signal from
conformational variability of small amplitude may therefore be lost. This could
explain why only two conformational reaction coordinates were consistently above
the noise plateau in this analysis.
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Estimating transition probabilities. Master equations describe the dynamics of
transitions between states32. We write a master equation as follows:

d

dt
pc tð Þ ¼

X

N

c0¼1

wcc0pc0 tð Þ � pcðtÞ
X

N

c0¼1

wcc0 : ð5Þ

Here, pc(t) is the time-dependent probability of a particle being in state c. The
first term on the right-hand side is the rate of gain in state c due to transitions from
other states, the second term the rate of loss from state c to other states, and wcc’ are
the transition rates. N is the total number of states.

For ligand binding, we consider each of the N conformational states to be either
bound or unbound to a ligand. The master equation can be formulated as two
coupled equations, one for the probability with ligand (+) and the other without
ligand (−).

d

dt
pþc tð Þ ¼

X

N

c0¼1

Wþþ
cc0 p

þ
c0 tð Þ þ

X

N

c0¼1

W�þ
cc0 p

�
c0 ðtÞ � pþc ðtÞ

X

N

c0¼1

ðWþþ
cc0 þWþ�

cc0 Þ

d

dt
p�c tð Þ ¼

X

N

c0¼1

W��
cc0 p

�
c0 tð Þ þ

X

N

c0¼1

Wþ�
cc0 p

þ
c0 ðtÞ � p�c ðtÞ

X

N

c0¼1

ðW��
cc0 þW�þ

cc0 Þ:

ð6Þ

The transition rates can be from states bound to bound (++), unbound to
bound (−+), bound to unbound (+−), and unbound to unbound (−−), as
denoted by their superscripts.

Consider the initial stages of the approach to equilibrium with the ligand
reservoir. At times short compared with the ensemble relaxation time, the
conformational spectrum is nearly the same as that prior to contact with the ligand
reservoir.

pþc t ¼ 0ð Þ ¼ 0

p�c t ¼ 0ð Þ ¼ p�c;eq:
ð7Þ

The equation for the bound states thus becomes initially:

dpþc
dt

�

�

�

�

t¼0

¼
X

N

c0¼1

W�þ
cc0 p

�
c0 ;eq: ð8Þ

The transition rates W�þ
cc0 are in general unknown. Here, we assume ligand

binding connects iso-conformational states on the −ligand and +ligand
landscapes. In this model, the interlandscape transition per se is too rapid to allow
conformational adjustments, but maybe predicated on prior conformational
changes, and/or initiate subsequent conformational adjustments. The expression
for the gain of the bound state c yields:

dpþc
dt

�

�

�

�

t¼0

¼
X

N

c0¼1

W�þ
cc0 p

�
c0 ;eqδcc0 ¼W�þ

cc0 p
�
c0 ;eq: ð9Þ

The transition rate W�þ
cc0 will be conformation dependent in general. To obtain

an estimate, we use the principle of mass action kinetics for ligand binding33, viz.

dpþc
dt

�

�

�

�

t¼0

¼ kcLp
�
c : ð10Þ

L is the free-ligand concentration, and kc is the association rate constant, which
characterizes the velocity of the second-order interaction between the receptor and
the ligand. Note that dissociation does not enter the equation because there are no
bound receptors initially. The free-ligand concentration initially is the same for all
conformations, so the conformation dependence is due to kc only. We estimate the
association rate constant by

kc ¼ Ae
�Ea
KT ; ð11Þ

with activation energy Ea ¼ Eþc � Eþc0 from the energy landscape with ligands,
where Eþc0 is the lowest energy. This yields:

kc ¼ A
Pþc
Pþc0
/ Pþc : ð12Þ

And with Eq. (10),

dpþc
dt

�

�

�

�

t¼0

/ Pþc P
�
c : ð13Þ

As a consequence, the maximum association and consequently transition occurs
at the conformation which makes the product of the two conformational spectra
maximal. The quantities Pþc and P�c can be estimated from the number of
snapshots in each conformational bin, as deduced from the conformational analysis
of the two data sets.

Pþc ¼
nþc
Nþc

; P�c ¼
n�c
N�c

: ð14Þ

The accuracy of this estimate and location of the (−+)  ! (++) transition
hotspots is limited by the number of snapshots in the experiment, and coupling of
the protein and ligand conformations in the dissociation pathway that is not
accounted for in this model.

This result is in line with transition probability determination between + and –

surfaces using nonequilibrium switches64, albeit assuming small conformational

changes. The rapid decrease in conformational energy and binding affinity between
states 2 and 3, observed in our MD simulations and further described in
Supplementary Fig. 4, implies minimal protein conformational changes during the
Ca2+ association, justifying the assumption.

Molecular dynamics simulations. The conformational states S1–S6 selected for
molecular dynamics study represent different points along the functional tra-
jectory revealed by the data-analytical pipeline (Fig. 1a). The states start at the
minimum-energy point [“START”] on the –ligand energy landscape, terminat-
ing at the minimum-energy point [“FINISH’] on the +ligand landscape. Each
state is associated with a particular density map along the minimum-energy
path. Ca2+-binding domains of the six RyR1 conformational states were solvated
with TIP3P water and neutralized with 100 mM NaCl (Supplementary Movies 7
and 8).

In the molecular simulations, the Ca2+ ions were initially placed following the
MCCE procedure, outlined below. Initial equilibration was performed with
NAMD265 in an NPT ensemble with periodic boundary conditions. The
simulations were performed at 310 K using Langevin dynamics66 with a damping
constant of 0.5 ps−1. The Nosé–Hoover Langevin piston method66 was used to
maintain constant pressure at 1 atm. The cutoff used for the short-range
interactions was 12 Å with the switching applied at 10 Å. The particle mesh Ewald
(PME) algorithm67 was used to calculate the long-range electrostatic force. Bonded,
non-bonded, and PME calculations were performed at 2, 2, and 4 fs intervals,
respectively.

For every state S1 to S6, the Ca2+-binding activation core domain (defined as
residues 3747–5035) was truncated from the rest of the protein, mainly the
cytosolic shell. Thereafter, the system was minimized for 5000 steps using the
conjugate-gradient algorithm, and simulated for 5 ns at 310 K, with all the heavy
atoms of the protein restrained to their initial positions with force constant of k
= 5 kcal/mol/Å2. Finally, all the restraints were removed, and the systems
simulated for 100 ns, prior to the production runs of an additional 100 ns
described above. Their respective stability was tracked by calculating the
backbone root-mean-square deviation (RMSD) of the conformations
sampled with respect to the starting structure. As can be seen in Supplementary
Fig. 2a, the converged RMSD with respect to the starting conformation is
between 2 and 3 Å, corroborating the relative stability of the Ca2+-binding
domain simulated.

A closer look at the binding site revealed sub-1 Å changes in the binding pocket
due to truncation. This observation stemmed from our frame-by-frame RMSD
matrix across structures from all the six simulated states from S1 to S6
(Supplementary Fig. 2b). Put together, all the RMSD data suggest the stability of
the truncated models used in the production run and subsequent free-energy
simulations. As expected, states S5 and S6 being the most stable in the Ca2+-bound
form show the least scatter on the plot.

Ligand association and binding. Association of the Ca2+ ion to RyR1 was studied
by equilibrating Ca2+ ion for 100 ns in the calcium-binding sites corresponding to
the conformational states S1–S6. Ca2+ is most mobile in state S1, with the relative
mobility progressively decreasing from states S1 to S6. This is manifested in the
distribution of the distances between the Ca2+ ion and the binding site residues as
one progresses from S1 to S6. As shown in Supplementary Fig. 4, in state S1, the
Ca2+ is unstable with a broad distance distribution, while in the state S6 the ion
remains tightly bound with the binding site distances narrowly distributed
around 2.5 Å.

The MCCE2 method68 was used to analyze ion binding as a way of determining
small-molecule affinity. MCCE2 is a Monte Carlo (MC) type method that uses
Boltzmann statistics. The interactions considered between the protein and the
ligand (Ca2+) include a combination of molecular mechanics non-electrostatic
interactions with Poisson–Boltzmann69 Continuum Electrostatics interactions. The
binding affinity is determined by grand canonical Monte Carlo (GCMC) sampling.
This approach is well suited to the study of binding, as it allows both the bound and
free Ca2+ ions to reach equilibrium70. MCCE samples multi-conformation on the
side chains (flexible) within a rigid backbone. The conformer distribution is then
determined according to the Poisson–Boltzmann electrostatic interactions, ligand
solvation energies, full AMBER71 Lennard–Jones, torsion energies, and the solvent-
accessible surface area (SAS)-based non-electrostatic ligand–solvent interaction
energy70. Supplementary Fig. 5 shows the result of Ca2+-binding affinity
simulations. The calculations were carried out exclusively on the activation core
portion of the RyR1 (residue B3614–residue B5037). Binding energies were
calculated by making the ligand (Ca2+) compete against a dummy atom (Ca2+

dummy) in solution.

Distribution of discrete cluster snapshots on energy landscapes. Supplemen-
tary Fig. 6 shows the distribution of snapshots from each of the discrete clusters
identified by RELION 3D classification on the energy landscapes. Each closed curve
encloses a region densely populated with the snapshots assigned to a discrete
structure by RELION. The closed nature of each region is due to the application of
a density threshold. Clustering was performed as described in ref. 22. The two RyR1
data sets, with and without ligands, were previously clustered into 16 discrete
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conformational classes by RELION, two of which were classified as “junk”. Class 2
(no ligands) and class 3 (with ligands) are approximately near the extremes of the
conformational range observed in this classification. The snapshots emanate from,
and are approximately similar to the functionally relevant ligand-free closed and
ligand-bound open states described in ref. 22.

Estimating the spatial resolution of the density maps. The procedure for
comparing independent half-set reconstructions via Fourier shell correlation is
known as the “gold standard” in resolution estimation. This approach cannot be
readily used to estimate the resolution of our maps, because the division of the data
into two subsets at the outset reduces the conformational sampling to a level
incompatible with reliable analysis. The number of available snapshots is already a
limiting factor in our analysis, as evidenced by the need to define an orientational
aperture radius four times the size commensurate with the 0.4-nm resolution of the
data, as estimated by RELION. The division of the data at later points along the
analytical pipeline does not produce independent data sets.

We therefore use the following two alternative means to estimate the resolution
of our density maps. The program ResMap72 estimates the local resolution as
ranging from 0.35 nm in the core to 1.2 nm at the outer edge of the C4 symmetrized
maps. Structural features in the map core evidently correspond to a resolution of
~0.4 nm, with bulky side chains visible in the best parts of the map (Supplementary
Fig. 8). The resolution in the outer parts of the map is ~1.2 nm. This is in large part
due to the coarse angular sampling of the data, which limits the resolution in a
radius-dependent manner. The original RELION analysis reached ~0.4-nm
resolution in the core, similar to the value observed here in the innermost parts of
the molecule.

In addition, we measured the resolution reached by RELION refinement of the
raw snapshots for all 50 frames of the functional movie. The best achievable
resolution was 7.1 Å from a 3000 snapshots subset along the transition path.

Fitting and refinement of atomic coordinates. Each of the 50 maps along the
minimum-energy path was fitted to a model domain by domain with the rigid-
body fit function in COOT73, using multiple starting models to avoid model bias
(PDB ID: 5TB4, 5T9R, 5TAP, 5T9V, 5TAL, 5TAQ)22. The models were then
refined in real-space using phenix.real_space_refine74.

Distance measurements between residue pairs for each of the 50 maps were
performed with UCSF Chimera75 using residue backbones as references. The
distances obtained from different starting models were then averaged. The error
bars show the full scatter (not standard deviation) of the results obtained with
different starting models.

Computational resources. All computations were performed on a CPU cluster
with the following specifications: 16 CPU nodes, each consisting of two Deca-
core E5-2660 V3 “Haswell”/2.6 GHz, and 128 GB of memory. Particle picking,
contrast transfer function (CTF) estimation, and initial orientation recovery
were performed using RELION. 3D back-projection on 2D NLSA snapshots
was executed using the reconstruct function in RELION. UCSF Chimera was
used for visualization and compilation of 3D movies75. MD simulations were
performed using the Summit supercomputer at Oak Ridge Leadership Com-
puting Facility.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this paper are available at the Protein Data Bank (PDB) in Europe
(https://www.ebi.ac.uk/pdbe/) under accession codes 5TB4, 5T9R, 5TAP, 5T9V, 5TAL,
and 5TAQ. The cryo-EM density maps for states S1 to S6 have been deposited in the
Electron Microscopy Data Bank (EMDB) under accession codes: EMD-20486, EMD-
22393, EMD-22395, EMD-22394, EMD-22396, and EMD-22392, and the respective
model coordinates have been deposited in the PDB under accession codes 6PV6, 7JMG,
7JMI, 7JMH, 7JMJ, and 7JMF. Particle images used in this study have been deposited in
the Electron Microscopy Public Image Archive (EMPIAR) under the accession code
EMPIAR-10315. Cryo-EM density maps and models for all 50 states are available from
the corresponding authors by request. Additional supporting information regarding the
calculations for the binding affinity of calcium ion in RYR1 using MCCE2 can be found
at https://github.com/SalahBioPhysics/binding_affinity_ryr1.git. Other data are available
from the corresponding authors upon reasonable request.

Code availability
The software package is available in the following link: https://github.com/GMashayekhi/
ManifoldEM_Matlab.git.
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