
Retrieving Landmark and Non-Landmark Images from
Community Photo Collections

Yannis Avrithis
National Technical University

of Athens
Iroon Polytexneiou 9

Zografou, Greece

iavr@image.ntua.gr

Yannis Kalantidis
National Technical University

of Athens
Iroon Polytexneiou 9

Zografou, Greece

ykalant@image.ntua.gr

Giorgos Tolias
National Technical University

of Athens
Iroon Polytexneiou 9

Zografou, Greece

gtolias@image.ntua.gr

Evaggelos Spyrou
National Technical University

of Athens
Iroon Polytexneiou 9

Zografou, Greece

espyrou@image.ntua.gr

ABSTRACT

State of the art data mining and image retrieval in commu-
nity photo collections typically focus on popular subsets, e.g .
images containing landmarks or associated to Wikipedia ar-
ticles. We propose an image clustering scheme that, seen as
vector quantization, compresses a large corpus of images by
grouping visually consistent ones while providing a guaran-
teed distortion bound. This allows us, for instance, to repre-
sent the visual content of all thousands of images depicting
the Parthenon in just a few dozens of scene maps and still
be able to retrieve any single, isolated, non-landmark image
like a house or a graffiti on a wall.

Starting from a geo-tagged dataset, we first group images
geographically and then visually, where each visual cluster
is assumed to depict different views of the the same scene.
We align all views to one reference image and construct a
2D scene map by preserving details from all images while
discarding repeating visual features. Our indexing, retrieval
and spatial matching scheme then operates directly on scene
maps. We evaluate the precision of the proposed method on
a challenging one-million urban image dataset.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval—
Clustering ; I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’10, October 25–29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

General Terms

Algorithms and Experimentation

Keywords

image retrieval, image clustering, sub-linear indexing, geo-
tagging

1. INTRODUCTION
Images in community photo collections have scaled to bil-
lions over the last few years. Searching into such huge col-
lections traditionally depends on text and other community
generated data. State of the art visual image retrieval has
not yet scaled to permit searching into such huge collections.
On the other hand, a number of data mining and clustering
approaches have emerged that exploit data such as location,
time, user (photographer) and tags. Such approaches typ-
ically focus on popular subsets where visual representation
can indeed help, e.g . images containing landmarks or associ-
ated to Wikipedia1 articles. What is more interesting, new
applications have emerged, for instance location estimation
as in Hayes and Efros [10], virtual tourism as in Snavely et

al . [32], and landmark recognition as in Zheng et al . [36].
Unlike [10], which only estimates a geolocation probabil-

ity map, we are interested in developing a retrieval method
that allows location recognition of any kind of image, land-
mark and non-landmark, provided that the dataset contains
at least one instance of that scene. Such matching, typically
possible in urban scenes, may allow automatic geo-tagging
of a new image. Along with triangulation, it may also lead
to exact localization as in Zhang and Kosecka [35]. Unfortu-
nately, current approaches to location recognition either do
not scale well, or focus on popular locations like landmarks.

Our work lies between generic image retrieval and clus-
tering. It turns out that, seeing clustering as vector quan-
tization, it is distortion that determines how isolated data
are treated. Therefore, while large image clusters of popular
places help in boosting the efficiency of retrieval, a distortion

1http://www.wikipedia.org

http://www.wikipedia.org

bound can guarantee that isolated images are still retrieved
as in a generic retrieval engine.

For instance, a common approach is to cluster a given
set of geo-tagged images by location, as in Crandall et al .
[6]. Our objective here is to identify images that potentially
depict views of the same scene and then compute visual
similarities. Rather then spatial density, time, or number of
photographers that typically measure popularity, it is maxi-
mal distance that counts. E.g ., two images taken 2km apart
are unlikely to depict the same building. Likewise, spatial
matching by RANSAC [7] or as in Philbin et al . [26] relies
on the number of inlier visual features found between two
images. In this case e.g . 20 images, each having at least 15
inliers with a reference image, may all depict similar views
of a single scene.

We use the kernel vector quantization (KVQ) approach
of Tipping and Schölkopf [34], along with an appropriate
metric for each of the two cases above. Contrary to e.g .
k-means or agglomerative clustering, it guarantees that no
image in a geographic cluster is taken too far away from a
specific location, and no image in a visual cluster has too
few inliers with a specific image.

To speed up the mining process, we apply visual clustering
only to the set of images in a single geographical cluster and
we use sub-linear indexing to compute the required pairwise
dissimilarities. Given a visual cluster, we align all images to
a reference image by homography estimation and construct
a 2D scene map by grouping similar local features, which
gives rise to another application of KVQ: no feature in a
cluster should be too far from a specific feature, where by
“far” we mean either spatially or in terms of appearance.

Finally, we extend the entire indexing, retrieval, and spa-
tial matching scheme to operate on scene maps rather than
images. This not only provides memory savings, but in-
creases recall as well. At query time, it takes milliseconds to
filter relevant scene maps, and a couple of seconds to re-rank
according to geometry. The mining process is entirely au-
tomatic. We experiment on a challenging one-million urban
image dataset from 22 cities.

2. RELATED WORK

2.1 Location Recognition
In one of the earliest works on multiview matching in city
scenes, Johansson and Cipolla [13] estimate homographies
between pairs of images and provide automatic pose esti-

mation. Using SIFT features [20], Zhang and Kosecka [35]
search directly in the descriptor space for the closest feature
matches. They find the closest reference view in a small im-
age database, thereby providing coarse location recognition

in urban environments.
Steinhoff et al . [33] build on the previous model to achieve

pose estimation that is fast enough for real-time, continu-
ous positioning on a mobile device, with accuracy compara-
ble to GPS. Here the dataset scales to 600 reference images
of an urban environment covering an area of 200 × 200m2.
Schindler et al . [28] are among the first to use inverted file
indexing by means of a vocabulary tree [24] for city-scale

location recognition, scaling up to 30, 000 images covering
20km of streetside views.

Hayes and Efros [10] take the leap to world-scale geo-
graphic estimation by searching into a database of 6 million

geo-tagged images downloaded from Flickr2. The price to
pay is that images are now represented by global features
like color/texton histograms, GIST descriptors etc. Match-
ing accuracy is not even comparable to that of local features
and the output is a geolocation probability map. Kalogerakis
et al . [14] build on the previous result by exploiting the time
each photo is taken, much like [6]. Using human travel pri-
ors they significantly improve accuracy; however, the output
remains a probability map and anyhow this only works for
image sequences rather than a single image query.

2.2 Sub-linear indexing
It is evident that local feature matching may provide ac-
curate location recognition, so scaling up largely depends
on the efficiency of the employed image indexing and re-
trieval scheme. Using a bag of words representation, Sivic
and Zisserman [31] go beyond individual features and show
how text retrieval techniques like codebooks, inverted file
indexing, and TF-IDF weighting can apply to visual search.
Nister and Stewenius [24] extend to hierarchical codebooks
and construct a vocabulary tree that is also used to assign
features to visual words. Philbin et al . [26] show that, being
more flexible, flat k-means in fact outperforms the vocabu-
lary tree. To construct a large (1M) codebook they employ
the randomized kd-tree of Silpa-Anan and Hartley [29] to
assign points to cluster centers at each iteration of k-means.
Moreover, they exploit local feature shape to speed up spa-
tial re-ranking.

Chum et al . [5] go a step further to exploit image similari-
ties in the dataset and boost recall by employing a number of
strategies for query expansion. Also employed in [1], this is
a form of query-time clustering. It assumes multiple differ-
ent views of the same scene in the dataset, which is typical
in geo-tagged datasets from Flickr. More recent advances
in image indexing include the work of Jegou et al . [12] and
Perdoch et al . [25], mainly related to geometry and visual
codebooks.

2.3 Structure from Motion
Another interesting application is vision-based reconstruc-
tion and navigation of a 3D scene from a collection of widely
separated views. A recent example of such structure from

motion is Snavely et al . [32], which scales to datasets of
103 images acquired by text queries from Flickr. At similar
scales, Li et al . [17] attempt to speed up reconstruction by a
hierarchical approach. Due to the use of global descriptors,
the increased speed comes at a loss of accuracy. On the other
hand, Agarwal et al . [1] reconstruct city-scale models from
Flickr datasets in the order of 105 photos. A vocabulary
tree is again used for indexing, and query expansion like in
[5] helps make the matching image graph dense enough. A
massively parallel architecture is designed to take advantage
of cloud computing.

What is interesting is that while the above applications are
probably the most computationally intensive, none actually
uses existing geo-tags to guide the clustering process. This
is a waste not only because then each clustering sub-problem
would be smaller, but also because geo-tagged photos typ-
ically depict outdoor scenes more often, compared e.g . to
a text query for the term “rome”. Futhermore, despite the
effort spent in constructing a model, the output is not used

2http://www.flickr.com

http://www.flickr.com

in any way to help retrieval or location recognition of a new
photo.

2.4 Landmark Recognition
Kennedy et al . [15] are probably among the first to mine
popular locations and landmarks from a large scale (107)
Flickr dataset including metadata like tags, geo-tags, and
photographers. While clustering photo locations and fre-
quent tags helps construct tag maps for arbitrary areas in the
world, subsequent visual clustering performs rather poorly
due to the global features employed. Likewise, Crandall et
al . [6], detect geographical regions of high density corre-
sponding to popular locations, and automatically mine land-
mark names from tags. Relevant photos are then seen as a
ground truth dataset for a learning problem. This dataset
turns out quite noisy; visual features alone underperform
text and in some cases are only comparable to chance. Li
et al . [18] slightly improve performance using a multi-class
SVM classifier. Temporal information also helps, as in [14].
Seen as an object recognition task, this is a difficult problem
with 30 million images, of which 2 million are labelled in one
of 500 categories. Clearly, indexing approaches outperform
this learning alternative.

On the other hand, Simon et al . [30] focus more on visual
clustering without location data, but follow a more princi-
pled optimization approach to select a number of canonical
views and construct a scene summary for browsing. Clearly,
this cannot scale easily to more than 104 images. Image

webs is a related idea by Heath et al . [11]. Parallelism
is again the key in the high computational cost involved.
Chum and Matas [3], again without location data, extend
to web-scale visual clustering, relying on hashing to detect
near-duplicates. This leads to a dramatic increase in perfor-
mance, under the assumption that a popular location with a
large number of associated photos is likely to be discovered.

Quack et al . [27] divide the areas of interest into overlap-
ping square tiles instead of performing location clustering.
Similarly to [15] and contrary to [30] and [3], they perform
visual clustering inside each geographic cluster only, making
the problem more tractable. On the other hand, they per-
form pairwise homography estimation without indexing and
subsequent agglomerative clustering, thus probably loosing
the computational advantage. Tags and user information are
then employed to mine landmarks, objects or events and link
to Wikipedia articles. In the absence of indexing, the use
of this kind of mining for location recognition of a new im-
age is severely limited, since one has to resort to exhaustive
linear search. Gammeter et al . [8] improve this by inverted
file indexing, but the mining process is still quadratic in the
number of images in each geo-cluster. There is now an in-
verse search by Wikipedia articles, while, frequent features
in an image cluster are used to detect and automatically
label the object of interest.

Finally, Zheng et al . [36] perform a similar combination of
geo-clustering and visual (agglomerative) clustering, as well
as an inverse search by travel guide articles containing land-
mark names. Again there is no indexing during mining and
the huge computational cost is simply handled by parallel
computing. In all the above approaches, clustering helps to
either construct high-level summaries or limit search to a
small percentage of images. It should be clear by now that
this will only work for landmarks and other popular places
or events.

3. VIEW CLUSTERING
As is common in a number of recent approaches, we follow a
two-layer clustering scheme according to location (latitude,
longitude) and visual similarity (number of inliers arising
from spatial matching). The two layers are termed geo-

clustering and visual clustering, respectively. The objective
of the latter is to identify photos depicting views of the same
scene. The final outcome is therefore a set of view clusters

and the overall process is termed view clustering. The idea
of the two layers is that views of the same scene are not ex-
pected in photos taken too far apart, so geo-clustering helps
reduce the computational cost of visual clustering.

Different strategies are followed in existing work. For in-
stance, [6] and [18] use mean-shift to perform geo-clustering
alone and mine high-density locations corresponding to pop-
ular places. On the other hand, a second layer of visual clus-
tering follows in other approaches, using different algorithms
including k-means ([15]) and agglomerative clustering ([27],
[8], [36]). For geo-clustering, [15] and [36] use the same al-
gorithm as for visual clustering, whereas [27] and [8] simply
quantize locations into overlapping rectangular tiles. There
are also [17], [30] and [3] which perform visual clustering
alone. Naturally, this does not scale well.

The drawback of k-means and agglomerative clustering is
that there is no control over the maximal intra-cluster dis-
tance. This is crucial because it may lead to geo-clusters
with photos taken too far apart, or visual clusters with pho-
tos that have too few inliers. Note that k-means requires a
vector space anyway, so it cannot use the number of inliers
as a similarity measure—global descriptors are employed in
[15]. We rather use the kernel vector quantization (KVQ)
approach of [34]. Seeing KVQ as an encoding process, the
maximal intra-cluster distance is now the maximum level of
distortion. KVQ guarantees an upper bound on distortion
and adjusts the number of clusters accordingly.

Mean-shift, used in [6] and [18], has a similar property of
controlling distortion: in this case the upper bound is the
bandwidth parameter of the kernel function, or the scale

of observation. However, mean-shift needs to either run ini-
tially for every point, or it requires some kind of seeding. For
example, [6] uses spatial bucketing and samples one photo
from each bucket as a seed. There is no such need in KVQ
and this is fortunate because bucketing also assumes a vector
space and would not apply to visual clustering. The fixed
tiles of [27] also control scale/distortion in geo-clustering,
but KVQ has the advantage of adjusting to data.

A similar use of KVQ in retrieval may be found in Lampert
[16]. As a branch-and-bound method, [16] relies on visual
similarities within the dataset and would reduce to linear
search without visual clustering. With our inverted file index
on the other hand, we can still work with isolated images
in sub-linear time and yet have the advantage of clustering
wherever similarities permit.

We summarize KVQ and its properties below. We then
discuss our specific two-layer clustering scheme and give ex-
amples of geo-clusters and visual clusters.

3.1 Kernel Vector Quantization
Let (X, d) be a metric space and suppose we are given a finite
data set D ⊆ X of cardinality |D| = n, whose elements we
may list as D = {x1, . . . , xn}. The objective is to select a
subset Q(D) ⊆ D that is as small as possible, under the
constraint that all points in D are not too far away from

some point in Q. If

Br(x) = {y ∈ X : d(x, y) < r} (1)

is the open ball in X of radius r centered at x, and ✶A :
X → {0, 1} denotes the indicator function of set A ⊆ X,
define kernel function k : X ×X → R as

k(x, y) = ✶Br(x)(y) (2)

to indicate whether points x, y ∈ X lie within distance r,
where r > 0 is typically given as an input scale parameter.
Given a point x ∈ X, define the empirical kernel map

φ(x) = (k(x1, x), . . . , k(xn, x))
⊤
. (3)

The key observation is that if there is a weight vector w ∈ R
n

with components wj such that for all x ∈ D,

w⊤
φ(x) > 0 (4)

then all points x ∈ D lie within distance r of some point
xj ∈ D with a positive associated weight wj > 0. To achieve
a sparse solution for w satisfying (4), one typically uses
the ℓ1 norm in R

n, giving rise to the following optimization
problem:

min
w∈Rn

‖w‖1 (5)

subject to w⊤
φ(x) ≥ 1 ∀x ∈ D. (6)

Now, given a point x ∈ D, define cluster C(x) = D ∩
Br(x) = {y ∈ D : d(x, y) < r} as the set of all points y ∈ D

that lie within distance r from x. A slightly adjusted penal-
izer instead of ℓ1 norm then makes the penalty associated
to weight wj inversely proportional to the support |C(xj)|
of xj , thus favoring larger clusters. Defining vector γ ∈ R

n

with elements γj = |C(xj)|
−1 = ‖φ(xj)‖

−1
1 , one ends up

with the following linear programming problem:

min
α,β∈Rn

γ
⊤(α+ β) (7)

subject to K(α− β) ≥ 1 (8)

α,β ≥ 0, (9)

where w has been decomposed as w = α − β and K is
the Gram matrix with elements Kij = k(xi, xj). Given the
optimal solution w⋆ = α⋆ − β⋆ with components w⋆

j , the
codebook Q(D) of data set D is defined as

Q(D) = {xj ∈ D : w⋆
j > 0}. (10)

Clearly, Q(D) ⊆ D, that is, codebook vectors are points
of the original data set. Alternatively, we shall refer to such
points as cluster centers. By construction, the maximal dis-

tortion is upper bounded by r because maxy∈C(x) d(x, y) < r

for all x ∈ Q(D). Also, the cluster collection

C(D) = {C(x) : x ∈ Q(D)} (11)

is a cover for D because D =
⋃

x∈Q(D) C(x). However, it is

not a partition as C(x) ∩ C(y) 6= ∅ in general for x, y ∈ D.
That is, clusters are overlapping. This is particularly use-
ful for geo-clustering where it is not desirable to spatially
separate views of the same scene. For visual clustering, it is
useful in case of gradual transitions of views that would oth-
erwise be arbitrarily separated. Contrary e.g . to k-means,
the number of clusters is automatically adjusted to the max-
imal distortion r.

Figure 1: Maps of Athens illustrating geo-clusters at
three different zoom levels. Black dots, red markers
and red circles stand for photos, codebook vectors
and cluster boundaries, respectively.

The above is not the optimal solution in terms of codebook
size |Q(D)|, for which we would have to resort to combina-
torial optimization, so there is some degree of redundancy.
A subsequent pruning step removes at random order from
Q(D) any redundant vector x such that the cluster collection
of the remaining points is still a cover for D3. That is, any
vector x ∈ Q(D) such that C(x) ⊆

⋃

y∈Q(D)\{x} C(y). We
assume pruning is always performed and we use the same
symbols Q(D), C(D) to denote the final codebook and clus-
ter collection after this step, respectively.

3Such vectors are typically not more than 5% of the code-
book size.

3.2 Geo-clustering
Define a set of photos P—we will use the terms photo, image

and view interchangeably. Each photo p ∈ P is represented
by tuple (ℓp, Fp) where ℓp is the capture location of the photo
(latitude and longitude) and Fp its set of local visual fea-
tures. The latter includes feature position and shape, along
with either descriptors or (most often) visual word labels
in case descriptors have been quantized over a visual code-
book. We perform geo-clustering by applying KVQ to P in
metric space (P, dg) with scale parameter rg, where P is the
set of all possible photos and metric dg : R2 × R

2 → R is
defined as the geodesic distance4 between any two points on
the surface of Earth. Let dg(p, q) be the geodesic distance
between locations of photos p, q ∈ P. For simplicity, we will
use Bg(p) to denote the open ball in P of radius rg centered
at p, assuming metric dg. Given a photo p ∈ P , define a
geo-cluster as

Cg(p) = P ∩B
g(p) = {q ∈ P : dg(p, q) < rg}. (12)

Similarly, given the resulting codebook Qg(P), define the
geo-cluster collection

Cg(P) = {Cg(p) : p ∈ Qg(P)}. (13)

In practice, we use spatial bucketing by quantizing coor-
dinates on a uniform grid and keep one sample from each
bucket to perform KVQ. The grid interval is small compared
to rg so geo-clusters are largely unaffected. The computa-
tional cost is considerably reduced however, and eventually
depends on spatial grid resolution rather than |P |. This cost
is negligible compared to that of the remaining clustering
steps, e.g . it takes a few seconds to complete geo-clustering
on an entire city like Barcelona with |P | = 105 geo-tagged
photos. We use a sparse representation of the Gram matrix
Kg but compute it by enumerating all (p, q) ∈ P 2 (or just
one p per bucket).

In Figure 1, we illustrate a map of Athens depicting all
geo-clusters at three different zoom levels, for rg = 700m.
Observe the density of photos e.g . in the city center and
particularly in the area of the Acropolis. Overlapping helps
keep such dense areas in a single cluster for subsequent vi-
sual clustering. Photos taken even e.g . 1km away from a
landmark may be included in the same cluster. The to-
tal number and position of clusters is automatically inferred
from the data.

3.3 Visual Clustering
As in [30], we will say that any two photos p, q ∈ P are
connected if at least one rigid object is visible in both, pos-
sibly under different viewpoints. A scene is then defined as
a subset S ⊆ P of connected photos. That is, for all p, q ∈ S,
we may visually match common objects under rigid 3D ge-
ometry regardless of viewpoint. Local visual features and
descriptors are employed for this purpose, e.g . SIFT [20],
SURF [2], or MSER [21].

Descriptors may be matched pairwise according to a num-
ber of different strategies, e.g . mutual nearest neighbors,
distance threshold, distance ratio or combinations [22]. Al-
ternatively, they may by quantized up to visual word against
a large (e.g . 105 or 106) visual codebook and matched when
mapped to the same visual word, possibly checking consis-
tency in spatial neighborhoods as well. Rigid geometry is

4http://en.wikipedia.org/wiki/Great-circle distance

Figure 2: Photos associated to the centers of
the most populated visual clusters from Pantheon,
Rome.

typically verified by means of RANSAC [7] or simpler forms
of spatial matching like [26], [25]. The geometric model may
vary from similarity (or even of 3-DOF including translation
and uniform scaling, without rotation) to affine, homogra-
phy or fundamental matrix.

Whatever the choices, the output is typically the number
of inliers I(p, q) between visual feature sets Fp, Fq of photos
p, q respectively. Since I(Fp, Fq) is a similarity measure, any
decreasing function will do as a metric, e.g .

dv(p, q) = exp{−I(Fp, Fq)} (14)

The exact formula of dv(p, q) is not important, since kernel
function k is discrete. Given a scale parameter rv, the kernel
function is equivalently

kv(p, q) =

{

1, I(Fp, Fq) > τ

0, otherwise,
(15)

where τ = − log rv. We now apply KVQ to each geo-cluster
G ∈ Cg(P) in space (P, dv) with scale parameter rv. Let
Qv(G) be the resulting codebook, and define visual cluster

Cv(p) = G ∩ Bv(p) for p ∈ G and visual cluster collection

Cv(G) = {Cv(p) : p ∈ Qv(G)}, similarly to (12) and (13),
respectively. Again, we have used Bv(p) to denote the open
ball in P of radius rv centered at p, assuming metric dv.
Repeating over all geo-clusters, the complete codebookQ(P)
over the entire data set is

Q(P) =
⋃

G∈Cg(P)

Qv(G). (16)

Finally, the set of all view clusters C(P) is defined as

C(P) = {Cv(p) : p ∈ Q(P)}. (17)

The main bottleneck the clustering process above is con-
struction of Gram matrix K, which is typically quadratic in
the data set size |D|. This is not an issue in geo-clustering
but is critical in visual clustering. The same problem ap-
pears in Quack et al . [27] who use quite small spatial tiles of
200m because they need to perform exhaustive pairwise ho-
mography estimation within each geographic tile. This will
fail to capture scenes that extend spatially to more than

http://en.wikipedia.org/wiki/Great-circle_distance

Figure 3: Photos in a sample of visual clusters from
Pantheon. The first image in each cluster corre-
sponds to the cluster center.

200m, which is quite often. The same quadratic cost ap-
pears e.g . in [8],[36],[30], while for [15] this is a reason for
not using local features. We use larger geo-clusters with
rg = 700m, yet achieve a very fast implementation.

The key is geo-cluster specific sub-linear indexing. In par-
ticular, we use an inverted file indexed by both visual word
and geo-cluster, with TF-IDF weighting and a variant of
fast spatial matching [26] over a 4-DOF similarity model, as
described in section 4. Given a query image q ∈ G, we find
all matching images p ∈ G with I(Fp, Fq) > τ in constant
time that is typically less than a second. In effect, one such
query returns a sparse representation of one entire empirical
kernel map vector φ, or one row/column of K. The con-
struction of K is now linear in |G|. Compared to [3], we
have the advantage of geo-clustering. This lowers the cost
and allows one query per image in each geo-cluster. On the
other hand, [3] employs hashing with low recall, and is thus
limited to popular locations—isolated photos are unlikely to
get discovered.

To illustrate the effect of visual clustering on a set of pho-
tos, we give an example from Pantheon, Rome, following the
examples appearing in [30] and [27]. In particular, we select
all Flickr photos geo-tagged in Rome. We then separate a
seed set of photos with tag pantheon and expand this set
by adding all Rome photos that are visually matching any

other photo in the seed set. We end up with a total of 1146
images that we consider to be a single geo-cluster. The re-
sulting visual clusters are 258. The average visual cluster
size is 30 images and an image belongs to 4 visual clusters
on average, due to overlapping.

Figure 2 depicts photos corresponding to cluster centers
for the most populated clusters. Unlike [30], the objective
here is neither summarization nor canonical view selection,
and there is no requirement for orthogonality between cluster
centers. On the other hand, the maximal distance between
photos in a single visual cluster is such that we can subse-
quently align all of them in a scene map. Figure 3 depicts
images in a sample of visual clusters. Observe that due to
the strict matching process, images in each visual cluster
are quite similar. The last cluster at the bottom appear to
be diverse, but close observation reveals that all images are
connected—that is, share a common rigid image part—with
the first image in the cluster, that is the cluster center.

4. SCENE MAPS
We do estimate homographies between matching images,
eventually. However, this takes place only within each view
cluster, and the number of tests is linear in the size of each
cluster. Initial estimates of each homography are readily
available from the responses of each query, so only the final
step of local optimization is required. Given all homogra-
phies in a view cluster, we align all views to the reference
image of the relevant codebook vector. We collect all aligned
visual features and construct what we call a scene map, be-
cause it is a 2D spatial map of features associated to different
views of the same scene. Because all views are aligned, it
makes sense to match a query image to an entire scene map
under the same geometry. Scene maps are then used directly
for retrieval, instead of images. This saves on memory and
computations at query time, makes matching more robust
by increasing inliers and also increases recall, because for
each matched scene map we return all its views.

4.1 Spatial Matching
When a query is issued during visual clustering, the top
ranked images after TF-IDF voting are geometrically veri-
fied based on the single correspondence assumption of [26].
In particular, tentative correspondences between the visual
features of the query and each image in the list are gener-
ated by matching visual words. Given two corresponding
features with local shape described by two circular regions
(typical with scale and rotation covariant features like SIFT
and SURF), we find similarity transformations T1, T2 that
map the regions to a unit circle centered at the origin. Un-
der no gravity-vector assumption, an initial transformation
hypothesis is T−1

2 T1. We count inliers and whenever a new
maximum is found, we find a least squares estimate of an
affine transform from the given inliers and store the best
model so far—this is the “simple” method of Locally Op-
timized RANSAC (LO-RANSAC) [4]. For each non-zero
entry of matrix K, that is for each pair of matching images
(p, q) in a geo-cluster, we store the best affine model Aqp

that transforms q to p.
When visual clustering is complete we align all images in

each cluster using a homography model. Specifically, each
image p ∈ Q(P) is treated as a reference image in the corre-
sponding view cluster Cv(p) ∈ C(P). We know by construc-
tion of view clusters that each image q ∈ Cv(p) has been

Figure 4: Scene map construction from 10 photos of
Palau Nacional, Montjuic, Barcelona.

(a)

(b)

Figure 5: Detail of point cloud in Montjuic scene
map corresponding to region in red box of Figure 4,
(a) before and (b) after vector quantization. Colors
represent different visual words, modulo 9.

geometrically verified, giving I(p, q) > τ inliers. We now
align q to p and compute a relevant homography Hq. For
this, we start from the stored affine model Aqp and perform
a single step of the “iterative”method of LO-RANSAC. The
complete set of all points with error smaller than thresh-
old Kθ are used to estimate a homography with the Direct
Linear Transformation (DLT) algorithm [9]. We reduce the
threshold and iterate until it is equal to θ. We have found a
maximum of 3 iterations to be enough for our experiments.
The final homography that aligns q to p is stored as Hqp.

4.2 Scene Map Construction
For each reference image p ∈ Q(P) and corresponding view
cluster Cv(p) we construct a feature collection F (p) as the
union of features over all images q ∈ Cv(p), after aligning
with the reference. In particular, if each visual feature is
represented by a tuple (x,w) with x being the position /
local shape and w the visual word label, then this collection
is constructed as

F (p) =
⋃

q∈Cv(p)

{(Hqpx,w) : (x,w) ∈ Fq}. (18)

Here, x is assumed either a 3-vector in projective space P
2

with the homogeneous coordinates of feature position, or a
3 × 3 matrix containing local shape as well. In the former
case, local shape should be computed and stored separately
to be used in spatial matching as described above.

The above formulation bears similarities with several mod-
els in different contexts. To name a few, Lowe [19] performs
local feature view clustering by linking similar features that
are matched in adjacent views of an object, applying this
representation to 3D object recognition. Simon et al . [30]
organize matching features of multiple images into tracks,
where a track is a connected component of features and cor-
responds to a single 3D point of a scene. From these tracks,
they construct an incidence matrix, compute similarities and
produce a visual summary of the scene by means of a set of
canonical views. Gammeter et al . [8] perform a similar align-
ment in visual clusters with the objective of isolating bound-
ing boxes of depicted landmarks. In image retrieval, Chum
et al . [5] collect the verified images from a query and build a
latent model of the scene by averaging term frequency vec-
tors. This model is used on the query side to perform query

expansion.
In our case, the objective is to construct a compact rep-

resentation of F (p) that we will refer to as the scene map

S(p), such that retrieval is performed on scene maps di-
rectly, rather than database images. Ideally, a query should
match a scene map whenever it matches any single image
in the map. This will make it possible to retrieve images
that would not match by themselves, effectively increasing
recall. It is similar to the latent model of [5], which however
does not encode feature position and is constructed dynam-
ically on the query side, whereas scene maps reside on the
database side and are static. Unlike the object-based ap-
proach of [8] we want to keep information from all image
regions. Matching features are linked into connected com-
ponents in [19], [30], and we need a similar compact rep-
resentation, that is, more compact than storing features of
individual views. However, we also need to control the size
of such components, so that components in a scene map be-
have like features in a single image. We should therefore
keep a minimal subset S(p) ⊆ F (p) such that no feature in
F (p) is too distant from its nearest neighbor in S(p).
The above discussion gives rise to vector quantization once

more. In particular, we choose to apply KVQ to F (p) in
space (F , df) where F is the set of all possible features and
metric df should measure distance, both spatial and in ap-
pearance. Since each feature f ∈ F is represented by tuple
(x,w), F is a product space X ×W, where X refers to posi-
tion / local shape and W to appearance. Consequently, df
may be defined as a product metric, where spatial distance
is measured by the Euclidean metric in X , while distance in
appearance by the discrete metric in W. The latter choice

Figure 6: A sample of five groups of Barcelona query
images from European Cities 1M dataset used in our
experiments.

simplifies the process a lot: in effect we can partition F (p)
into a number of disjoint sets

Fw(p) = {(x, u) ∈ F (p) : u = w}, (19)

each corresponding to a visual word w, and apply KVQ sep-
arately to each Fw(p) in (X , dx) with scale parameter rx.
Now, either X = P

2 or X = R
3×3. In either case, if tx ∈ R

2

denotes the position component of x in the 2D image plane,
metric dx is defined as dx(y, z) = ‖ty − tz‖2 for y, z ∈ X .
Finally, join the resulting codebooks Qx(Fw(p)) into a single
scene map:

S(p) =
⋃

w∈W

Qx(Fw(p)). (20)

In fact, we set scale parameter to rx = θ, where θ is the
error threshold used in spatial matching. Hence, a feature
f will be in the spatial cluster Cx(f

′) of another feature f ′

whenever f, f ′ are inliers in spatial matching.
For an example of scene map construction, we use a visual

cluster containing 30 images of Palau Nacional, Montjuic,
Barcelona, 10 of which are depicted in overlay after align-
ment in Figure 4. Of the 11, 623 features in total, 9, 924
are retained in the scene map after quantization, giving a
compression rate of 15%. In terms of inverted file entries
(unique visual words), the figures are 11, 165, 8, 616, and
23%, respectively. Detail of this scene map’s point cloud is
shown in Figure 5. It is evident that features are sparser
after vector quantization.

4.3 Indexing and Retrieving Scene Maps
Once all scene maps have been computed, we build a sepa-
rate index for them. Even if a scene map is typically larger
than a single image, it has exactly the same representation,
that is, a set of features. We therefore treat scene maps as
images for indexing and retrieval. By construction, we have
already subsets Qx(Fw(p) of scene map S(p) corresponding
to each visual word w in (20). The cardinalities of these sub-
sets give directly a term frequency vector for S(p). We then
index all scene maps by visual word in an inverted file. At
query time, we compute a similar vector for the query im-
age, retrieve relevant scene maps by histogram intersection
and TDF-IF weighting, and re-rank.

A short list of top-ranking scene maps is verified geomet-

0 1 2 3 4 5 6 7 8 9

x 10
5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of distractor images

m
A

P

baseline

QE1

scene maps

QE2

Figure 7: mAP measurements for the four bench-
marked methods on the European Cities 1M dataset
under a varying number of distractors.

rically. We make use again of the single correspondence as-
sumption and follow the “simple” method of LO-RANSAC
whenever a new maximum is encountered. Note that even
if the initial estimate is a similarity transformation, we can
still recover the correct homography transformation by least
squares fitting given at least four inliers.

To speed up the re-ranking process, we terminate itera-
tions and regard as relevant an image that yields at least τh
inliers. We also consider an image as irrelevant if no more
than τℓ inliers are found after having checked a predefined
percentage of all hypotheses. Finally, we discard the current
hypothesis if the symmetric transfer error is computed for
more than a predefined percentage of correspondences and
the maximum number of inliers is less than τℓ.
Whenever a scene map S(p) is found relevant, all images

q ∈ Cv(p) are considered relevant as well. This is exactly
how recall is increased. To avoid the additional cost of indi-
vidual matching with each image, we consider all of them at
the same rank, which slightly affects precision. To draw an
analogy e.g . to the latent model for query expansion of [5],
recall that scene maps are statically computed in the off-line
indexing process and constrained within geo-clusters. On
the other hand, in [5] a model is built dynamically at query
time, increasing the computational cost. Without any con-
straint it is prone to drift, especially when iterative. Most
importantly, query expansion cannot help at all when rele-
vant images are too few (or just one) and initial query fails.

5. EXPERIMENTS

5.1 Dataset
We experiment on a challenging one-million urban image
dataset, namely European Cities 1M 5. It consists of a total
of 1, 037, 574 geo-tagged images from 22 European cities that
we have crawled from Flickr using geographic queries cov-
ering a window of each city center. A subset of 927 images
from Barcelona are annotated into 17 groups of images de-
picting the same scene, building or landmark. Since not all
are landmarks, annotation cannot rely on tags; it is rather

5The dataset will soon be publicly available at
http://image.ntua.gr/iva/datasets

http://image.ntua.gr/iva/datasets

Method Avg. query time mAP

Baseline BoW 1.03s 0.5772
QE1 20.3s 0.7574
QE2 2.51s 0.6202

Scene maps 1.29s 0.8065

Table 1: Average query time and mAP of the four
benchmarked methods on the European Cities 1M

dataset including all distractors.

a combination of visual query expansion and manual clean-
up. Five images are selected as queries from each group, for
a total of 85 queries. To ensure that no other images in the
dataset depict the same scene as the ground truth, we have
removed the entire set of 128, 715 Barcelona images from the
dataset; the remaining 908, 859 images are the distractors.
Most of them depict urban scenery like the ground-truth,
making a challenging distractor dataset. Sample query im-
ages are shown in Figure 6.

5.2 Evaluation protocol
In all experiments, we have used the medium Flickr image
size, which is 500×500 pixels maximum. We have extracted
SURF features and descriptors [2] and kept a maximum of
1, 000 features per image. We have built a 75K visual code-
book trained from a set of images of urban scenes that are
not part of our evaluation dataset. We have used flat k-
means, where, as in [26], nearest cluster centers at each iter-
ation have been found with the randomized kd-tree of Silpa-
Anan and Hartley [29], and specifically using the FLANN
library of Muja and Lowe [23]. Larger codebooks did not
perform well in scene map construction. All features in all
images in the data set have been mapped to visual words
again using FLANN. Our bag of words implementation uses
histogram intersection similarity on L1-normalized vectors
and TF-IDF weighting. Details on the remaining processes
of indexing, spatial matching etc. during visual clustering
and scene map construction are given in sections 3 and 4,
respectively. We evaluate overall retrieval performance via
mean average precision (mAP). All experiments are per-
formed with our own C++ implementation on a 2GHz Quad
Core processor with 8GB of memory.

5.3 Results
The mining process is entirely automated. We start from
a baseline system where the dataset is already indexed so
can perform queries. Then, geo-clustering on the European
Cities 1M dataset takes less than 5 minutes and generates
1, 677 geo-clusters. Visual clustering creates 493, 693 visual
clusters. Clustering takes approximately 22 minutes; how-
ever, all queries required to compute visual dissimilarity ma-
trices take approximately 52 hours, clearly being the most
time consuming process. Construction of all scene maps
takes another 5 hours. It is noteworthy that 351, 391 visual
clusters are single images, hence do not need scene map con-
struction. Given larger datasets with more cities, the above
times would increase linearly, while of course computation
can be made parallel. The inverted index of the new re-
trieval engine requires 1.2GB of memory instead of 1.61GB
for the baseline, providing a compression of 25%.

We compare our scene map retrieval efficiency against a

baseline bag of words and two query expansion methods.
The first (QE1) is the naive iterative approach, where we
re-query using the retrieved results and then merge the re-
sults. In our experiments, this expansion was carried out
iteratively, for three levels per query. For the second (QE2)
we create a scene map using the initial query’s result and
re-query once more. All methods use the same spatial re-
ranking approach as described in section 4. The mAP mea-
surements on the 85 ground truth queries for all four meth-
ods under varying size of distractor set are depicted in Fig-
ure 7. Observe that our method using scene maps outper-
forms all other methods in terms of mean average precision.
Surprisingly, it even performs better than the QE1 method.
The explanation for this can be found in the use of geo-

cluster specific sublinear indexing (see Section 3.3) during
scene map construction. While in QE1 the expanded set
of similar images comes from multiple queries in the whole
database of 1 Million images, when creating a scene map
visual similarities are obtained through querying the index
of a single geo-cluster.

As shown in Table 1, our method does not differ much
from the baseline method in terms of speed, which is clearly
the fastest. The proposed method offers slightly faster filter-
ing of the inverted index because there are less scene maps
than images, however it requires slightly more time to re-
rank, because scene maps have more features compared to
images. In general, filtering time only depends on the num-
ber of relevant scene maps, while re-ranking time is constant.
It is noteworthy that both query expansion methods require
far more time while yielding worse results. QE2 query cor-
responds roughly to two baseline queries and a scene map
construction, and QE1 to several baseline queries, resulting
to quite impractical query times.

6. DISCUSSION
While mining from user generated content in community
photo collections and new applications are becoming popu-
lar, several possibilities are still unexplored. Sub-linear in-
dexing is not typically exploited in landmark recognition
applications, while geo-tags are not typically exploited in
large scale 3D reconstruction applications. We have com-
bined both, along with a novel scene representation that is
directly encoded in our retrieval engine. The result is consid-
erable increase in retrieval performance, even compared to
query expansion methods, at the cost of a slight increase in
query time. Memory requirements for the index are also con-
siderably reduced compared to a baseline system. Contrary
to landmark recognition applications, we can still retrieve
any isolated image from the original database, allowing lo-
cation recognition at any region where geo-tagged photos
are available. Our mining process is even faster than other
implementations that employ massive parallelism without
exploiting geo-tags.

In the future we would like to investigate more precise
methods in measuring dissimilarity of feature appearance
during scene map construction. This will enable much more
compression of the index, hence increased scalability, as well
as more robust matching. Though our visual clustering
does not target perceptual summarization or browsing, it
may still be the first stage of such a process, exploiting its
compact representation and maximum distortion guarantee.
Our approach has already given good results on location and
landmark recognition. Some quantitative evaluation results,

both for landmark and non-landmark scenes, can be found
online in our project homepage6.

7. ACKNOWLEDGMENTS
This work was supported by the European Commission un-
der contract FP7-215453 WeKnowIt.

8. REFERENCES

[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and
R. Szeliski. Building Rome in a day. In ICCV, 2009.

[2] H. Bay, T. Tuytelaars, and L. Van Gool. SURF:
Speeded up robust features. In ECCV, 2006.

[3] O. Chum and J. Matas. Large-scale discovery of
spatially related images. PAMI, 32(2):371–377, 2010.

[4] O. Chum, J. Matas, and J. Kittler. Locally optimized
RANSAC. In DAGM, page 236. Springer Verlag, 2003.

[5] O. Chum, J. Philbin, J. Sivic, M. Isard, and
A. Zisserman. Total recall: Automatic query
expansion with a generative feature model for object
retrieval. In ICCV, 2007.

[6] D. Crandall, L. Backstrom, D. Huttenlocher, and
J. Kleinberg. Mapping the world’s photos. In WWW,
2009.

[7] M. Fischler and R. Bolles. Random sample consensus:
A paradigm for model fitting with applications to
image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[8] S. Gammeter, L. Bossard, T. Quack, and L. V. Gool. I
know what you did last summer: Object-level
auto-annotation of holiday snaps. In ICCV, 2009.

[9] R. Hartley and A. Zisserman. Multiple View Geometry.
Cambridge university press Cambridge, UK, 2000.

[10] J. Hays and A. A. Efros. IM2GPS: Estimating
geographic information from a single image. In CVPR,
2008.

[11] K. Heath, N. Gelfand, M. Ovsjanikov, M. Aanjaneya,
and L. J. Guibas. Image webs: Computing and
exploiting connectivity in image collections. In CVPR,
2010.

[12] H. Jegou, M. Douze, and C. Schmid. Hamming
embedding and weak geometric consistency for large
scale image search. In ECCV, 2008.

[13] B. Johansson and R. Cipolla. A system for automatic
pose-estimation from a single image in a city scene. In
Proc. IASTED Int. Conf. Signal Processing, Pattern

Recognition and Applications, 2002.

[14] E. Kalogerakis, O. Vesselova, J. Hays, A. A. Efros,
and A. Hertzmann. Image sequence geolocation with
human travel priors. In ICCV, 2009.

[15] L. Kennedy, M. Naaman, S. Ahern, R. Nair, and
T. Rattenbury. How flickr helps us make sense of the
world: Context and content in community-contributed
media collections. In ACM Multimedia, volume 3,
pages 631–640, 2007.

[16] C. Lampert. Detecting objects in large image
collections and videos by efficient subimage retrieval.
In ICCV, 2009.

[17] X. Li, C. Wu, C. Zach, S. Lazebnik, and J.-M. Frahm.
Modeling and recognition of landmark image

6http://www.image.ntua.gr/iva/research/scene maps

collections using iconic scene graphs. In ECCV, pages
427–440. Springer, 2008.

[18] Y. Li, D. J. Crandall, and D. P. Huttenlocher.
Landmark classification in large-scale image
collections. In ICCV, 2009.

[19] D. Lowe. Local feature view clustering for 3D object
recognition. In CVPR, 2001.

[20] D. Lowe. Distinctive image features from
scale-invariant keypoints. IJCV, 60(2):91–110, 2004.

[21] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust
wide-baseline stereo from maximally stable extremal
regions. Image and Vision Computing, 22(10):761–767,
2004.

[22] K. Mikolajczyk and C. Schmid. A performance
evaluation of local descriptors. Pattern Analysis and

Machine Intelligence, 27(10):1615–1630, 2005.

[23] M. Muja and D. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
ICCV, 2009.

[24] D. Nister and H. Stewenius. Scalable recognition with
a vocabulary tree. In CVPR, 2006.

[25] M. Perdoch, O. Chum, and J. Matas. Efficient
representation of local geometry for large scale object
retrieval. In CVPR, 2009.

[26] J. Philbin, O. Chum, M. Isard, J. Sivic, and
A. Zisserman. Object retrieval with large vocabularies
and fast spatial matching. In CVPR, 2007.

[27] T. Quack, B. Leibe, and L. Van Gool. World-scale
mining of objects and events from community photo
collections. In CIVR, pages 47–56, 2008.

[28] G. Schindler, M. Brown, and R. Szeliski. City-scale
location recognition. In CVPR, 2007.

[29] C. Silpa-Anan and R. Hartley. Optimised KD-trees for
fast image descriptor matching. In CVPR, 2008.

[30] I. Simon, N. Snavely, and S. Seitz. Scene
summarization for online image collections. In ICCV,
2007.

[31] J. Sivic and A. Zisserman. Video Google: A text
retrieval approach to object matching in videos. In
ICCV, pages 1470–1477, 2003.

[32] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism:
Exploring photo collections in 3D. In Computer

Graphics and Interactive Techniques, pages 835–846,
2006.

[33] U. Steinhoff, D. Omercevic, R. Perko, B. Schiele, and
A. Leonardis. How computer vision can help in
outdoor positioning. In European Conference on

Ambient Intelligence, 2007.

[34] M. Tipping and B. Schölkopf. A kernel approach for
vector quantization with guaranteed distortion
bounds. In Artificial Intelligence and Statistics, pages
129–134, 2001.

[35] W. Zhang and J. Kosecka. Image based localization in
urban environments. In International Symposium on

3D Data Processing, Visualization and Transmission,
2006.

[36] Y. Zheng, M. Zhao, Y. Song, H. Adam,
U. Buddemeier, A. Bissacco, F. Brucher, T.-S. Chua,
and H. Neven. Tour the world: Building a web-scale
landmark recognition engine. In CVPR, 2009.

http://www.image.ntua.gr/iva/research/scene_maps

	Introduction
	Related work
	Location Recognition
	Sub-linear indexing
	Structure from Motion
	Landmark Recognition

	View Clustering
	Kernel Vector Quantization
	Geo-clustering
	Visual Clustering

	Scene Maps
	Spatial Matching
	Scene Map Construction
	Indexing and Retrieving Scene Maps

	Experiments
	Dataset
	Evaluation protocol
	Results

	Discussion
	Acknowledgments
	References

