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The predominant methods currently used to determine nonlinear optical constants like the

nonlinear refractive index n2 or the third order susceptibility χ(3) rely mostly on experimental,

open and closed z-scan techniques and beam deflection methods. While these methods

work well when the linear absorption is relatively small or negligible, the retrieval process is

more complicated for a strongly scattering, dispersive or absorbing medium. The study of

optics at the nanoscale in the picosecond or femtosecond laser pulsed regimes demands

the development of new theoretical tools, and diverse experimental approaches, to extract

and verify both linear and nonlinear optical dispersions exhibited by matter, especially

when material constituents are fashioned into nanostructures of arbitrary shape. We

present a practical, combined experimental and theoretical approach based on the

hydrodynamic model that uses experimental results of harmonic generation conversion

efficiencies to retrieve complex, nonlinear dispersion curves, not necessarily only for third

order processes. We provide examples for materials that are of special interest to

nanophotonics, for example, silicon, gold, and indium tin oxide (ITO), which displays

nonlocal effects and a zero-crossing of the real part of the dielectric constant. The results

for silicon and gold compare well with analytical predictions of nonlinear dispersion based

on the nonlinear oscillator model. Based on our assessment of third harmonic generation

conversion efficiencies in silicon, we predict χ(3)ω and χ(3)3ω are of order 10−17 (m/V)2 in the

visible and near IR ranges, with respective peaks of 10−14 (m/V)2 and 10−16 (m/V)2 in the UV

range. Similarly, gold’s χ(3)ω and χ(3)3ω are of order 10−17–10−16 (m/V)2, and predict

χ(3)ω ∼ 10−17(m/V )
2 and χ(3)3ω ∼ 10−18(m/V )

2 for ITO. These results clearly suggest that

judicious exploitation of the nonlinear dispersion of ordinary semiconductors has the

potential to transform device physics in spectral regions that extend well into the UV range.

Keywords: nanoscale, nonlinear optics, harmonic generation, z-scan, nonlinear susceptibility

Edited by:

Lei Xu,

Nottingham Trent University,

United Kingdom

Reviewed by:

Peilong Hong,

University of Electronic Science and

Technology of China, China

Aristeidis Lamprianidis,

Karlsruhe Institute of Technology (KIT),

Germany

*Correspondence:

L. Rodríguez-Suné

laura.rodriguez.sune@upc.edu

Specialty section:

This article was submitted to

Nonlinear Optics,

a section of the journal

Frontiers in Photonics

Received: 23 July 2021

Accepted: 02 September 2021

Published: 17 September 2021

Citation:

Rodríguez-Suné L, Trull J, Akozbek N,

de Ceglia D, Vincenti MA, Scalora M

and Cojocaru C (2021) Retrieving

Linear and Nonlinear Optical

Dispersions of Matter: Combined

Experiment-Numerical Ellipsometry in

Silicon, Gold and Indium Tin Oxide.

Front. Photonics 2:746341.

doi: 10.3389/fphot.2021.746341

Frontiers in Photonics | www.frontiersin.org September 2021 | Volume 2 | Article 7463411

ORIGINAL RESEARCH
published: 17 September 2021

doi: 10.3389/fphot.2021.746341

http://crossmark.crossref.org/dialog/?doi=10.3389/fphot.2021.746341&domain=pdf&date_stamp=2021-09-17
https://www.frontiersin.org/articles/10.3389/fphot.2021.746341/full
https://www.frontiersin.org/articles/10.3389/fphot.2021.746341/full
https://www.frontiersin.org/articles/10.3389/fphot.2021.746341/full
https://www.frontiersin.org/articles/10.3389/fphot.2021.746341/full
https://www.frontiersin.org/articles/10.3389/fphot.2021.746341/full
http://creativecommons.org/licenses/by/4.0/
mailto:laura.rodriguez.sune@upc.edu
https://doi.org/10.3389/fphot.2021.746341
https://www.frontiersin.org/journals/photonics
www.frontiersin.org
https://www.frontiersin.org/journals/photonics#articles
https://www.frontiersin.org/journals/photonics
https://www.frontiersin.org/journals/photonics#editorial-board
https://doi.org/10.3389/fphot.2021.746341


INTRODUCTION

The study of nonlinear optical effects is crucial in many
applications in photonics covering many different research
fields, including quantum electronics, quantum optics,
telecommunications, surface science, metrology, microscopy
and many others. In order to properly account for nonlinear
dispersion and its effects, including for example, self-phase
modulation, nonlinear pump absorption, and harmonic
conversion efficiencies, one must determine as accurately as
possible the values of the different susceptibilities of the
medium, which are ultimately related to material parameters
like electron density and effective mass, lattice constant, and
damping rates. The inclusion of nonlinear terms in the equations
of motion thus leads to a total polarization density that accounts
for linear and nonlinear responses. The nonlinear contributions
of the total polarization at the frequency corresponding to the
incident fundamental field give rise to a modified index of
refraction, or dielectric constant of the medium, which for
third order processes, under certain conditions may be written
in terms of the intensity simply as: n � n0 + n2I. The
determination of n2 and it dispersive properties are crucial to
properly describe the nonlinear interactions and to obtain the
nonlinear phase shift ϕNL induced by the field intensity. When
nonlinear interactions occur in a bulk dielectric, for instance, the
value of n2 can be directly related to the third-order susceptibility.

The issue of accurately determining the values of the nonlinear
coefficients has been considered for many years. The different
techniques involve the use of nonlinear interferometry,
degenerate four-wave mixing, ellipse rotation, beam distortion
and deflection measurements. The classical method to determine
the value (magnitude and sign) of n2 is the z-scan technique,
developed by Sheik-Bahae et al. (1989), Sheik-Bahae et al. (1990).
By moving the sample and measuring transmittance along the
longitudinal direction on the focal plane of a focused Gaussian
beam, this technique allows one to infer the nonlinear coefficient
both in amplitude and sign.

Different z-scan theories have been proposed in the literature.
The first theories considered thin samples and a Kerr nonlinearity
to derive an analytical formula for weak nonlinearities
(ϕNL < 0.2π), and a numerical estimation for larger nonlinear
phase shifts considering beam propagation based on the
nonlinear paraxial wave equation under the parabolic
approximation. Other theories have been proposed to increase
the range of applicability to longer samples based on the
nonlinear paraxial wave equation, completed by the Huygens-
Fresnel propagation (Pálfalvi et al., 2009).

Extensions of the z-scan technique have also been
implemented in order to unravel the different contributions to
the nonlinear response of the material. For instance, in time-
resolved z-scan methods, the introduction of a temporal delay
into the two-color z-scan device allows one to separate nonlinear
contributions having different temporal responses (Wang et al.,
1994). More recently, methods based on beam deflection have
been implemented using pump-probe configurations, whereby
the pump generates an index gradient experienced by the probe,
which in turn is deflected (Ferdinandus et al., 2013; Ferdinandus

et al., 2017). However, a detailed theory for either z-scan or beam
deflection technique should take into account the origin and
nature of all relevant nonlinearities present in the problem, in
order to extract accurate information from experimental
measurements, and thus obtain the desired, accurate values of
the nonlinear coefficients not only for the pump beam, which
either z-scan or beam deflection are mostly concerned with, but
also for the simultaneous determination of nonlinear dispersion
of the generated harmonic fields.

In more complex situations, where the material consists of
metal layers, or perhaps semiconductor or conductive oxide
layers, new linear and nonlinear sources become relevant,
including nonlocal effects, magnetic dipole and electric
quadrupole (surface) nonlinearities, convection, hot electrons,
pump depletion, and phase-locking. As a result, the behavior of a
harmonic component cannot be extrapolated based on the
behavior of a pump or probe field grounded on mere
transmission or deflection assessments. At the same time, one
should be able to identify and distinguish between competing
second and/or third order nonlinearities separately triggered by
free and bound electrons. Therefore, different terms introduced
in the equations of motion contribute to the nonlinear
susceptibility and add to beam dynamics, terms that typically
are either not distinguished or accounted for in the theories
behind either z-scan or beam deflection methods. Consequently,
the results may be either inaccurate or misleading in situations
where these contributions may be significant. In what follows we
describe a numerical technique that utilizes the constitutive
relations to extract complex nonlinear dispersions and related
coefficients of various orders. The approach is based on a
microscopic, hydrodynamic representation of the material
equations of motion coupled to the macroscopic Maxwell’s
equations, to perform what amounts to numerical ellipsometry.

In the classical realm, electrons move according to Newtonian
principles. Free electrons are described by a modified Drude
equation of motion, one that contains linear and nonlinear,
nonlocal, magnetic, convective, and quadrupole-like surface
contributions (Scalora et al., 2010). In addition to similar
external electric and magnetic forces, multiple bound electron
species may also contribute to the macroscopic dielectric
constant, and are subject to linear and nonlinear restoring
forces (Scalora et al., 2012; Vincenti et al., 2011). For example,
at near-IR, visible and UV wavelengths, in metals d-shell (bound)
electrons may dominate the dielectric response, and their
influence should be introduced in the dynamics, also because
they contribute to the total balance of momentum and energy
transfer. Each electron species may experience its own linear and
nonlinear response, have different resonant frequencies, effective
electron masses, and damping constants. The resulting nonlinear
polarizations are then added together to form the total
polarization, which in turn is inserted into Maxwell’s equations.

The depiction of nonlinear phenomena of metals, for example,
is usually limited and focused only on the second order response
of free electrons, with effective surface and bulk second order
nonlinear coefficients (Xiang Wang et al., 2009; Krause et al.,
2004) that are chosen and typically adjusted to fit experimental
results (Coutaz et al., 1987) without distinguishing between
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surface (Coulomb and convection) and magnetic (Lorentz)
contributions. When third order effects are introduced, the
χ(3)ω usually lacks information about dispersion (Suresh et al.,
2021), is not always obtained under conditions that are directly
pertinent to the problem at hand, and χ(3)3ω remains undetermined.
For instance, nanosecond pulses (Yang et al., 2004) are not
representative of a fast electronic response (Rodríguez-Suné
et al., 2021). Similar considerations apply to insulators,
semiconductors, and conductive oxides.

Material characterization usually begins with the deposition of
relatively thin layers of a given material in order to ascertain its
linear, frequency-dependent complex dielectric response (Palik,
1985). The dielectric function so obtained amounts to a value
averaged over the thickness of that layer, and cannot account for
spatial inhomogeneities due to density fluctuations or surface
roughness that may occur during the fabrication process, whose
effects are already folded into the measurement and for practical
purposes assumed to be negligible. Once the average value of the
dielectric constant is obtained, it is used to extract effective
particle density, electron mass, plasma frequency, and
damping coefficients. The material’s temporal response to
external excitation may then be recast in the context of the
hydrodynamic model to simulate arbitrary shapes of that
material. Thin layers of ITO or Cadmium Oxide (CdO) may
display a robust nonlocal response (De Ceglia et al., 2018), so that
the measured dielectric function may depend on both frequency
and wave-vector, which translates into dependence on spatial
derivatives of the fields and boundary conditions. In essence,
under the action of radiation pressure, the free electron gas
undergoes longitudinal oscillations that trigger standing waves
and a resonant spectral response that depends on material
thickness in one dimension (De Ceglia et al., 2018), and more
complex geometrical and topological considerations in higher
dimensions. As another example, the method may be used to
predict that in a flat ITO layer, at oblique incidence, nonlocal
effects trigger an anisotropic, linear dielectric response in the
spectral region where the magnitude of the real part of the
dielectric “constant” approaches zero (Scalora et al., 2020).
This near-singular behavior is mitigated by a necessary degree
of absorption dictated by causality, but that can nevertheless
induce a seemingly large nonlinear response, whose quantitative
and qualitative aspects (i.e., dispersion) have not yet been clearly
understood or quantified (Alam et al., 2016), or appropriately
compared to other materials. The same may be said of the optical
response of most semiconductors in their respective opacity
ranges (Burns and Bloembergen, 1971). Therefore, it is natural
to regress and pose questions about the nature and magnitude of
nonlinear dispersion in any material, and to identify the intrinsic
properties before any hypothetical, metasurface-induced
enhancement may be quantified. The method allows us to
easily extract bulk nonlinear dispersions from the equations of
motion, like the third-order nonlinear susceptibilities, based
solely on a comparison with experimental THG conversion
efficiencies. Extraction of the bulk, second order response is
straightforward and is done in similar fashion. However, for
the moment we will refrain from extracting effective second order
surface and volume nonlinearities that are triggered by

quadrupole-like sources and the magnetic Lorentz
contributions, since they cannot be mapped easily to analytical
solutions of the nonlinear oscillator model.

MODEL: RETRIEVAL OF COMPLEX LINEAR
AND NONLINEAR DISPERSIONS FROM
THE EQUATIONS OF MOTION

Our first example consists of an investigation of the dielectric
constant of undoped crystalline silicon (Palik, 1985) grown in the
<100> direction. It is plotted in Figure 1A (markers) and displays
two resonances in the UV range. Also in Figure 1A, the two
resonances are fitted using two separate Lorentzian functions
(solid curves), appropriately detuned and with different plasma
frequencies, densities, effective masses and damping coefficients.
Therefore, in this case the dynamical model includes two separate
bound electron species having different effective parameters. For
further details, we refer the reader to reference Rodríguez-Suné
et al. (2019), where SHG and THG are discussed for a gallium
arsenide wafer, and reference (Scalora et al., 2019), where SHG
and THG are studied theoretically for the specific case of a
silicon-based, nanowire grating. For completeness, here we
limit ourselves to reproducing the basic equations of motion
in Gaussian units, and to briefly discuss their content:

€Pbj+ c̃bj
_Pbj + ω̃2

0,bjPbj − β̃(Pbj · Pbj)Pbj

� πω̃2
pjE +

eλ0
mp

bjc
2
(Pbj · ∇)E +

eλ0
mp

bjc
2
_Pbj ×H (1)

Pbj is the bound polarization, j � 1,2 represent two separate
atomic species. Eq. 1 describe the behavior of electrons that are
not allowed to leave atomic sites. The spatial coordinates and
time have been scaled with respect to a convenient reference
wavelength, λ0 � 1μm, so that z̃ � z/λ0, x̃ � x/λ0, ỹ � y/λ0 (1
longitudinal and 2 transverse coordinates, respectively, as
shown in Figure 2) and time, τ � ct/λ0. Fields and
polarizations are assumed to be invariant along the
transverse x̃ coordinate. For undoped, centrosymmetric
silicon, free charges play no role (densities of order
1014 cm−3 or less) and the second order bulk nonlinearity is
absent. We assume that each molecular species exhibits a third
order nonlinearity expressed by PNL � −β̃(Pbj · Pbj)Pbj. The
parameter β̃ ≈ (ω2

0,b1 + ω2
0,b2)λ

2
0/(2L

2n20be
2c2) is a scaled, unique

real coefficient derived from a nonlinear oscillator model. ω̃0,b1

and ω̃0,b2 are the two resonance frequencies, n0b ∼ 1022cm−3 is
the bound electron density, mp

bj is the bound electron’s
effective mass, c is the speed of light in vacuum, L is the
length of a taut, classical spring that corresponds to the lattice
constant, c̃bj is a phenomenological damping coefficient, and

πω̃2
pj �

n0,be
2λ20

m*
bj
c2

is the scaled plasma frequency. The two

resonances are located near 300 and 360 nm, respectively.
This parameter completely determines nonlinear dispersion
of bound electrons, including self-phase modulation,
nonlinear absorption, THG conversion efficiencies, etc. . . It
replaces the usual χ(3)ω and χ(3)3ω , which are in fact proportional
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to β̃ (see below) and are often introduced as dispersionless
parameters for qualitative and quantitative comparisons with
experimental observations. For solids, L can vary from a
fraction of 1 Å to a few Å, a disparity that is reflected on
the particle density n0b. For example, the wave function of
valence (bound) electrons in silicon peaks near 1.32 Å (https://
www.infoplease.com/semimetallics/silicon), suggesting that
Lsilicon ∼ 2.6 × 10−8cm. However, the highest d-orbital wave
function for bound electrons in gold peaks near 0.5 Å
(Mann, 1968; Kaupp, 2007), with Lgold ∼ 10−8cm. One
should then be mindful that the magnitude of β̃ can change
considerably from material to material, and can range between
10−6 and 10−8, depending on atomic orbital radii, densities,
and resonance frequencies. In Eq. 1 the term eλ0

m*
bj
c2
(Pbj · ∇)E is a

surface nonlinearity, and the magnetic Lorentz contribution
eλ0

m*
bj
c2
_Pbj ×H contains both surface and volume nonlinear

bound currents (Rodríguez-Suné et al., 2019). We expand

these terms and account for pump depletion and down-
conversion to occur. These terms are responsible for the
generated second harmonic signal in a centrosymmetric
system, as well as a TH signal much weaker compared to
the TH generated by the term PNL � −β̃(Pbj · Pbj)Pbj.

Since the model is described in considerable details elsewhere,
here we outline a new technique that we refer to as numerical
ellipsometry, that allows us to first verify the measured linear
material dispersion, and then predict complex nonlinear
dispersion functions (i.e., χ(3)ω and χ(3)3ω ) using our dynamical
model, which includes Eq. 1, Maxwell’s equations, the
macroscopic constitutive relations, and experimentally obtained
harmonic conversion efficiencies. In simplified terminology, the
method to retrieve nonlinear dispersion consists of taking the
following steps: first, we perform a calculation in the linear regime
(low power densities) using a pulse only a few tens of
femtoseconds in duration, incident normal to the surface, and
extract spatially averaged, complex polarizations and fields inside a

FIGURE 1 | (A) Real (circle markers) and imaginary (square markers) parts of the complex dielectric constant of silicon as reported in reference Palik (1985). The

solid curves are Lorentzian fits to the data as follows: ε(ω̃) � 1 −
ω̃ 2

p1

(ω̃ 2−ω̃ 2
01
+ĩcb1 ω̃ ) −

ω̃ 2
p2

(ω̃ 2−ω̃ 2
02
+ĩcb2 ω̃ ), with (ω̃p1 , ω̃01 , c̃b1 ) � (3,2.75, 0.1) and (ω̃p2 , ω̃02 , c̃b2) � (11, 3.3, 0.75). The

scaled frequency ω̃ is in units of 1/microns. (B)Once we have analytical functions that approximate well the measured dispersion (solid curves), we insert the parameters

in Eq. 1 to predict the dispersion (markers) calculated as < ε(λ)Linear > � 1 + 4π <P(λ)Linear >
< E(λ)Linear >

using incident pulses a few tens of femtoseconds in duration.

FIGURE 2 | Set-up developed to measure SH and TH signals.
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20 nm-thick layer of material when the peak of the pulse reaches
the layer.We thus estimate a spatially averaged, complex dielectric

constant as 〈ε(λ)Linear〉 � 1 + 4π 〈P(λ)Linear〉
〈E(λ)Linear〉

, at any given carrier

wavelength λ, where P(λ)Linear and E(λ)Linear are complex
polarization and field amplitudes, respectively. The brackets
indicate spatial averages. This straightforward procedure allows
us to reconstruct, and verify, the linear, monochromatic material
dispersion data quite well even using very short pulses, because
sharp spectral features are absent, and absorption resonances are
quite broad. We report the results of this calculation in Figure 1B

as empty circle and square markers, which are now seen to map
quite well and are nearly indistinguishable from the solid,
analytical Lorentzian curves that have replaced the complex
dielectric data. Other semiconductors display similar behavior
in the 100 nm range, where the magnitude of the complex
dielectric constant approaches zero.

The second important step consists of performing the same
calculations in the nonlinear regime, to once again estimate
spatially-averaged polarization and field inside the same layer
of material, such that 〈ε(λ)Nonlinear〉 � 1 + 4π 〈P(λ)Nonlinear〉

〈E(λ)Nonlinear〉
. The full

nonlinear dispersion of the material is generally obtained in the
wavelength range of interest, by taking the difference between
linear and nonlinear, spatially-averaged polarizations, at both
pump and harmonic wavelengths. For example, if we wish to
retrieve χ(3)ω , in the undepleted pump approximation we may
write:

PNL
ω � χLωE

NL
ω + χ(3)ω

∣∣∣∣ENL
ω

∣∣∣∣2ENL
ω (2)

For simplicity, spatial averages are now implied and bracket
symbols dropped. Additional considerations and terms are
needed on the right side of Eq. 2 if either the pump is allowed
to deplete, or if surface, magnetic, and/or higher order
nonlinearities come into play. In Eq. 2, a linear calculation is

required to obtain χLω �
PL
ω

EL
ω
, where PL

ω and EL
ω are the linear,

spatially-averaged polarization and field at the fundamental
frequency. It is important to distinguish between the fields
that are calculated in the linear regime, denoted by L, and the
fields calculated in the nonlinear regime, denoted by NL. Eq. 2
may be inverted to yield:

χ(3)ω �
PNL
ω −

PL
ω

EL
ω
ENL
ω∣∣∣∣ENL

ω

∣∣∣∣2ENL
ω

�
εNL
ω − εLω

4π
∣∣∣∣ENL

ω

∣∣∣∣2 (3)

Once again, we emphasize that all fields and polarizations
are evaluated and spatially-averaged inside the layer. As
such, the numerical procedure that we employ is identical
to the ellipsometric extraction of the linear dielectric
constant, since it too produces average values of the
dielectric constant.

In order to retrieve χ(3)3ω , the procedure mirrors that used to
recover χ(3)ω . We first write the expression for the third order
polarization as:

PNL
3ω � χL3ωE

NL
3ω + χ(3)3ω (ENL

ω )3 (4)

As was the case for Eq. 2, here toomodifications are required if
additional nonlinearities become relevant. As in Eq. 3, a linear
calculation is required to obtain χL3ω �

PL
3ω

EL
3ω
, where PL

3ω and EL
3ω are

the linear, spatially-averaged, complex polarization and field at

the third harmonic wavelength, respectively. In contrast, ENL
3ω is

the field generated at the third harmonic wavelength when
pumping at the fundamental frequency, which is necessarily
nonlinear, while ENL

ω is now the nonlinear pump field.
Therefore, we may write:

χ(3)3ω �
PNL
3ω −

PL
3ω

EL
3ω
ENL
3ω

(ENL
ω )3 (5)

As we will see below for ITO, at oblique incidence steps must
be taken in order to account for the vector nature of the fields.
Similarly, if the system displays dielectric anisotropies due to
varying effective masses, densities or spring constants in different
spatial directions, then Eqs 1–5 should be modified accordingly.

In the case of silicon and other similarly undoped
semiconductors that display multiple absorption resonances
(for example, GaAs, GaP, Ge, etc. . .) it is possible to derive
analytical expressions for χ(3)ω and χ(3)3ω from Eq. 1 using the same
perturbative approach based on Miller’s rule (Miller, 1964),
illustrated in references Boyd (2003), Scalora et al. (2015) for a
single oscillator, provided the pump remains undepleted, and no
other nonlinearities or effects enter the picture. Under those
conditions, the scaled expressions for third order nonlinear
susceptibilities for a two-resonance system may be derived and
written as follows:

χ(3)ω �

3β̃
4π2 (

ω̃ 2
p1

4π )
3

(ω̃2
01 − ω̃2 − ic̃b1ω̃)3(ω̃2

01 − ω̃2 − ic̃b1ω̃)
+

3β̃
4π2 (

ω̃ 2
p1

4π )
3

(ω̃2
02 − ω̃2 − ic̃b2ω̃)3(ω̃2

02 − ω̃2 − ic̃b2ω̃)
(6)

χ(3)3ω �

β̃

4π2 (
ω̃ 2

p1

4π )
3

(ω̃2
01 − ω̃2 − ic̃b1ω̃)3(ω̃2

01 − 9̃ω
2
− 3ic̃b1ω̃)

+

β̃

4π2 (
ω̃ 2
p1

4π )
3

(ω̃2
02 − ω̃2 − ic̃b2ω̃)3(ω̃2

02 − 9̃ω
2
− 3ic̃b2ω̃)

(7)

where ω̃ � ω
ωr

is a scaled frequency, ωr �
2πc
λr
, and ω̃2

p � ne2

mp

b
(λr

c )2 is
the scaled plasma frequency. In MKS units χ(3)ω,3ω,MKS �

4π
(3×104)2

χ(3)ω,3ω.

EXPERIMENTAL SET-UP

Our experimental set-up is shown schematically in Figure 2. It
measures second and third harmonic generated signals as a
function of the pump’s angle of incidence and polarization, in
both transmission and reflection configurations. For the silicon
sample that we investigated, the source is a pulsed fiber laser (FYLA
PS50) that emits a train of 13 ps pulses at 1064 nm, with a CW
average output power of 2W and 1MHz repetition rate, delivering
2 μJ/pulse. This source can be modulated to deliver a train of N
pulses at a frequency repetition rate of 1 kHz, thus enabling the
detection of weaker SH or TH signals by integrating the response of
N pulses on the photomultiplier. A half-wave plate controls the
polarization of the fundamental field (FF), enabling illumination of
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the sample with either TM- or TE-polarized light. Spectral filters
are used to remove SH and/or TH signals arising from different
optical components placed before the sample. The beam is focused
on the sample plane to obtain fundamental beam peak power
densities on the order of a few GW/cm2. After the FF traverses the
crystalline silicon sample, generating SH and TH fields, it is
attenuated using a filter to avoid any potentially significant SH
and/or TH generation from the surfaces of the optical elements
placed after the sample’s position. Another lens collimates the
beam and a polarizer analyzes the polarization (TM or TE) of the
generated SH and TH fields. A dispersive prism is used in
combination with a blocking edge to separate and obscure the
remaining FF radiation from the SH and THpaths, so that the only
radiation arriving at the detector is either the SH or TH signal
arising from the silicon wafer. The detector consists of a
photomultiplier tube (Hamamatsu H10722 PMT series) with a
mounted narrow-band spectral filter having a 20 nm band pass
transmission around either the SH or the TH wavelength. The
entire detection system ismounted on a rotary platform that allows
measurements in transmission and in reflection. The sample is
positioned on a motorized rotation stage so that the SH or TH
signals can be measured as a function of the angle of incidence. We
placed a BBO crystal at the sample position generating a SH signal
that could be measured with a calibrated photodiode in order to
estimate conversion efficiencies, as the ratio between the generated
SH or TH energy (transmitted or reflected), and the total initial
fundamental pulse energy. Bymeasuring the generatedNL signal at
the sample plane and at the PM position (after traversing the total
path across the detection system) we can estimate the losses in the
experimental system for each polarization state. By replacing the
photodiode with the photomultiplier, after attenuating the signal
using neutral density filters, we obtain the relation between the
measured signal at the PM and the energy of the generated NL
signal at the sample plane. This experimental setup allows the
recording of harmonic conversion efficiencies as low as 10−10.

RESULTS

Silicon
Using our set-up we record transmitted and reflected THG
conversion efficiencies as functions of the angle of incidence, as
the fundamental pump pulse tuned to 1064 nm traverses a
silicon wafer 500 microns thick. A focusing lens having focal
length f � 100 mm was used to obtain fundamental beam
intensities of approximately 6 GW/cm2 on the silicon wafer.
A TM-polarized TH signal was detected for TM-polarized
incident light, shown in Figure 3 plotted in blue, while the
TE-TE case is depicted in red. We compared the experimental
results (empty circles and squares) with numerical simulations
(dashed curves) carried out via integration of Eq. 1 together
with Maxwell’s equations. The dashed curves are the
corresponding predicted signals. In the absence of slower
nonlinearities or other spurious nonlinear effects, the results
of the simulations depicted in Figure 3 emerge for pulses only a
few tens of femtoseconds in duration, and remain insensitive to
pulse duration. Estimates of measured conversion efficiencies
for surface and magnetically induced SHG are of order 10−12,
and thus inconsequential to the retrieval of third order
nonlinear dispersion curves. If the sample is thicker than a
few tens of microns, reflected harmonic generation becomes
independent of sample thickness, because the pump is absorbed
faster than the round trip time necessary to trigger meaningful
cavity effects. Figure 3 suggests reasonably good agreement
between predictions and measured efficiencies, which are of
order 10−7, obtained by inserting β̃ ≈ 3.6 × 10−7 in Eq. 1. A
transmitted TH signal was also detected at 354 nm for both
polarization configurations, with efficiencies also of order 10−7.
The amplitude of the transmitted signal depends on sample
thickness because the pump is absorbed as it decays inside the
sample, a fact confirmed by our simulations. That
notwithstanding, the shape of the transmitted signal as a
function of incident angle is not altered regardless of
thickness. Our numerical results also confirm this. The TH

FIGURE 3 | Reflected TM-polarized TH for a TM-polarized FF (blue), TE-

polarized TH for a TE-polarized FF (red). Experimental results are plotted with

empty circles and squares; numerical simulations are depicted with

dashed lines.

FIGURE 4 | Real and imaginary parts of the complex χ(3)ω,MKS calculated

analytically via Eq. 6 (solid blue and red curves), and calculated via Eq. 3

(empty blue circles and red square markers).
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signal is tuned deep into the absorption range, but it is
nevertheless transmitted. The reason that a TH signal tuned
in the absorption range emerges from a silicon sample half a
millimeter in thickness is due to the generation of an
inhomogeneous component at the harmonic wavelength,
which propagates with the pump’s dispersion (Burns and
Bloembergen, 1971). Since the sample is semi-transparent to
the pump, the sample will also be semi-transparent at the
harmonic wavelength. This so-called phase-locked
component has been previously observed and discussed in
details in references Rodríguez-Suné et al. (2019), Scalora
et al. (2019), Scalora et al. (2015), Roppo et al. (2007),
Centini et al. (2008), Fazio et al. (2009), Roppo et al. (2009),
Roppo et al. (2011a), Roppo et al. (2011b).

In Figure 4 we compare χ(3)ω,MKS calculated using Eqs 3, 6, in
the visible and near-IR ranges. The inset shows contrast extended
well into the UV range. Both figure and inset show remarkably
good agreement between analytical results derived using the
nonlinear oscillator model, and the simulations performed
using ultrashort pulses. We note that while in the near-IR
range the magnitude of χ(3)ω,MKS is of order 10−17 (m/V)2 and
decreasing at longer wavelengths, near resonance at UV
wavelengths its amplitude is catapulted upward by nearly three
orders of magnitudes. The comparison between Eqs 5, 7 for
χ(3)3ω,MKS is shown in Figure 5, with maximum values occurring
near resonance. The agreement between analytical and retrieved
values is noteworthy. The nonlinear dispersion exhibited by
silicon in Figures 4, 5 is consistent with the THG efficiencies
reported above. A check may be performed by inserting the
retrieved complex nonlinear dispersion into an independent
plane wave model such as the one provided by the frequency-
domain, finite-element method (COMSOL Multiphysics). The
conversion efficiencies are reproduced just as reported in
Figure 3.

Gold
Using the same approach outlined above, we are now able to
compare analytical results for gold with our simulations, which in

turn are based on previously reported experimental results of
THG in nanometer-thick gold layers, probed with both
picosecond and femtosecond pulses (Rodríguez-Suné et al.,
2021). The situation is different for gold compared to
undoped silicon, because now a free electron gas and nonlocal
effects may contribute to the dielectric constant. This difference is
fully delineated in reference Rodríguez-Suné et al. (2021), where
the model is extended to include one free and two bound electron
species to the dielectric constant. Accordingly, Eq. 6 is modified
as follows:

χ(3)ω,gold �
3Λ̃

( − ω̃2 − ic̃freeω̃)
+

3β̃
4π2 (

ω̃ 2
p1

4π )
3

(ω̃2
01 − ω̃2 − ic̃b1ω̃)3(ω̃2

01 − ω̃2 − ic̃b1ω̃)

+

3β̃
4π2 (

ω̃ 2
p2

4π )
3

(ω̃2
02 − ω̃2 − ic̃b2ω̃)3(ω̃2

02 − ω̃2 − ic̃b2ω̃)
(8)

with a similar alteration to Eq. 7. The coefficient Λ̃ relates to the
nonlinear third order contributions of free (hot) electrons, whose
Fermi surface is modified as a result of increased free electron
density as a function of applied intensity (Rodríguez-Suné et al.,
2021).

In Figure 6A we show the linear gold dielectric constant data
found in reference Palik (1985), fitted using one Drude and two
Lorentzian functions, along with the data retrieved using our
model. The calculations are carried out at normal incidence on a
20 nm-thick gold layer, which was investigated in reference
Rodríguez-Suné et al. (2021) in the picosecond and
femtosecond regimes. Once again, the agreement between the
simulations and the observed data is notable. We remark that for
wavelengths longer than 1 μm some disagreements begin to
emerge in the Im(ε), that are likely due to slower
computational convergence as a result of the large values of
the dielectric constant. The imaginary parts of the nonlinear
dispersions depicted in Figures 6B,C also display a similar slight
divergence from the analytical results. However, the overall
agreement between analytical and numerical results is once
again quite remarkable. Nonlocal effects play a minor role for
these gold layer thicknesses. Once again, we note that the
retrieved nonlinear dispersion of gold in Figure 6 is consistent
with THG efficiencies reported in reference Rodríguez-Suné et al.
(2021).

Indium Tin Oxide
The measured local dielectric constant of ITO is displayed in
Figure 7A for a 20 nm-thick layer, along with a fit that includes
one Drude (free electrons) and one Lorentz oscillator (bound
electrons). The absorption resonance becomes discernible in the
data near 300 nm. The presence of the Lorentz resonance ascribes
an intrinsic, nonlinear third order response described by Eqs 6, 7,
usually neglected in typical theoretical treatments, but that
supplements and competes with the hot electron nonlinearity
(Scalora et al., 2020; Rodríguez-Suné et al., 2020), which in turn
accounts for a dynamic (time dependent) redshift of the free
electron plasma frequency. The relevance of nonlocal effects in

FIGURE 5 | Real and imaginary parts of the complex χ(3)3ω,MKS calculated

analytically via Eq. 7 (solid blue and red curves), and calculated via Eq. 5

(empty blue circles and red square markers).
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the electrodynamics of conducting oxides becomes conspicuous
in Figures 7B,C, where we plot the retrieved transverse and
longitudinal dielectric constants using our approach, for an
incident angle of 65° (Scalora et al., 2020; Rodríguez-Suné
et al., 2020). Additional absorption resonances can be seen to
form at wavelengths that correspond to the standing wave
conditions of the free electron gas component oscillating in
the longitudinal direction, which in turn affect nonlinear
dispersion. No analytical solutions equivalent to Eq. 8 are
known in the presence of nonlocal effects. At oblique
incidence, an expansion of the term β̃(Pbj · Pbj)Pbj must be
carried out into its vector and frequency components.
Assuming the simultaneous presence of the fundamental and
its generated harmonics, the basic requirement is to write the total
polarization as:

Pbj � j(Pω
ye

−iωt + (Pω
y)peiωt + P2ω

y e−2iωt + (P2ω
y )pe2iωt + P3ω

y e−3iωt + (P3ω
y )pe3iωt)

+ k(Pω
z e

−iωt + (Pω
z )peiωt + P2ω

z e−2iωt + (P2ω
z )pe2iωt + P3ω

z e−3iωt + (P3ω
z )pe3iωt)

(9)

We have assumed that fields and polarizations do not vary
along the transverse x coordinate. Then, following
straightforward manipulation of the vector product,
development of a cubic equation, and use of the constitutive
relation P � χE, Eqs 3, 5 take the following form:

χ(3)ω,y �
Pω
NL,y − χωLE

ω
NL,y

[
∣∣∣∣∣Eω

NL,y

∣∣∣∣∣2Eω
NL,y + (1/3)(Eω

NL,z)2(Eω
NL,y)p + (2/3)

∣∣∣∣Eω
NL,z

∣∣∣∣2Eω
NL,y]

χ(3)ω,z �
Pω
NL,z − χωLE

ω
NL,z

[∣∣∣∣Eω
NL,z

∣∣∣∣2Eω
NL,z + (1/3)(Eω

NL,y)2(Eω
NL,z)p + (2/3)

∣∣∣∣∣Eω
NL,y

∣∣∣∣∣2Eω
NL,z]

(10)

and

χ(3)3ω,y �
P3ω
NL,y − χ3ωL E3ω

NL,y

(Eω
NL,y)3 + (Eω

NL,z)2Eω
NL,y

χ(3)3ω,y �
P3ω
NL,z − χ3ωL E3ω

NL,z

(Eω
NL,z)3 + (Eω

NL,y)2Eω
NL,z

(11)

At normal incidence Eqs 10, 11 yield Eqs 3, 5. The curves
that correspond to Eq. 10 are plotted in Figure 8, while Eq. 11
are displayed in Figure 9. The strong oscillatory behavior that
characterizes especially the longitudinal nonlinear response in
Figure 8A is triggered by the nonlocal resonances seen in the
linear response of Figure 7. The THG data used to retrieve the
nonlinear dispersion depicted in Figures 8, 9 was obtained
using femtosecond pulses, and may be found in reference
Rodríguez-Suné et al. (2020). As we tune the pump away
from the ENZ condition, nonlocal effects are attenuated,
and the nonlinear response becomes more Lorentz-like. Our
previous report on harmonic generation from an ITO
nanolayer using femtosecond pulses suggests that at the

FIGURE 6 | (A) Real and imaginary parts of the complex dielectric constant of gold found in reference Palik (1985) (Solid curves), and as retrieved using our model

(markers). (B) Analytical (solid curves) and retrieved (markers) χ(3)ω,MKS; (C) Analytical (solid curves) and retrieved (markers) χ(3)3ω,MKS . In this case, β̃ � 1.2 × 10−6, with Λ̃ � 3.7

× 10−7, ε(ω̃) � 1 −
ω̃
2

p,free

(ω̃2
+ĩcfree ω̃) −

ω̃
2

p1

(ω̃2
−ω̃

2

01+ĩcb1 ω̃) −
ω̃
2

p2

(ω̃2
−ω̃

2

02+ĩcb2 ω̃), with (ω̃pfree , c̃free ) � (6.45, 0.05), (ω̃p1 , ω̃01 , c̃b1) � (3, 2.75, 0.1) and (ω̃p2 , ω̃02 , c̃b2) � (11, 3.3,0.75).
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ENZ condition THG conversion efficiencies are of similar
order of magnitude compared to THG efficiencies presently
recorded for the silicon wafer. A comparison between the
nonlinear dispersions that we have derived for the various
materials suggests that silicon may have the largest intrinsic
nonlinear third order response in the visible and UV ranges.

SUMMARY

We have presented a combined experimental and numerical
method that can be used to predict complex nonlinear
dispersion curves in almost any material, based exclusively on
the experimental determination of harmonic generation

FIGURE 7 | (A)Real and imaginary parts of the complex, local dielectric constant of a 100 nm-thick layer of ITO (markers). The solid curves are a Drude-Lorentz fit of

the data, which suggest the presence of an absorption resonance in the 200–300 nm range. Retrieved transverse (B) and longitudinal (C) dielectric constants obtained

at 65° angle of incidence. Nonlocal effects trigger anisotropic behavior, as outlined in Palik (1985). Nonlocal resonances are visible in both (B) and (C), and are more

pronounced in the longitudinal directions. For ITO, β̃ � 10-7, with Λ̃ � −1 × 10−8,ε(ω̃) � 1 −
ω̃
2

p,free

(ω̃2
+ĩcfree ω̃) −

ω̃
2

p1

(ω̃2
−ω̃

2

01+ĩcb1ω̃) with (ω̃pfree , c̃free ) � (1.5785, 0.1105)

and (ω̃p1 , ω̃01 , c̃b1 ) � (11.5, 7, 0.01).

FIGURE 8 | Real and imaginary parts of the (A) longitudinal and (B) transverse third order susceptibility experienced by the pump as a function of incident

wavelength. The oscillatory behavior reflects the oscillations that characterize the linear dielectric response shown in Figure 7. Just as in Figure 7, the oscillations occur

around the local nonlinear response obtained via Eq. 8 (not shown for clarity).
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conversion efficiencies. We used a hydrodynamic approach that
faithfully duplicates linear dispersion, and predicted the
wavelength dependent nonlinear response. The method is
particularly useful when analytical solutions are not available, as
is the case for conductive oxides like ITO, which displays nonlocal
effects that trigger an effective anisotropy, and extendable to second
order bulk nonlinearities. Our experimental results for THG
in silicon suggest that it is possible to exploit its large nonlinear
response in the visible and UV ranges, thus opening up new
prospects for silicon photonics (Scalora et al., 2019).
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