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Abstract: MERIS on Envisat delivers imaging spectroscopy data 
at 300m spatial resolution. MERIS has demonstrated its great 
potential for regional and global land cover mapping. This paper 
illustrates that the combination of the spatial, spectral, and 
temporal dimensions of MERIS has, in addition, the potential to 
retrieve sub-pixel land cover composition. Three MERIS FR 
Level 1b scenes acquired over The Netherlands in April, July and 
August 2003 were used in this study to derive fractional 
composition of 9 main land cover types. Linear spectral unmixing 
(with an optimized number of endmembers per pixel) was 
applied in both a mono- and multi-temporal fashion. A 
morphological eccentricity index (MEI) was used to explore the 
MERIS spatial dimension and, subsequently, to support the 
selection of the endmembers. The Dutch land use database 
(LGN5) was used as a reference in this study. Classification 
accuracy was assessed both at sub-pixel and per-pixel level. The 
best classification results were obtained for the combined image 
of April and July with a classification accuracy above 58%. In 
general, sub-pixel and per-pixel classification accuracies were 
similar. Spectral confusion was detected for several classes and 
dates indicating that the phenological status plays an important 
role in choosing the optimal acquisition date combination. 

1.  Introduction  
Information on land cover composition is essential to model 
and to understand the Earth system. Land cover maps are, for 
instance, a prerequisite to study spatial patters over large 
regions and to assess the impact of human activities over our 
environment or over the landscape condition. However, the 
current understanding of the global land cover and its 
dynamics is still far from complete. This is the reason why 
Earth observation missions have been focusing on land cover 
mapping since the very existing of the remotely sensed data.  
In this framework, the use of the Medium Resolution Imaging 
Spectrometer (MERIS) on board of Envisat has proven to have 
a great potential to map land cover at regional scales (Clevers 
et al., 2005). MERIS fulfils the information gap between the 
current high and low spatial resolution sensors because it 
provides global coverage data with a high frequency (revisit 
time two to three days) and with a spatial resolution of 300m 
(in full resolution or FR mode). MERIS has also 15 narrow 
bands ranging from the visible to the near-infrared regions of 
the electromagnetic spectrum. 

In general, traditional (per pixel) image classification methods 
have been applied to produce land cover classifications maps 
at regional to global scales. In this paper, the potential of 
MERIS to retrieve sub-pixel land cover composition is 
assessed. The spatial, spectral and temporal resolutions of 
MERIS FR data were combined to retrieve sub-pixel, or 
fractional, land cover information. This information is 
particularly interesting for very fragmented landscapes where 
distinct patters and changes can only be identified by using 
high spatial resolution data. Moreover, many of the land 
surface properties that are required to model the Earth system 
can be better derived from continuous composition maps than 
from traditional per pixel land cover maps.  

2. Materials and Methods  

A. Remotely-sensed  data  
A set of 3 MERIS FR level 1b (radiance TOA) images 
acquired over the Netherlands the 16th of April, the 14th of July 
and the 6th of August 2003 were used for this study. The 
images were first corrected from the smile effect and 
subsequently geo-referenced to the RD Dutch coordinate 
system using a nearest neighbor interpolation method. The 
quality of the geo-location metadata provided with the images 
was visually assessed by comparing the images with a 
reference dataset (a vector layer of province boundaries). As a 
result, a small shift in the image of August was discovered and 
corrected. After that, the images were layer stacked to create a 
multi-temporal dataset and a subset of 256 by 512 pixels 
covering the central part of the country was finally selected to 
perform all the analysis. 
Finally, bands 1, 2, 11 and 15 of each image were removed 
from the analysis because the first two are heavily 
contaminated by atmospheric scattering (bands in the blue) 
and the last two fall in absorption features (O2 and H2O, 
respectively). 

B. Reference data  
The latest version of the Dutch land use database (LGN5), 
which was released in June 2005, was used as reference in this 
study (Hazeu, 2005). The LGN5 has 39 classes, 25 m 
resolution, and it is based on multi-temporal classification of 
high resolution satellite data and integration of ancillary data. 



The overall classification accuracy of the LGN5 is still to be 
determined but preliminary results indicate that it will be, at 
least, equal to the one of the previous version which was 
between 85 and 90% depending on the land cover type. The 
original 39 classes of the LGN5 were aggregated into 9 main 
land cover classes: grassland, arable land, greenhouses, 
deciduous forest, coniferous forest, water, built-up areas, bare 
soil (mainly sand dunes), and natural vegetation. Next, a 
spatial aggregation (based on a majority filter) was done to 
match the MERIS FR pixel size. During the spatial 
aggregation process, the fractions of the different land cover 
types present in each MERIS pixel were computed so that a 
sub-pixel validation of the estimated fractional land cover 
composition could be done. 

C. Selection of the Endmembers 
Most of the methods that have been proposed in literature for 
the selection of pure land cover spectra, or endmembers, rely 
on the spectral information present in the image and, 
generally, they do not make use of the spatial information of 
the image that is going to be unmixed. In this paper, a spatial 
and spectral endmember extraction method called automated 
morphological endmember extraction (AMEE) was used 
(Plaza et al., 2002). The method is based on the use of 
multidimensional morphological operations. Its outcome is a 
morphological eccentricity index (MEI) at each pixel, which is 
used in this study to define spatially homogeneous areas from 
where spectral endmembers will be collected. Specifically, 
low MEI values belong to pixels situated in spectrally 
homogeneous areas whereas high MEI values are assigned to 
pixels whose spectral signature is different from the average 
signature of the surroundings of that pixel. 
In this study, we computed the MEI for each MERIS scene 
and for the multi-temporal dataset using a sliding window of 3 
by 3 pixels. After that, a threshold over the MEI values was 
set in order to define potential areas to search for endmembers. 
This threshold was empirically fixed to the lowest 10% values. 
Because the class greenhouses and bare soil occupy a very 
small proportion of the total surface (0.11% and 0.23%, 
respectively), a second threshold of the upper 10% of the MEI 
was used to identify these small and fragmented classes .    
Pixels which were labeled as potential candidates to become 
endmembers were then grouped by class using the LGN5 as a 
reference. After this, an outliers removal algorithm namely the 
Grubbs’ test was applied to each group. A final set of 
endmembers was generated by averaging the remaining pixels. 

D. Spectral unmixing 
Linear spectral unmixing was used in this study to derive 
fractional land cover composition because this method is 
relatively straightforward, and computationally fast. 
Furthermore, spectral unmixing has already demonstrated its 
capabilities to work with medium and low spatial resolution 
sensors (Lobell and Asner, 2004; DeFries et al., 2000).  
In this study, the unmixing method described by Ramsey and 
Christensen (1998) will be used. This method iteratively 
optimizes the number of endmembers that are used to retrieve 
the fractional composition of each pixel. An unconstrained 

least squares inversion is first performed for each pixel. After 
this, the endmembers that yielded negative abundances are 
removed from the analysis of that pixel. This process is 
iteratively repeated until no negative fractions are found and 
then, the retrieved fractions are re-scaled to fulfill the two 
classical constraints that ensure the physical interpretation of 
the results: fractions must be positive and below 1 and the sum 
of all the fractions must add to unity. 
This unmixing method was preferred because the algorithm is 
not “forced” to find abundances for all the endmembers in 
each pixel. Additionally, the removal of endmembers that 
yield negative fractions might result in a reduction of the 
spectral confusion of the remaining endmembers. In contrast, 
the residual errors might increase their value since the 
inversion will be performed with a limited number of 
endmembers (Ramsey and Christensen, 1998). Nonetheless, 
no large residuals are expected because no constraint is 
imposed during the least-squares inversion.  
This iterative endmember selection spectral unmixing was 
applied to both the mono- and multi-temporal MERIS FR 
datasets. The unmixing of the multi-temporal image (or 
temporal unmixing) was selected because in this way the 
different land cover types will not only be defined by their 
spectral signatures, but also by their temporal profile. If the 
appropriated dates are selected, this should increase the 
discrimination of spectrally similar land cover types since the 
seasonal variations of their spectral responses will be 
accounted for. 
The overall classification accuracy of the unmixed fractions 
was assessed both at sub-pixel and per-pixel level. To carry 
out the per-pixel assessment a mixed-to-pure-pixel-converter 
based on a majority rule was applied to the fractions.    

3. Results 
The spectral signatures of the main 9 land cover types of The 
Netherlands were identified using the MEI. Figure 1 
illustrates, as an example, the endmembers for the 16th of 
April image. 
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Figure 1.  Endmembers for the 16th of April 2003. 

The image of August, followed by July, presented the highest 
spectral confusion among endmembers. Arable land and 
grassland were the classes most confused. 
The iterative spectral unmixing resulted in 9 images 
containing the fractional abundances of the main land cover 



types, an image showing the spectral RMSE, and, finally, an 
image showing the number of endmembers that were used to 
unmix every pixel. By comparing this last image with the 
number of classes present in each (300m aggregated) pixel of 
the LGN5, it was concluded that the number of endmembers 
that were used during the unmixing was adequately identified.  
Table 1 shows the results of the accuracy assessment both at a 
sub-pixel and a per-pixel level. Notice that because a high 
confusion was found between built-up and greenhouses, these 
two classes were combined into a single built-up class.    
The best classification results were obtained for the combined 
image of April and July (Figure 2 (right)). This indicates the 
necessity of defining appropriates rules for the optimal 
selection of the number of dates and the dates that should be 
used in a temporal unmixing because, as shown in Table 1, 
increasing the number of dates does not imply a higher 
classification accuracy.   
 

 
Figure 2.  LGN5 (left) and hard classification of the April + July image 
(right). 

Sub-pixel classification accuracy for the best classified image 
is illustrated in figure 3. Water has the best mean sub-pixel 
classification accuracy followed by grassland. However, most 
of the classes present a large variation in sub-pixel accuracy 
(Table 1). Bare soil and natural vegetation were the two worst 
classified classes.   
 

 
Figure 3.  Sub-pixel classification accuracy for the April + July image 

 

TABLE I.  ACCURACY ASSESSMENT 

 MSA (%) OA (%) Kappa 
16th  April 55.37 (33.27) 55.38 0.461 
14th July 49.42 (34.22) 49.43 0.391 
6th Aug 48.94 (33.95) 46.04 0.390 
16th April + 14th July 57.79 (30.27) 58.03 0.486 
16th April + 14th July + 6th Aug 47.84 (33.55) 47.72 0.375 

MSA: mean sub-pixel classification accuracy; MSA standard deviation values are shown between 
brackets. OA: overall (per-pixel) classification accuracy.  

4. Conclusions and Outlook 
In this paper we have demonstrated that through an effective 
integration of the spatial, spectral and temporal dimensions of 
MERIS imagery it is possible to retrieve (regional) fractional 
land cover composition.  
Despite the moderate classification accuracies obtained in this 
study, the results are considered to be promising because (in 
contrast to traditional classifiers) sub-pixel information on 
relevant land cover types was obtained. However, the 
selection of the dates (and the number of dates) to be used 
during the unmixing needs to be optimized. Moreover, 
operational ways to use the temporal dimension should be 
further explored. 
The findings presented here should support the use of soft 
classifiers to map fragmented landscapes with medium to low 
spatial resolution sensors. Future research will investigate the 
use of (ground collected) spectral libraries, the use of the 
temporal information in an incremental/hierarchical way, and 
the use of fractional information to detect land cover changes 
at sub-pixel level.  
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