
Retrieving Top-k Prestige-Based Relevant
Spatial Web Objects

Xin Cao† Gao Cong† Christian S. Jensen‡

†School of Computer Engineering, Nanyang Technological University, Singapore
xcao1@e.ntu.edu.sg, gaocong@ntu.edu.sg

‡Department of Computer Science, Aarhus University, Denmark
csj@cs.au.dk

ABSTRACT
The location-aware keyword query returns ranked objects that are
near a query location and that have textual descriptions that match
query keywords. This query occurs inherently in many types of
mobile and traditional web services and applications, e.g., Yellow
Pages and Maps services. Previous work considers the potential
results of such a query as being independent when ranking them.
However, a relevant result object with nearby objects that are also
relevant to the query is likely to be preferable over a relevant object
without relevant nearby objects.

The paper proposes the concept of prestige-based relevance to
capture both the textual relevance of an object to a query and the
effects of nearby objects. Based on this, a new type of query, the
Location-aware top-k Prestige-based Text retrieval (LkPT) query,
is proposed that retrieves the top-k spatial web objects ranked ac-
cording to both prestige-based relevance and location proximity.

We propose two algorithms that compute LkPT queries. Em-
pirical studies with real-world spatial data demonstrate that LkPT
queries are more effective in retrieving web objects than a previous
approach that does not consider the effects of nearby objects; and
they show that the proposed algorithms are scalable and outperform
a baseline approach significantly.

1. INTRODUCTION
Studies suggest that at least some 20% of all web queries have

local intent, meaning that the queries target local content. In step
with the web being used increasingly by mobile users, this percent-
age can be expected to increase. Next, geo-positioning is increas-
ingly available for mobile devices, e.g., by means of built-in GPS
receivers. This enables web users who query for local content to
provide their locations to services. Search engines already recog-
nize local intent, and specialized services, e.g., maps and yellow-
page services, that target local content continue to proliferate. For
example, travel sites such as TripAdvisor and TravellersPoint offer
services that enable users to find hotels with particular facilities and
located in particular regions.

Several proposals already exist for the querying for geo-located

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

web content, termed spatial web objects. A location-aware key-
word query takes a location and specified keywords as arguments
and returns web objects that are ranked according to both spatial
proximity and text relevance relative to the query. Some propos-
als [10,21] view keywords as Boolean predicates, filtering out web
objects that do not contain the keywords and ranking the remaining
objects based on their spatial proximity to the query. Other propos-
als [7, 8] combine spatial proximity and textual relevance using a
linear ranking function.

Existing work treats objects as independent when ranking them
for a given query. However, spatial web objects are not indepen-
dent. A relevant object whose nearby objects are also relevant to
the query is preferable when compared to a relevant object with-
out relevant nearby objects. One reason is that if the object a user
chooses to visit does not work out then there are other nearby rel-
evant objects. Another is that a user may intend to visit several
objects (e.g., to compare prices). For example, a user may prefer to
visit a location with many restaurants or shops instead of a location
with only one restaurant or shop.

A preference for clusters of relevant objects may explain the phe-
nomenon that similar businesses tend to co-locate. For example, car
dealerships tend to co-locate. We speculate that they benefit from
the spatial proximity: together, they attract more customers to such
an extent that this compensates for the increased competition.

It is the objective of this paper to support this phenomenon in
spatial web search. This is done by developing a notion of object
“prestige” that takes into account the presence of nearby objects
that are also relevant to a query. This notion of prestige is then
used for the ranking of the query results.

We believe that this is the first study on supporting this inter-
object relationship in location-aware keyword querying. However,
in non-spatial web search, inter-document relationships have been
exploited to improve effectiveness of document retrieval. For ex-
ample, a PageRank-like algorithm is applied to the document sim-
ilarity graph (built based on document similarity rather than web
links), thus significantly improving the effectiveness of document
retrieval [18] and question answers [9].

A further benefit of supporting this notion of prestige is that even
if the description of an object does not contain the query terms,
the object can still be identified as relevant. This occurs if the ob-
ject has a text description that matches those of nearby objects that
in turn contain the query terms. For example, consider a query
for “spring roll” and two close objects with descriptions “best Chi-
nese restaurant in Boston” and “Chinese restaurant offering spring
rolls.” The two descriptions are similar, and the latter contains the
query term. So although the first object’s description does not con-
tain the query term, the object is identified as relevant to the query.

373

To illustrate the effect of supporting prestige-based object rele-
vance, consider the query “shoes” at location P in Figure 1. Circles
represent shops selling shoes or jeans, with centers representing
locations and areas representing relevance to the query. Existing
spatial keyword search techniques (e.g., [8]) rank R5 as the top-1
result since R5 is relevant and closest to P. However, R4 is more
attractive because it has more nearby shops that are relevant to the
query and also is close to the query location.

Figure 1: Prestige propagation example
In our proposal for prestige-based relevance (denoted as PR) of

objects to queries, the PR score of an object is affected by the PR
scores of its neighbors. This motivates us to employ a PageRank-
like random walk mechanism for the propagation of prestige.

Conceptually, given the example query above, the PR scores of
the objects are computed as follows: We build a graph with the
objects as the nodes. Two nodes are connected by an edge if the
objects are close and their text descriptions are similar. Myriads
of random surfers are initially placed at the nodes that contain the
query term “shoes” (i.e., R4, R5, R6, R7). The number of random
surfers at a node is proportional to the textual relevance between the
node and the query, which is the initial prestige-based relevance of
the node. At each step, each random surfer either moves to an ad-
jacent node following a link in the graph with a certain walking
probability (depending on the distance between the nodes), or it
randomly jumps to the initial set of nodes containing “shoes” with-
out following any link, again with a certain probability (depending
on the well-known damping factor [5]). The expected percentage
of surfers at each node eventually converges, and the converged
percentage of surfers at a node represents the PR score of the node.

The concept of PR is inspired by the concept of personalized
PageRank [16], where a subset of web pages share the initial pres-
tige uniformly (rather than all web pages as in PageRank), and its
applications to keyword search in Entity-Relation graphs [1, 6].

The above random walk process has unique features that ren-
der a direct application of PageRank [5] inadequate. PageRank is
used to compute the objects’ global importance, which is query-
independent, and it has no preferences for any particular nodes. Our
problem is very different: each query has a set of preference objects
based on the initial relevance scores, and thus random surfers start
from this set of objects and jump to them. For example, given a
“jeans” query at point P, R1 is the best result rather than R4, which
is best if the query is for “shoes.”

We propose a new type of query, called the Location-aware top-k
Prestige-based Text retrieval (LkPT) query, that takes into account
both location proximity and prestige-based text relevance (PR). The
query retrieves a list of k objects ranked according to their spatial
distances and PR scores with respect to the query.

The LkPT query is expensive to compute, especially due to the
PR scores. A straightforward approach to computing the LkPT
query is to adapt the algorithms for computing Personalized PageR-
ank Vectors (PPVs) [1, 4, 6, 12, 16] to computing the PR scores of
all objects in the spatial object graph, to use an R-tree for comput-

ing spatial distances, and then to combine the two scores. How-
ever, this solution is expensive. First, it is expensive to compute
PR scores for a large graph at query time using existing algorithms
for PPVs. Second, it is impractical to pre-compute PPVs for each
node in terms of either pre-computation time or the storage require-
ments [16]—|V |2 space is needed to store the PPVs for all objects.
Third, it is a waste to compute the spatial distance and PR scores of
all objects and then rank them to find the top-k results.

We note that the spatial object graph has unique properties that
render it different from the web link graph [16] and the entity-
relation graph [1, 6].

• Similar spatial objects often co-locate geographically. For
example, shops often co-locate, as do, e.g., bars. Therefore,
spatial objects tend to naturally form subgraphs.

• The number of nodes in a subgraph is constrained by geog-
raphy. Thus, subgraphs will be of relatively modest size.

Properties like these enable us to develop approaches that speed
up PR scoring. We propose two novel algorithms for the efficient
computation of the LkPT query.

ES-EBC (Early stop extended bookmark coloring): We prove
that if the distance between a node and the query point exceeds a
certain threshold, the node will not affect the PR scoring of the top-
k objects. Therefore, we need only consider nearby nodes when
propagating PR, which speeds up the PR scoring substantially. We
also show how to estimate lower and upper bounds on the PR score
of each object in each iteration during scoring. Utilizing these
bounds, we derive conditions for when further iterations will not
change the ranking order of the top-k objects and we stop iterating.

S-EBC (Subgraph-based extended bookmark coloring): We
propose an approximate solution to PR scoring with performance
guarantees. We organize spatial objects and their text descriptions
using the external memory IR-tree [8]. Hence, the spatial objects
are grouped into subgraphs based on their locations, with each sub-
graph corresponding to a leaf node of the IR-tree. We prove that
the PR scores of the nodes in a subgraph can be computed by PR
propagation within the subgraph and contributions from the border
objects that connect the subgraph with other subgraphs. This en-
ables PR scoring w.r.t. subgraphs rather than on the whole graph.
Next, we propose a novel approach to estimating an upper bound
on the PR scores of the objects in each subgraph. This bound to-
gether with the distance of a subgraph to the query is used to choose
which subgraphs to process and in which order.

Empirical studies with real data offer insight into the effective-
ness of LkPT queries and the efficiency of the proposed algorithms.

The rest of the paper is organized as follows. Section 2 defines
the LkPT query. Section 3 details the proposed algorithms. In Sec-
tion 4, we report on the empirical studies. Section 5 concludes, and
an appendix offers a variety of additional detail.

2. PROBLEM DEFINITION
Let D be a set of spatial objects. Each object o in D has a text

description o.ψ and a location o.µ. Similarly, a Location-aware
top-k Prestige-based Text retrieval (LkPT) query Q = 〈ψ, µ〉 has a
location Q.µ and a set of keywords Q.ψ.

Let Dist(Q, o) denote the Euclidean distance between the loca-
tions of query Q and object o, and let Sim(Q, o) denote the rel-
evance between the keyword component of query Q and the text
description of object o. We use the Vector Space Model [23], one
of the most popular ranking functions, for computing Sim(Q, o),
while using the TF-IDF weighting scheme to represent the text de-
scriptions of objects (details are in Appendix A).

374

To compute the PR scores of objects, we define a weighted, undi-
rected graph G = (V, E) overD, where each node in V corresponds
to a spatial object and edge set E includes an edge 〈oi, oj〉 iff the
following two conditions are satisfied: 1) Dist(oi, oj) ≤ λ and 2)
Sim(oi, oj) ≥ ξ, where λ and ξ are threshold parameters. The
weight of edge 〈oi, oj〉 in E is Dist(oi, oj).
Prestige-Based Relevance (PR). The final PR vector ~p fulfills the
following equation:

~p = (1− α)CT~p + α ~uQ,

~uQ = [v1, ..., v|D|]
T , vi = Sim(Q, oi), 1 ≤ i ≤ |D|, (1)

where C is the normalized adjacency matrix of graph G such that∑
j∈V C(b, j)= 1, where C(b, j) represents the normalized weight

from node b to node j; and column vector ~uQ is the initial PR vec-
tor in which each element is the relevance of an object.

Parameter α represents the probability of a random surfer jump-
ing to the set of initially relevant spatial objects (vi > 0) instead of
following the edges in the graph. Interestingly, parameter α can be
used to balance the relevance of an object and the effect of its rel-
evant neighbors, i.e., the parameter allows for tuning according to
user-specific requirements. In particular, smaller values of α favor
objects with nearby relevant objects, while larger values of α favor
objects with high initial PR scores.

To understand the random walk process for each object b, its PR
score ~p(b) can be rewritten as follows:

~p(b) = α ~uQ(b) + (1− α)
∑
j∈V

C(j, b)~p(j), (2)

where ~uQ(b) is the initial PR score of b.
The iterative computation diffuses the PR score of each object

across the graph. In the beginning, each object gets its initial PR
score according to its text relevance to the query. At each step, an α
fraction of the PR score is held by each node, while the remaining
(1−α) flows by following the links of the graph. This propagation
continues until all the prestige is distributed cross the graph. The
final PR scores take into account both the original relevance scores
and the effect of neighbor nodes.

The PR vector is inspired by the of personalized PageRank vec-
tor (PPV) [16] of preference vector ~uQ. In the original PPV [16],
a set of preferred objects in the preference vector are assigned uni-
form initial scores, while we assign an initial score to an object that
is in proportion to its text relevance to the query.
LkPT Query Definition. Intuitively, an LkPT query retrieves k ob-
jects from database D ranked according to a combination of their
distances to the query location and their PR scores for the query.
Formally, given a query Q = (ψ, µ), where Q.ψ is a location
descriptor and Q.µ is a set of keywords, the objects returned are
ranked according to a ranking function f(Dist(Q, o), Pr(Q, o)),
where Dist(Q, o) is the Euclidian distance between Q and o and
Pr(Q, o) is the PR score of o with respect to Q. An LkPT query
becomes an LkT query [8] in the extreme case of α = 1 (Equa-
tion 2), i.e., we disregard the effects of nearby relevant objects.
Problem Statement. We address the problem of efficiently an-
swering LkPT queries.

The paper’s proposals are applicable to a wide range of rank-
ing functions that are monotone with respect to the distance prox-
imity Dist(Q, o) and the PR score Pr(Q, o). We follow existing
work [8,20] and use a linear combination of the normalized factors
for ranking an object o with respect to a query Q:

RS(Q, o) = (1− β)(1− Pr(Q, o)) + β
Dist(Q, o)

maxD
(3)

where β ∈ (0, 1) is used to balance the PR score and the loca-
tion proximity; Euclidian distance Dist(Q, o) between query Q

and object o is normalized to a value between 0 and 1 by a con-
stant maxD, which can be the maximum distance between two
objects in D or the maximum distance that can be accepted by the
users; and Pr(Q, o) is the PR score of object o w.r.t. query Q and
usually takes a value between 0 and 1. This function computes the
ranking score of each object given an LkPT query.

Note that parameter β allows to set the preference between the
PR score and the location proximity at query time.

3. PROPOSED SOLUTIONS
3.1 Baseline Algorithm

As a baseline, we present an improvement of the straightforward
solution mentioned in the introduction.

In the straightforward solution, we compute PR scores for all
objects and the distances between all objects and the query, upon
which we rank the objects based on the combined scores. We focus
on computing the costly PR scores.

We choose to adapt the bookmark-coloring algorithm (BCA) [4],
an elegant algorithm for computing PPVs, to computing the PR
scores. We first extend the in-memory BCA algorithm to work in
secondary memory. We read the graph in large blocks that each
exploit the memory available, and do the iterative propagation in
a per-block manner. The computation stops when the termina-
tion condition for the graph is met. A block is likely to be read
and written multiple times since it may receive PR scores from
other blocks that need to be distributed. Second, we BCA, which
works on unweighed graph for a single preferred object, to sup-
port PR score computation for a general preference vector ~uQ on a
weighted graph.

Algorithm 1 details the resulting Extended BCA (EBC) algo-
rithm. Let ~p denote the PR score that each object already has, let
~q denote the PR score that each object needs to distribute, and let
outPR be the vector of the sum of the PR scores that need to be
distributed in each graph block.

Algorithm 1 EBC(Q)
Input: query Q
Output: The PR score of each object
1: compute the text relevance of each object to Q and compute ~uQ

2: ~q ← ~uQ, ~p ← ~0, outPR ← ~0
3: blockQueue← NewPriorityQueue()
4: for each object b do outPR(b.block) ← outPR(b.block) + ~q(b)
5: for each block bg do blockQueue.Enqueue(bg)
6: while ‖~q‖1 ≥ ε do
7: bgi = blockQueue.Dequeue()
8: read the graph block bgi

9: outPR(bgi) ← 0
10: Queue ← NewQueue()
11: for each object n s.t. n ∈ bgi and ~q(n) > 0 do
12: Queue.Enqueue(n)
13: while not Queue.Empty() do
14: b ← Queue.Dequeue()
15: if ~q(b) > ε then
16: ~p(b) ← ~p(b) + α~q(b)
17: for each out-neighbor j of b do
18: if ~q(j) = 0 and j ∈ bgi then Queue.Enqueue(j)
19: outV ← (1− α)C(b, j)~q(b)
20: ~q(j) ← ~q(j) + outV
21: if j /∈ bgi then
22: outPR(j.block) ← outPR(j.block) + outV
23: ~q(b) ← 0
24: blockQueue.Update()
25: return ~p

We compute the text relevance of each object to the query Q
using an inverted list index and then construct the preference vec-

375

tor ~uQ according to Equation 1 (line 1). We use a priority queue
blockQueue whose key is the accumulated outgoing PR score that
needs to be propagated in each block (lines 4–5). In each graph
block, we modify the propagation mechanism of BCA to accom-
modate edge weights and multiple objects in the preference vector.

We use a queue Queue to store the objects that have PR scores
that need to be distributed (lines 10–12). Specifically, for the PR
~q(b) that needs to be distributed at an object b, we assign α~q(b) to
b (line 16) and (1 − α)~q(b) to its neighbors according to the edge
weights (lines 17–20). We update the PR score that needs to be
distributed for each block (lines 21–22).

When the PR score of each object that needs to be distributed is
smaller than the propagation threshold ε, we stop the propagation
within a block (line 15). When the PR score to be distributed is
smaller than the tolerance threshold ε (line 6), we stop the propa-
gation over the graph and return PR vector ~p, each element of which
represents the PR score Pr(Q, o) of object o. We thus use ε and ε
as the termination conditions, as in BCA [4] and its variant [13].

This method is inefficient because it computes PR scores and dis-
tances for all objects. The PR scores of objects are inter-dependent
and need to be computed together, while the distance scores can
be computed individually. Thus, inspired by the Threshold algo-
rithm [11], we develop two improved baseline algorithms that avoid
unnecessary distance score computations. These two algorithms
are covered in Appendix B.1.

3.2 Early Stop EBC Algorithm (ES-EBC)
PR scores are much more costly to compute than distances be-

cause they require iterations over possibly large graphs. We thus
proceed to propose two new techniques for speeding up the com-
putation of PR scores. First, we show how to stop the iterative
PR score computation early, using a new stopping condition (The-
orem 1). Second, we show how to disregard objects further away
from the query than a certain distance (Theorem 2). All proofs are
found in Appendix C.

As before, let ~p denote the vector of the PR score that each object
already has, and let ~q denote the vector of the outgoing PR score
that each object needs to distribute.

LEMMA 1. Let ~pi(b) denote the PR score of object b in the i-th
iteration during PR scoring. Then ~pi(b) ≤ ~pi+1(b).

LEMMA 2. Given an object b, the final PR value ~̂p(b) of b and
the value ~pi(b) of b in the i-th iteration fulfill the following:

~pi(b) ≤ ~̂p(b) ≤ ~pi(b) + α2max(~qi) + (1− α)‖~qi‖1,
where max(~qi) is the maximum element in ~qi in the i-th iteration,
and ‖ · ‖1 is the 1-norm.

Lemma 2 follows previous work [13]. The current ranking score
CRS(b) of an object b is computed according to Equation 3 at the
current (i-th) iteration of PR scoring. We estimate lower and upper
bounds on the ranking score for each object in the i-th iteration as
follows:

Upper(b) = CRS(b)

Lower(b) = CRS(b)− (1−β)(α2max(~qi) + (1−α)‖~qi‖1)
(4)

The upper bound holds because the distance between an object and
the query is constant, while its PR score increases in each iteration
(Lemma 1). We obtain the lower bound based on Lemma 2 and
Equation 3.

THEOREM 1. Let priority queue Lr record the current top-(k+
1) objects seen, the key being the objects’ PR scores. It is guar-
anteed that the top-k objects have been found if the k-th and the

(k + 1)-st objects, represented by Lr(k) and Lr(k + 1), respec-
tively, satisfy the following condition:

Upper(Lr(k)) < Lower(Lr(k + 1))

The PR score computation stops iterating when the condition
in Theorem 1 is satisfied, i.e., the current top-k objects all have
smaller final ranking scores than those of all other nodes.

THEOREM 2. Given a query Q, a set of candidate objects C,
and a spatial cell Ωi, objects contained in Ωi can be disregarded
during propagation if the following is satisfied:

minDist(Q, Ωi) > λ log1−α

ε

outC(Ωi)
+ Dist(Q, os),

where minDist(Q, Ωi) is the minimum distance between Q and Ωi,
λ is the distance threshold used when building the object graph; α
and ε are as explained in Algorithm 1; os is the object in C furthest
away from query Q; and outC(Ωi) stores the aggregated PR score
that needs to be distributed in Ωi.

The condition stated in Theorem 2 guarantees that the objects in
cell Ωi will neither become top-k results nor affect the PR scores
of the top-k results. Thus, the objects in the cell can be disregarded
during the propagation of scores.

The algorithm that exploits the early stopping conditions first di-
vides the graph into blocks according to the locations of the spatial
objects such that each block fits into memory. Each block is fur-
ther divided into a grid of spatial cells. Then nearest neighbors are
retrieved incrementally [14] using the R*-tree [3]. For each near-
est neighbor object o, the block graph containing o is read cell by
cell: for each cell the algorithm checks whether it can be pruned
according to Theorem 2; if it cannot, it reads the part of the graph
corresponding to the cell. Then it iterates in the block to get the
local PR scores for the objects in the block.

The algorithm keeps track of the current top-(k + 1) objects.
When the ranking score of the k-th object is smaller than the lower
bound (the minimum possible) ranking score of the current nearest-
neighbor object o, i.e., ∆ = β Dist(Q,Lr(k))

maxD
), the nearest-neighbor

retrieval stops because no unseen object has a lower ranking score
than has object o (since unseen objects no closer to the query than
o) and thus cannot be a top-k object.

This way, we obtain a set of candidate top-k objects. However,
these do not necessary constitute the final result since PR scores
were only propagated inside a block. We need to propagate the PR
scores across blocks while still using Theorems 1 and 2. Additional
explanations and pseudo-code are available in Appendix B.2.

3.3 Subgraph-Based EBC Algorithm (S-EBC)

3.3.1 Overview of the Algorithm
Recall that the baseline and ES-EBC algorithms need to propa-

gate PR scores on the whole graph. To compute PR scores within
some selected subgraphs, we develop several techniques.

First, we show that PR scores can be computed by the combi-
nation of two parts: the PR score propagation within a subgraph
and the PR contributed by the propagations from other subgraphs,
which can be computed from pre-computed distribution vectors of
the border nodes that connect the subgraph with other subgraphs
(see Section 3.3.2). This enables us to compute PR scores with
respect to a subgraph.

Second, we propose an approach to identifying the subgraphs
that need to be checked to find the top-k results, thus avoiding
checking all subgraphs. This is enabled by a novel approach to
estimating upper bound PR scores of objects in a subgraph, given a
query.

376

Specifically, we organize the spatial objects by extending the ex-
ternal memory IR-tree [8]. The spatial objects are grouped into
subgraphs so that each subgraph corresponds to a leaf node of the
IR-tree. We enrich the nodes of the tree with pre-computed infor-
mation (see Section 3.3.3) and show that by utilizing this informa-
tion, we can compute an upper bound PR score at each node for a
query.

The upper bound PR scores together with the distance of a sub-
graph to the query are used to choose which subgraphs to process
at query time. If the best estimated ranking score of nodes in a sub-
graph exceeds (the smaller a score, the better) the score of the k-th
object, the subgraph cannot contribute to the top-k results and can
be pruned.

Based on this, we propose an approximate algorithm with perfor-
mance guarantees for answering LkPT queries (see Section 3.3.4).
The approximation occurs because we do not process all subgraphs.

3.3.2 Subgraph-Based PR Scoring
We present a decomposition method that enables us to compute

PR scores with regard to subgraphs.
Assume that we have already partitioned the graph G into m sub-

graphs G1, ..., Gm (to be discussed in Section 3.3.3). Let border(Gi)
be the set of border objects of Gi that connect Gi with other sub-
graphs. Also, let H be the set of the border objects of all subgraphs,
i.e., H =

⋃
i∈[1,m] border(Gi).

For each border object b, we pre-compute and store a vector ~GPb

that describes how to distribute the unit initial PR score from b over
the whole graph. Note that the number of border objects is much
smaller than the number of objects in the database. In a vector ~Prb,
most of the elements are 0 since in spatial graphs, a node b usually
only affects the objects in nearby subgraphs. We do not need to
store the value 0.

We proceed to show that the PR score vector of an object, which
is assigned the unit initial PR score, can be computed by propaga-
tion within its subgraph together with the propagations contributed
by the border nodes, which we capture in pre-computed PR score
vectors of border nodes. We denote the PR scores computed within
a subgraph as the local PR scores (~LP), and we denote the PR
scores on the whole graph as the (global) PR scores (~Pr). We have
the following lemma and theorem:

LEMMA 3. Given a node b and a subgraph Gi containing ob-
ject b, we can compute the PR score vector of b as follows:

~Prb = ~LPrb +
∑

h∈border(Gi)

~APb(h) · ~Prh,

where ~APb(h) is the accumulated PR score of border node h dur-
ing the local propagation within subgraph Gi.

THEOREM 3. Given a query Q, its PR score vector is computed
as:

~PrQ =

m∑
j=1

∑
o∈Gj

Sim(Q, o)(~LPro +
∑

h∈border(Gj)

~APo(h) · ~Prh)

Sim(Q, o) is the similarity of query Q and the description of object
o according to the vector space model (Appendix A).

Theorem 3 allows us to decompose the computation of PR scor-
ing. Given a query Q and a subgraph, we compute the text rel-
evance to Q of each object in the subgraph. We distribute these
scores following the links within the subgraph: when we reach a
border node, the node accumulates the value distributed to it; if
we meet a non-border node in the subgraph, we increase its PR

score by a portion of the scores and distribute the rest to its out-
neighbors, as in Algorithm 1. Having processed all subgraphs (i.e.,
we distribute PR scores within each subgraph), we use the global
PR vector of each border object in a subgraph to update the PR
scores for all the objects according to Theorem 3.

3.3.3 Indexing and Ranking Score Estimation
To efficiently process an LkPT query, we need to organize the

spatial objects into subgraphs. We proceed to briefly introduce the
index structure used for organizing objects and then focus on how
to estimate an upper bound PR score for each node for a single-term
as well as a multi-term query.
Index structure—IR-tree. We extend the IR-tree [8] index struc-
ture to organize spatial objects and capture the pre-computed in-
formation needed for upper bound estimation. It is also used to
partition the graph.

A leaf node L in the IR-tree contains a number of entries of the
form 〈o, o.µ〉, where o is the identifier of an object and o.µ is the
bounding rectangle of the object. A leaf node corresponds to a
subgraph and contains a pointer to the subgraph at the node and the
global PR score vector of the border objects of the subgraph.

A non-leaf node R contains a number of entries of the form
〈cp, Ω〉, where cp points to a child node and Ω is the minimum
bounding rectangle of all rectangles of entries in the child node.

Each node contains a pointer to an inverted file that describes the
objects in the subtree rooted at the node. The inverted file for a
node X contains: 1) A vocabulary of all distinct terms in the text
descriptions of the objects in the subtree rooted at X . 2) A set of
posting lists, each of which relates to a term t. Each posting list is a
sequence of pairs 〈cp, wtcp,t〉, where cp is a child of X and wtcp,t

is the upper bound PR score of objects in the subtree rooted at cp
for term t.

It is challenging to develop an effective approach to estimating
the upper bound PR score of a node even for a single-keyword
query (i.e., wtcp,t), much less a multi-keyword query. It is com-
putationally prohibitive to pre-compute the exact PPVs for each
object [16], and this also holds for PR score vectors since they need
similar computation. Note that the purpose of pre-computing and
storing the upper bounds is that we can then utilize them to prune
the search space at query time for an LkPT query (this will become
clear shortly).
Upper bound PR score for single-keyword queries. We first con-
sider a leaf node; it is straightforward to derive an upper bound for
a non-leaf node from those of its child nodes. We estimate the up-
per bound for a leaf node by the sum of the upper bound PR scores
from the propagation within the node and the maximum contribu-
tion from other subgraphs. Let L be a leaf node that corresponds
to a subgraph Gi. Let maxGPr(t, L) denote the estimated upper
bound PR score of the objects in L for (query) term t. To estimate
maxGPr(t, L), we need the initial PR score of a subgraph Gi for a
query term t, denoted as IPS(t,Gi).

DEFINITION 1. The initial PR score of Gi for t is computed as
follows:

IPS(t,Gi) =
∑
o∈Gi

Sim(t, o)

Here, Sim(t, o) is the similarity between term t and the description
of object o according to the Vector Space Model (Appendix A).

We first present a lemma on how to estimate a maximum local
PR score within a subgraph Gi given a query term t. This is the PR
score without considering the effects of other subgraphs.

LEMMA 4. The maximum local PR score maxLPr(t,Gi) can
be estimated as:

377

maxLPr(t,Gi) =
1 + α− α2

2− α
max
o∈Gi

(Sim(t, o))

+
1− α

2− α
IPS(t,Gi)

Here, maxo∈Gi(Sim(t, o)) is the largest initial PR score in sub-
graph Gi for term t.

Based on this lemma, we get the following theorem.

THEOREM 4. We estimate maxGPr(t,Gi), the global upper
bound PR score of an object in Gi for t, as follows:

maxGPr(t,Gi) = maxLPr(t,Gi)+∑

j 6=i

IPS(t,Gj) · max
bn∈border(Gj),b∈Gi

(~Prbn(b))

IPS(t,Gi) is computed according to Definition 1, and IPS(t,Gj)·
maxbn∈border(Gj),b∈Gi

(~Prbn(b)) represents the maximum possi-
ble PR score that can be propagated from Gj to a node in Gi.

We can now explain the weight wtcp,t in the inverted file. At
a leaf node X , the upper bound of each object cp is computed as
Sim(cp.ψ, t) (defined in Appendix A); At the parent node X of a
leaf node, wtcp,t = maxGPr(t, Gcp) (computed according to The-
orem 4). For other nodes, wtcp,t is the largest PR score among the
child nodes of cp, i.e., maxR∈cp.children() wtt,R.
Upper bound PR score for multi-keyword queries. Based on the
pre-computed upper bound PR score for a single keyword query,
we propose an approach to estimating the upper bound PR score
for a multi-keyword query.

LEMMA 5. Given a subgraph Gi, we compute its initial PR
score (IPS) for a query Q as follows:

IPS(Q,Gi) =
∑

t∈Q.ψ
⋂Gi.ψ

wQ.ψ,t

WQ.ψ
IPS(t,Gi),

where wQ.ψ,t and WQ.ψ are defined in Appendix A and IPS(t,Gi)
is computed according to Definition 1.

Lemma 5 provides a way of computing the initial PR scores of a
query Q in a subgraph Gi. We proceed to present how to estimate
the upper bound PR score of each node in the IR-tree for a query
Q.

DEFINITION 2. Given a query Q and a node X in an IR-tree,
the largest possible PR score of objects in X , maxPr(Q, X), is
defined as:

maxPr(Q, X) =
∑

t∈Q.ψ
⋂

X.ψ

wQ.ψ,t

WQ.ψ
maxGPr(t, X),

where wQ.ψ,t and WQ.ψ are defined in Appendix A.
THEOREM 5. Given a query Q and a leaf node X that encloses

a set of objects XO = {o1, . . . , om}, the following holds:
∀o ∈ XO; (maxPr(Q, X) ≥ Pr(Q, o))

We proceed to present the minimum spatial-PR score distance,
minRS, which is needed for the query processing. Given a query
Q and a node X in the IR-tree, the metric minRS offers a lower
bound on the actual spatial-PR score distance between query Q
and the objects in node X . This bound can be used to order and
efficiently prune the search space in the index.

DEFINITION 3. Given a query Q and a node X , the minimum
spatial-PR distance, denoted by minRS(Q, X), is defined as:

minRS(Q, X) = (1−β)(1−maxPr(Q, X))+β
Dist(Q.µ, X.Ω)

maxD

Here, maxPr(Q, X) is the upper bound PR score of objects in X
for query Q (cf. Definition 2).

THEOREM 6. Given a query Q and a node X whose rectangle
encloses a set of objects XO = {o1, . . . , om}, the following is true:

∀o ∈ XO; (minRS(Q, X) ≤ RS(Q, o))

The extended IR-tree used in this paper and the original IR-
tree [8] share a similar data structure. However, the inverted files
in the two indexes store different contents. The novelty of the ex-
tended IR-tree is its approach to estimating upper bound PR scores.

3.3.4 Subgraph-Based EBC Algorithm (S-EBC)
We proceed to describe the S-EBC algorithm that exploits the

techniques just presented.
The main idea is to choose subgraphs that are more likely to con-

tain top-k results for a query Q and then compute the PR scores in
the selected subgraphs. For a node X in the IR-tree, we estimate its
largest possible PR score according to Definition 2, and we com-
pute its distance to the query. Thus, we can compute the smallest
possible ranking score (minRS(X, Q) in Definition 3; the smaller
the score, the better).

We use a priority queue queue to keep track of the nodes that
have yet to be visited; the smallest possible ranking score is used
as the key. When the head of the queue is a leaf node, i.e., its
corresponding subgraph Gi has the lowest possible ranking score,
we process the subgraph using the approach from Section 3.3.2.
When the propagation within the subgraph completes, we have a
local PR score for each object in Gi, and we use the PR scores held
by the subgraph’s border objects to update the global PR scores of
all the objects (for object o, according to Theorem 3).

We proceed to process the next subgraph using the priority queue.
The processing continues until the smallest possible ranking score
of the unvisited head node of the priority queue exceeds the ranking
score of the current k-th result; we can then stop since no unvisited
object can become a top-k result.

It is guaranteed that the unprocessed subgraphs (leaf nodes) do
not contain top-k objects. However, they may affect the PR scores
of the current top-k objects. To ensure this effect is within a cer-
tain bound, some postprocessing is needed. When building an IR-
tree, we append the following pre-computed information to each
leaf node (subgraph Gi) of the IR-tree: a set of the IDs of the sub-
graphs that affect Gi, denoted by Gi.Near and a factor describing
the maximum possible effect of a subgraph on an object in Gi (e.g.,
for a subgraph Gj , the factor is maxbn∈border(Gj),b∈Gi

(~Prbn(b)),
according to Theorem 4).

In the postprocessing, we find the set SS of subgraphs con-
taining the current top-k objects. For each subgraph Gi in SS,
we then find Gi.Near, the set of subgraphs that affect the PR
scores of objects in Gi. For each subgraph Gj in Gi.Near, if it
is not yet processed, we compute its maximum possible effect on
an object in Gi, denoted by maxEF(Gj ,Gi), according to Theo-
rem 7. We sort the subgraphs in Gi.Near in ascending order of
maxEF(Gj ,Gi), and we then find the m-th subgraph for which
SumErr =

∑
j=[1,m−1] maxEF(Gj ,Gi) < σ and SumErr +

maxEF(Gm,Gi) ≥ σ.
Then starting from the m-th subgraph, for each subgraph in the

sorted Gi.Near, we do local propagation and update the PR scores
of objects. We then update the list of the current top-k objects.
If new objects are in the top-k and their corresponding subgraphs
are not in SS, we include these subgraphs in SS and repeat the
above steps until we have processed all subgraphs in SS. The post-
processing ensures that the maximal possible error in the ranking
score of each top-k object is smaller than the error bound σ.

378

THEOREM 7. Given a query Q, the maximum possible PR score
that subgraph Gj can propagate to an object in Gi is:

maxEF(Gj ,Gi) = IPS(Q,Gj) max
bn∈border(Gj),b∈Gi

(~Prbn(b))

Pseudo-code and further explanations are given in Appendix B.3.

4. EXPERIMENTAL STUDY
4.1 Experimental Settings
Algorithms. In addition to the two proposed algorithms, ES-EBC
and S-EBC, we compare with the two baseline approaches in Ap-
pendix B.1. As Baseline 1 outperforms Baseline 2 significantly, we
only report results for Baseline 1 and refer to this as “Baseline.”
Data and queries. We use three datasets that are real or based on
real datasets. Table 1 shows some properties ff the datasets; addi-
tional descriptions are provided in Appendix D. Hotel is a small
dataset while GN is much bigger. The objects in both datasets have
short descriptions. Web is a medium-sized dataset whose objects
have long descriptions. We evaluate our approaches on these three
different datasets.

Property Hotel Web GN
Total number of objects 20,790 579,727 1,868,821

Total number of unique words 602 2,899,175 222,409
Total number of words 80,845 249,132,883 18,374,228

Table 1: Dataset properties

We generate 4 query sets, in which the number of keywords is
1, 2, 3, and 4, respectively, in the space of GN, and we generate
4 similar query sets for the space of Spam and Hotel. Each set
comprises 200 queries, and each query is randomly generated. We
report average costs of the queries in each query set.
Setup. The IR-tree index structure is disk resident, and the page
size is 16KB. The number of children of a node in the IR-tree is
computed given the fact that each node occupies a page. This trans-
lates to 400 children per node in our implementation. The default
values for parameters are as follows: k is 10, the number of query
keywords is 2, α is 0.5 (Equation 2), and β is 0.5 (Equation 3) for
all algorithms. S-EBC needs an extra parameter σ (to control its
error bound; Section 3.3.4) that is set to 0.0001. Two threshold pa-
rameters for building graphs λ and ξ (Section 2) are set at 2 km and
0.5, respectively.

All algorithms were implemented in VC++, and run on an In-
tel(R) Core(TM)2 Duo CPU T7500 @2.66GHz with 2GB RAM.

4.2 Experimental Results
The reported results are on GN if not stated otherwise.

Varying k in LkPT. Figure 2 show the results of varying k when
using the default settings for the other parameters.. Note that the
y-axis uses a logarithmic scale.

We can see that ES-EBC and S-EBC significantly outperform
(by an order of magnitude) the baseline for all values of k. ES-EBC
performs better than the baseline due to the early stopping of prop-
agation and punning of cells during score propagation. S-EBC out-
performs the other two methods since it computes PR scores w.r.t.
selected subgraphs rather than the whole graph as do the other two
methods. As expected, the runtimes of all the approaches increase
slightly with increasing k.
Varying the number of keywords. Figure 3 shows that ES-EBC
and S-EBC outperform the baseline for different numbers of key-
words. All algorithms need more time as the number of keywords
increases since they need to process more words.
Varying α. Figure 4 shows that ES-EBC and S-EBC significantly
outperform the baseline for all values of α. We also note that the

 1

 10

 100

 1000

 10000

 100000

 1e+006

1 10 20 30 40

R
un

tim
e

(m
ill

is
ec

on
ds

)

top-k

Baseline
ES-EBC

S-EBC

Figure 2: Varying k

 1

 10

 100

 1000

 10000

 100000

 1e+006

1 2 3 4
R

un
tim

e
(m

ill
is

ec
on

ds
)

number of words

Baseline
ES-EBC

S-EBC

Figure 3: Varying # keywords

runtime increases as α decreases. This is because it takes longer
for the propagation to converge with a smaller α.

Recall that parameter α can balance the relevance of an object
versus the effect of its relevant neighbors. In particular, smaller val-
ues of α favor nodes with nearby relevant nodes, while larger values
of α favor nodes with high initial PR scores. At one extreme, when
α = 1, the LkPT query is essentially the same as LkT query [8] that
does not consider the effect of nearby relevant objects. Hence, we
can see the overhead of considering the inter-relationships between
objects by comparing with the runtime at α = 1
Varying β. Figure 5 shows the results. Parameter β in Equation 3
allows users to set their preferences between the PR score and spa-
tial proximity. A large β means that the spatial distance is more
important, while a small β means that the PR score is more impor-
tant.

As expected, ES-EBC and S-EBC perform better for larger β—
they benefit from spatial proximity being given higher weight. When
spatial proximity is given very low weight, ES-EBC nearly cannot
prune any cell, and S-EBC nearly cannot prune any subgraph and
needs process the entire IR-tree.

Scalability. To evaluate scalability, we generate 5 datasets contain-
ing from 2 to 10 million data points: we generate new locations
by copying the locations in GN to nearby locations while maintain-
ing the real distribution of the objects; and for each new location,
a document is selected at random from the text descriptions of the
objects in GN. Figure 6 shows that ES-EBC and S-EBC scale lin-
early with the size of the dataset, but that Baseline does not scale.

Summary on other experiments. The following experiments are
included in Appendix D: Experiments on Web and Hotel. The re-
sults on the two datasets are consistent with those on GN. Varying
the parameters for building graphs. When we increase λ or re-

379

 1

 10

 100

 1000

 10000

 100000

 1e+006

0.1 0.3 0.5 0.7 1

R
un

tim
e

(m
ill

is
ec

on
ds

)

α

Baseline
ES-EBC

S-EBC

Figure 4: Varying α

 1

 10

 100

 1000

 10000

 100000

 1e+006

0.1 0.3 0.5 0.7 0.9

R
un

tim
e

(m
ill

is
ec

on
ds

)

β

Baseline
ES-EBC

S-EBC

Figure 5: Varying β

0

50

100

150

200

250

300

2M 4M 6M 8M 10M

R
un

tim
e

(s
ec

.)

number of objects

Baseline
ES-SBC

E-SBC

Figure 6: Scalability with data size

duce ξ (to generate denser graphs), the runtime of all algorithms in-
creases since PR score propagation takes longer to complete. Space
requirements. Baseline and ES-EBC use the same disk space, while
S-EBC needs more space. Effectiveness of LkPT queries. Both ES-
EBC and S-EBC are more effective than a previous method that
does not consider prestige propagation.

5. RELATED WORK
We briefly cover the most closely related work; Appendix E of-

fers additional coverage.
Spatial Keyword Search. Local search services, such as Google
Maps and Yahoo! Local, allow the retrieval of local commercial
content, e.g., relating to shops and restaurants, for a given query
consisting of a location and a set of keywords. However, the algo-
rithms used are not available. Similar applications include online
yellow pages, online travel websites, and hotel search websites. Re-
cent studies [7, 8, 10, 21, 22] on geographical retrieval address the
problem of spatial keyword search. No existing work on spatial
keyword search takes into account the inter-relationships among
spatial objects.
Personalized PageRank. Jeh and Widom [16] propose the PPV
concept and remark that pre-computing and storing all PPVs is im-
practical, as is computing PPVs at query time, since the compu-
tation of PPV needs an iterative computation over the web graph.
Several algorithms [4, 12, 13, 16] have been proposed to compute
the personalized PageRank vector (PPV). However, Langville and
Meyer [19] write in a well-known survey “If the holy grail of real-
time personalized search is ever to be realized, then drastic speed
improvements must be made, perhaps by innovative new algorithms.”
PPVs are also used for keyword queries in entity-relation graphs [1,
6], as surveyed in Appendix E.

6. CONCLUSIONS
We propose a new type of query, the LkPT query, that retrieves

the top-k spatial web objects ranked according to both location
proximity and so-called prestige-based relevance that considers both
the text relevance of an object to a query and the presence of nearby
objects that are relevant to the query. We develop two baseline algo-
rithms and propose two new algorithms to process the LkPT query.
Results of empirical studies on real data demonstrate the effective-
ness of LkPT the query and the efficiency of the new algorithms.

In future research, it is of interest to provide support for updates,
as well as to consider the effect of nearby objects on rankings for
other types of queries.

Acknowledgments
The research was conducted when the authors were employed at
Aalborg University, Denmark. C. S. Jensen is an Adjunct Professor
at University of Agder, Norway.

7. REFERENCES
[1] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank:

authority-based keyword search in databases. In VLDB,
pp. 564–575, 2004.

[2] Z. Bar-Yossef and L.-T. Mashiach. Local approximation of pagerank
and reverse PageRank. In CIKM, pp. 279–288, 2008.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: an efficient and robust access method for points and
rectangles. In SIGMOD, pp. 322–331, 1990.

[4] P. Berkhin. Bookmark-coloring algorithm for personalized
PageRank computing. Internet Math., 3(1):41–62, 2006.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. Comput. Netw. ISDN Syst., 30(1-7), 1998.

[6] S. Chakrabarti. Dynamic personalized PageRank in entity-relation
graphs. In www, pp. 571–580, 2007.

[7] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in
geographic web search engines. In SIGMOD, pp. 277–288, 2006.

[8] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k
most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

[9] G. Cong, L. Wang, C.-Y. Lin, Y.-I. Song, and Y. Sun. Finding
question-answer pairs from online forums. In SIGIR, pp. 467–474,
2008.

[10] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDE, pp. 656–665, 2008.

[11] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[12] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. Towards scaling
fully personalized pagerank: Algorithms, lower bounds, and
experiments. Internet Math., 2(3):333–358, 2005.

[13] M. Gupta, A. Pathak, and S. Chakrabarti. Fast algorithms for top-k
personalized PageRank queries. In WWW, pp. 1225–1226, 2008.

[14] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM TODS, 24(2):265–318, 1999.

[15] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of
IR techniques. ACM TOIS, 20(4):422–446, 2002.

[16] G. Jeh and J. Widom. Scaling personalized web search. In WWW,
pp. 271–279, 2003.

[17] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub.
Exploiting the block structure of theweb for computing PageRank.
Stanford University Technical Report 2003-17.

[18] O. Kurland and L. Lee. Pagerank without hyperlinks: structural
re-ranking using links induced by language models. In SIGIR,
pp. 306–313, 2005.

[19] A. Langville and C. Meyer. Deeper inside PageRank. Internet Math.,
1(3):335–380, 2004.

[20] B. Martins, M. J. Silva, and L. Andrade. Indexing and ranking in
Geo-IR systems. In GIR, pp. 31–34, 2005.

[21] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and
M. Kitsuregawa. Keyword search in spatial databases: Towards
searching by document. In ICDE, pp. 688–699, 2009.

[22] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index
structures for location-based web search. In CIKM, pp. 155–162,
2005.

[23] J. Zobel and A. Moffat. Inverted files for text search engines. ACM
Comp. Surv., 38(2):6, 2006.

380

APPENDIX
A. VECTOR SPACE MODEL

The vector space model is defined as follows.

Sim(Q.ψ, o.ψ) =

∑
t∈Q.ψ

⋂
o.ψ wQ.ψ,two.ψ,t

WQ.ψWo.ψ
, where

wQ.ψ,t = ln(1 +
|D|
ft

), wo.ψ,t = 1 + ln(tft,o.ψ)

WQ.ψ =

√∑
t

w2
Q.ψ,t, Wo.ψ =

√∑
t

w2
o.ψ,t

(5)

Here ft is the number of objects whose text descriptions contain
the term t, and tft,o.ψ is the frequency of term t in o.ψ. wo.ψ,t

corresponds TF and wQ.ψ,t corresponds to IDF.

B. ALGORITHMS

B.1 The Two Baseline Algorithms
Baseline 1: This algorithm computes PR scores of all objects and
uses an R*-tree to incrementally compute the nearest neighbor in a
second stage.

When computing the PR scores, the algorithm obtains a list LPR

that ranks the objects involved in ascending order of their scores.
The algorithm then incrementally finds nearest neighbors [14] us-
ing the R*-tree and checks the PR scores of the objects in LPR,
until further objects will not become top-k results.

The tricky part is when to stop finding nearest neighbors. The
algorithm maintains the minimum PR score in LPR, denoted by
minPR, that has not been “seen” so far, and it maintains the com-
bined ranking score (defined in Equation 3) of the current k-th ob-
ject, denoted by ξ.

For a newly “seen” object with spatial distance d , if the com-
bined score (the lower the score, the better) computed from d and
the current minPR exceeds ξ, the algorithm stops since it is guar-
anteed that all “unseen” objects will not have lower scores than the
current k-th object (and thus cannot be in the result).
Baseline 2. This algorithm computes the PR scores of all objects,
thus obtaining a list LPR that ranks them in ascending order of their
scores. The list is then scanned to compute the spatial proximity to
the query until further scanning will not generate top-k results.

During the scan, the algorithm keeps track of the combined rank-
ing score of the current k-th object, denoted by ξ. For a new object
o, if its PR score exceeds ξ, the algorithm stops since all objects af-
ter o in LPR will have a score that exceeds ξ; otherwise, we retrieve
its location, compute its combined ranking score (Equation 3), and
compare with ξ to update ξ if needed.

B.2 Pseudo-Code of ES-EBC
The pseudo-code of Early Stop EBC (ES-EBC) is shown in Al-

gorithm 2. The variables ~p, ~q, and outPR are as in Algorithm 1.
We use a priority queue Lr with the ranking score as its key to keep
track of the current top-(k + 1) objects, and we use a vector ~Ld to
store the distances of the objects to the query.

We use an R*-tree index to incrementally find the next nearest
object b to query Q (line 7). Termination occurs when the smallest
possible ranking score (its distance to query) of the next object is
larger than the current ranking score of the k-th object (lines 8–10).

We check whether the graph block containing b can be pruned
according to Theorem 2 (lines 11–13). If the block graph bgi can-
not be pruned, we do the propagation within the block using the

same propagation mechanism as in lines 8–23 of Algorithm 1, and
maintain the top-(k + 1) objects.

If object o is a nearest neighbor that has been accessed (i.e.,
~Ld(o) > 0), we compute its ranking score and update Lr (lines 16–

18).
After we find the set of candidate top-k objects, the algorithm

proceeds to propagate the outgoing PR of each block in the graph
(lines 19–34). When the upper bound of the k-th object is smaller
than the lower bound of the (k + 1)-st object (line 32), we will
stop the propagation and return the top-k objects in Lr according
to Theorem 1. Note that although Theorem 2 is used in line 13, it
is also applied in line 25 to prune block graphs since outPR(gbi)
can be changed with the propagation.

Algorithm 2 ES-EBC (rtreeIndex, k, Q)

Input: query Q, R*-tree rtreeIndex, result size k
Output: top-k objects Lr

1: compute the text relevance of each object to Q and ~uQ

2: ~q ← ~uQ, ~p ← ~0, Ld ← ~0, outPR ← ~0
3: for each object b do
4: outPR(b.block) ← outPR(b.block) + ~q(b)
5: Lr ← NewPriorityQueue(); Initialize Lr with k + 1 objects whose

key values are ∞
6: while true do
7: b ← rtreeIndex.NextNearestNeighbor(Q)
8: Ld(b) ← Dist(Q, b)

9: if CRS(Lr(k)) ≤ β ∗ Ld(b)
maxD

then
10: break
11: bgi ← b.block
12: Os ← furthest object in the current top-k
13: pruneDist ← λ log1−α

ε
outPR(bgi)

+ Ld(Os)

14: if bgi is not processed AND
Dist(Q, bgi) < pruneDist then

15: do propagation on bgi as in lines 8–23 of Algorithm 1
16: for each object o s.t. o ∈ bgi and Ld(o) > 0 do
17: CRS(o) ← (1− β) ∗ (1− ~p(o)) + β ∗ Ld(o)

maxD
18: update Lr with o and CRS(o)
19: blockQueue← NewPriorityQueue()
20: for each block bg do
21: blockQueue.Enqueue(bg)
22: while ‖~q‖1 ≥ ε do
23: bgi = blockQueue.Dequeue()
24: Os ← the furthest object in the current top-k
25: pruneDist ← λ log1−α

ε
outPR(bgi)

+ Ld(Os)

26: outPR(bgi) ← 0
27: if Dist(Q, bgi) < pruneDist then
28: do propagation on bgi as in lines 8–23 of Algorithm 1
29: for each object o s.t. o ∈ bgi and Ld(o) > 0 do
30: CRS(o) ← (1− β) ∗ (1− ~p(o)) + β ∗ Ld(o)

maxD
31: update Lr with o and CRS(o)
32: if CRS(Lr(k)) < CRS(Lr(k + 1))− (1− β) ∗ (α2max(~q) +

(1− α)‖~q‖1) then
33: break;
34: blockQueue.Update()

B.3 Pseudo-Code of S-EBC
The pseudo-code of Subgraph-based EBC (S-EBC) is given in

Algorithm 3.
We use ~p to store the current PR score of each object, ~s to store

the accumulated PR score (to be distributed) of the border nodes,
and a priority queue queue to keep track of the nodes to be visited
(lines 1–3).

In each step, we dequeue a node X from queue. If the minimum
possible ranking score spRS of this node exceeds the ranking score
of the current k-th object, we terminate the algorithm and return the

381

results (lines 7–8).
If the node is a non-leaf node, we compute the smallest possi-

ble ranking score for each of its child nodes and enqueue them in
queue (lines 10–12). Otherwise, we process the subgraph corre-
sponding to the leaf node X by doing the PR score propagation
within the subgraph and accumulating the PR scores for border ob-
jects (lines 17–27).

In lines 28–32 the global PR score vectors of border objects are
used to distribute the accumulated PR scores at the border objects.
We update the rankings of all the objects that have been accessed
(lines 33–35) because the propagation in the current subgraph Gi

may increase the PR of the objects in other subgraphs. To ensure
that the maximal possible error in the ranking score of each top-k
object is smaller than the error bound σ, we do postprocessing as
discussed in Section 3.3.4 (line 36).

Algorithm 3 S-EBC (index, k, Q)

Input: query Q, IR-tree index, result size k,
Output: top-k objects Lr

1: ~p ← ~0, ~s ← ~0,seenObjects = ∅, and initialize a list Lr

2: queue ← NewPriorityQueue()
3: queue.Enqueue(index.rootNode, 0)
4: while not queue.Empty() do
5: X ← queue.Dequeue()
6: spRS ← minRS(Q, X)
7: if spRS ≥ Lr(k) then
8: break
9: if X is a non-leaf node then

10: for each entry child in X do
11: spRS ← minRS(Q, child)
12: queue.Enqueue(child, spRS)
13: else
14: read the corresponding graph Gi of X
15: seenObjects ← seenObjects ∪ {o|o ∈ X}
16: ~q ← ~u(Gi)
17: while ‖~q‖1 ≥ ε do
18: Pick an object b in Gi

19: if b ∈ border(Gi) then
20: ~s(b) ← ~s(b) + ~q(b)
21: else
22: ~p(b) ← ~p(b) + α~q(b)
23: for each out-neighbor j of b do
24: ~q(j) ← ~q(j) + (1− α)C(b, j)~q(b)

25: CRS(b) ← (1− β)(1− ~p(b)) + β
Dist(Q,b)

maxD
26: update the position of b in Lr

27: ~q(b) ← 0
28: for each object o in border(Gi) do
29: read the global PR vector ~GP o of object o

30: ~p ← ~p + ~s(o) ~GP o

31: CRS(o) ← (1− β)(1− ~p(o)) + β
Dist(Q,o)

maxD
32: update the position of o in Lr

33: for each node o in seenObjects do
34: CRS(o) ← (1− β)(1− ~p(n)) + β

Dist(Q,o)
maxD

35: update the position of o in Lr

36: do the postprocessing
37: return Lr

C. PROOFS OF LEMMAS, THEOREMS
Proofs of Lemmas 1 and 2

Lemma 1 holds because in each PR scoring iteration, a node will
increase its current PR score. The proof of Lemma 2 follows from
related work [13].

Proof of Theorem 1
Given a query Q, we have RS(Q, Lr(k +1)) ≥ Lower(Lr(k +

1)) and RS(Q, Lr(k)) ≤ Upper(Lr(k)).

Together with the condition in the theorem, we also have that
RS(Q, Lr(k)) < RS(Q, Lr(k + 1)). Consider an object m in
Lr[1, k − 1] and an object n not in Lr . Because CRS(m) ≤
CRS(Lr(k)) ≤ CRS(Lr(k + 1)) ≤ CRS(n) and because of
Equation 4, we have Upper(m) ≤ Upper(Lr(k) < Lower(Lr(k+
1)) ≤ Lower(n). Thus, we have RS(Q, m) < RS(Q, n).

Proof of Theorem 2
According to the triangle inequality, we have Dist(os, Ωi) ≥

|Dist(Q, Ωi) − Dist(Q, os)|. Hence, the minimum number of
edges in the path from Os to gb is |Dist(Q,Ωi)−Dist(Q,os)|

λ
.

In each propagation, an object will distribute the fraction (1−α)
of it PR score to other objects by following its out-edges. There-
fore, it follows that an upper bound on the effect of Ωi on os is

outPR(Ωi)(1 − α)
|Dist(Q,gb)−Dist(Q,os)|

λ . If the upper bound is
smaller than ε, the effect of graph block Ωi on os can be ignored
(the effect on other objects in C is even smaller). From the inequal-
ity relationship between the upper bound and ε, when a block graph
is far away, we can get:

Dist(Q, Ωi) > λ log1−α

ε

outPR(Ωi)
+ Dist(Q, os),

which complete the proof.

Proof of Lemma 3
We have that ~Prb = ~Prb(Gi) + ~Prb(G −Gi), where ~Prb(Gi) rep-

resents the distribution to nodes excluding the border nodes in Gi,
and ~Prb(G − Gi) represents the distribution to the rest nodes.

When we finish distributing the PR in subgraph Gi, all the border
nodes in Gi hold their accumulated PR scores that have not yet
distributed to other subgraphs. The nodes in other subgraphs (G -
Gi) are affected by these border nodes, and thus ~Prb(G − Gi) =∑

h∈border(Gi)
~APb(h) · ~Prh(G −Gi). The PR scores of the nodes

in Gi come from two parts: the PR distribution within Gi, and the
distribution of the accumulated PR scores of the border nodes in
Gi. Hence, we have ~Prb(Gi) = ~LPb +

∑
h∈border(Gi)

~APb(h) ·
~Prh(Gi). We get the proof by adding ~Prb(Gi) and ~Prb(G − Gi).

Proof of Theorem 3
Similar to the linearity property of PPV [16], the linearity prop-

erty also holds for the PR score vector. Hence, we can compute
~PrQ as follows:

~PrQ =
∑
O∈D

Sim(Q, O) ~PrO

According to Lemma 3, we obtain:

~PrQ =

m∑
j=1

∑
O∈Gj

Sim(Q, O) ~PrO

=

m∑
j=1

∑
O∈Gj

Sim(Q, O)(~LPO +
∑

h∈border(Gj)

~APO(h) · ~Prh)

Proof of Lemma 4
The largest PR score is generated in the following situation:
One node has the largest initial PR maxO∈Gi(Sim(t, O)). It dis-

tributes this value, and its out-neighbors gain at most IPS(t,Gi)−
α maxO∈Gi(Sim(t, O)) PR; then the out-neighbors propagate at
most (1− α) (IPS(t,Gi)− α maxO∈Gi(Sim(t, O))) to the node,
and the node keeps the fraction α of this value, and it distributes
the fraction (1 − α). In the next propagation, the out-neighbors
send back (1 − α)3(IPS(t,Gi) − α maxO∈Gi(Sim(t, O))). This

382

process continues until no PR needs to be propagated. The total PR
the node finally holds is:

maxLPr(t,Gi) = α max
O∈Gi

(Sim(t, O)) + α(((1− α) + ...+

(1− α)2n+1 + ...)(IPS(t,Gi)− α max
O∈Gi

(Sim(t, O))))

=α max
O∈Gi

(Sim(t, O))

+
α ∗ (1− α)

1− (1− α)2
(IPS(t,Gi)− α max

O∈Gi

(Sim(t, O))))

=
1 + α− α2

2− α
max
O∈Gi

(Sim(t, O)) +
1− α

2− α
IPS(t,Gi)

Proof of Theorem 4
According to Lemma 3, the largest PR score from the propaga-

tion within Gi is maxLPr(t,Gi).
We next consider the effect of other subgraphs. The maximum

effect of subgraph Gj on Gi occurs if a certain border node in Gj

gets the initial prestige IPS(t,Gi). This is because all the effect of
Gj on Gi is from border nodes. Each global PR vector of a bor-
der node in Gj describes its effect on nodes in Gi. We find the
largest value from all the global PR vectors of border nodes, i.e.,
maxbn∈border(Gj),b∈Gi

(~Prbn(b)), and this is the maximum possi-
ble PR that can be propagated from Gj to a node in Gi.

Combining the two parts completes the proof.

Proof of Lemma 5

IPS(Q,Gi) =
∑

O∈Gi

Sim(Q, O)

=
∑

O∈Gi

∑

t∈Q.ψ
⋂

O.ψ

wQ.ψ,twO.ψ,t

WQ.ψWO.ψ

=
∑

t∈Q.ψ
⋂Gi.ψ

∑
O∈Gi

wQ.ψ,twO.ψ,t

WQ.ψWO.ψ

=
∑

t∈Q.ψ
⋂Gi.ψ

wQ.ψ,t

WQ.ψ

∑
O∈Gi

wO.ψ,t

WO.ψ

and we know Sim(t, O) =
wt,twO.ψ,t

wt,tWO.ψ
=

wO.ψ,t

WO.ψ
, so:

IPS(Q,Gi) =
∑

t∈Q.ψ
⋂Gi.ψ

wQ.ψ,t

WQ.ψ

∑
O∈Gi

Sim(t, O)

=
∑

t∈Q.ψ
⋂Gi.ψ

wQ.ψ,t

WQ.ψ
IPS(t,Gi)

Proof of Theorem 5
Given any object o ∈ XO and any term t, it holds true that

maxGPr(t, X) ≥ Pr(t, o). Therefore,

maxPr(Q, X) =
∑

t∈Q.ψ
⋂

X.ψ

wQ.ψ,t

WQ.ψ
maxGPr(t, X)

≥
∑

t∈Q.ψ
⋂

o.ψ

wQ.ψ,t

WQ.ψ
Pr(t, o) = Pr(Q, o)

Proof of Theorem 6
Given any object o ∈ XO, we know that maxPr(Q, X) ≥

Pr(Q, o), according to Theorem 5. Because o is contained in the
region X.Ω, we have Dist(Q.µ, X.Ω) ≤ Dist(Q, o). Hence we
get minRS(Q, X) ≤ RS(Q, o).

Proof of Theorem 7
It holds that the maximum possible effect of Gj on Gi is a factor

of maxbn∈border(Gj),b∈Gi
(~Prbn(b)). Multiplied by the total pres-

tige of Gj , we can get the maximum PR that Gj can propagate to an
object in Gi.

D. SUPPLEMENTARY EXPERIMENTS

D.1 Additional Dataset Details
Dataset GN is from the U.S. Board on Geographic Names (geon-

ames.usgs.gov). An object is a location with a geographic name.
Dataset Web is generated from two datasets. One is WEBSPAM-
UK20071 that consists of a large number of web documents; the
other is a spatial dataset containing the tiger Census blocks in Iowa,
Kansas, Missouri, and Nebraska (www.rtreeportal.org). We ran-
domly combine web documents and spatial objects to get the Web
dataset. Dataset Hotel contains spatial objects that represent hotels
in the US (www.allstays.com). Each object has a location and a set
of words that describe the hotel (e.g., restaurant, pool).

D.2 Experiments on Web and Hotel
Due to space limitations, we only give the results when varying k

and the number of keywords. Figures 7-10 show that ES-EBC and
S-EBC significantly outperform the baseline on the two datasets.

D.3 Space Requirements
Table 2 shows the total sizes of the index structures used by each

method for data set GN. Baseline and ES-EBC use the same in-
dexes (inverted list and R*-tree) and object graph. S-EBC needs
more disk space to store the PR vectors for border objects and the
inverted lists in non-leaf nodes. The inverted files in the leaf nodes
of the IR-tree are roughly the inverted file used in the baseline ap-
proach.

Baseline ES-EBC S-EBC
201 201 1423

Table 2: Index structure sizes (MB)

D.4 Effectiveness
To study the utility of LkPT queries, we compare with the LkT

query [8]. The difference between LkPT and LkT [8] is that the
former considers the effect of nearby relevant objects, while the
latter does not.
The utility of LkPT queries. The lack of a publicly available test
data, including both annotated resources and relevant queries, ren-
ders the comparison of the different approaches particularly chal-
lenging. To enable comparison, we collected a real spatial data set
from the region of Aalborg, Denmark using a local Yellow Page ser-
vice (www.degulesider.dk), where each object has category (e.g.,
restaurant, hotel) and a description; we geocoded the objects using
the Google Maps API. The dataset contains 4,951 objects with a
total of 39,505 descriptive words. This dataset has the benefit that
we can find expert annotators for it.

We randomly generate 50 locations in the space and ask annota-
tors to choose keywords for each, thus obtaining 50 queries.

To evaluate the quality of query results, we use a well-known
metric, the nDCG [15]. The top 5 objects returned by ES-EBC, S-
EBC, and LkT [8] are merged into a single list, shuffled, and then
given to three annotators for judgment. Numerical scores of 0, 1, 2,
and 3 are collected and averaged to reflect the annotators’ opinions
as to whether an object belongs in the top 5.

In LkPT (ES-EBC and S-EBC), α and β are set as to their default
value of 0.5, and in LkT [8], the parameter that balances distance
and text relevance (corresponding to β in LkPT) is set to 0.5.

1barcelona.research.yahoo.net/webspam/datasets/uk2007

383

 1

 10

 100

 1000

 10000

 100000

 1e+006

1 10 20 30 40

R
un

tim
e

(m
ill

io
n

se
c.

)

top-k

Baseline
ES-EBC

S-EBC

Figure 7: Varying k (Web)

 1

 10

 100

 1000

 10000

 100000

 1e+006

1 2 3 4

R
un

tim
e

(m
ill

io
n

se
c.

)

number of words

Baseline
ES-EBC

S-EBC

Figure 8: Varying # keywords
(Web)

 0

 500

 1000

 1500

 2000

1 10 20 30 40

R
un

tim
e

(m
ill

is
ec

on
ds

)

top-k

Baseline
ES-EBC

S-EBC

Figure 9: Varying k (Hotel)

 0

 500

 1000

 1500

 2000

1 2 3 4

R
un

tim
e

(m
ill

is
ec

on
ds

)

number of words

Baseline
ES-EBC

S-EBC

Figure 10: Varying # keywords
(Hotel)

Table 3 depicts the results. Both ES-EBC and S-EBC perform
significantly better than LkT queries that do not take into account
the effects of nearby relevant objects. The approximate S-EBC al-
gorithm performs slightly worse than ES-EBC.

ES-EBC S-EBC LkT [8]
nDCG@5 0.8873 0.8524 0.7061

Table 3: Effectiveness of different algorithms

D.5 Effects of Parameters on Graph Building
Figures 11 and 12 show the runtime when we vary λ and ξ on

Hotel. The runtime increases as we increase λ or decrease ξ. The
reason is that the graphs become denser, making it take longer to
propagate PR scores.

 0

 500

 1000

 1500

 2000

 2500

 3000

0.5 1 2 3 4

R
un

tim
e

(m
ill

is
ec

on
ds

)

λ (km)

Baseline
ES-EBC

S-EBC

Figure 11: Varying threshold λ
(Hotel)

 0

 500

 1000

 1500

 2000

 2500

 3000

0.1 0.3 0.5 0.7 0.9

R
un

tim
e

(m
ill

is
ec

on
ds

)

ξ

Baseline
ES-EBC

S-EBC

Figure 12: Varying threshold ξ
(Hotel)

E. ADDITIONAL RELATED WORK
Spatial Keyword Search: Zhou et al. [22] and Chen et al. [7] han-
dle the problem of retrieving web documents relevant to a keyword
query within a pre-specified spatial region. The query processing
there occurs in two stages: One type of indexing (e.g., inverted list)
is used to filter web document in the first stage, and then another
index (e.g., R-tree) is employed in the second stage.

Felipe et al. [10] propose a hybrid index structure that smartly in-
tegrates the R-tree with signature files. The hybrid index structure
enables to utilize both spatial information and text information to
prune the search space at query time. However, this proposal is lim-
ited by its use of signature files (e.g., the number of false matches
is linear in the collection size and there is no sensible way of using
signature files for handling ranking queries [23]).

A hybrid index structure that combines the R*-tree and bitmap
indexing is developed to process a new type of query called the
m-closest keyword query [21] that returns the closest objects con-
taining at least m keywords. This index structure exhibits the same
problems as does the signature-file based indexing [10].

The hybrid index structure called the IR-tree [8] integrates the
R-tree and inverted files to enable the efficient processing of the
location-aware top-k ranking query by utilizing both location and
text information to prune the search space.

Personalized PageRank: In contrast to PageRank [5] that com-
putes the global importance of nodes in a graph, personalized PageR-
ank [16] allows users to favor a set P of preferred nodes. The
nodes in the preference set make a unit preference vector u where
u(p) = 1/|P | if p ∈ P and u(p) = 0 if p /∈ P , rather than
distributing the unit preference score uniformly over all nodes in
PageRank.

Several algorithms [4,12,16] have been proposed to compute the
personalized PageRank vector (PPV). Jeh and Widom propose a re-
markable Hub Decomposition algorithm [16] that pre-computes the
partial vectors for the nodes in a hub set of top-ranked pages. This
algorithm can only compute the PPVs of the nodes in the hub set.
To process the LkPT query, we need to pre-compute PR for every
node, which renders the Hub Decomposition algorithm impractical
in our problem.

Fogaras et al. [12] propose a fingerprint-based algorithm that
simulates random walks. The idea is to compute and store short
random walks from each node in order to compute PPVs at query
time. This works well to compute random walks from every node in
the graph. However, this cannot be applied to computing a random
walk from an arbitrary node, which is prohibitive at query time.
This renders the proposal impractical for computing the PR scores
in our problem.

More recently, Berkhin proposes a bookmark-coloring algorithm
(BCA) [4] that perhaps fits the best with our problem among the
existing algorithms for computing PPVs. Its main idea is to diffuse
scores in preference vector across the graph. A unit amount of
score (called paint) is injected into a selected node (the bookmark
node); a fraction of the paint is held by this node, and the rest flows
by following the links of the graph. This propagation continues
until the paint is distributed over the whole graph. In practice, the
algorithm terminates when the paint to be distributed is smaller than
a threshold.

PPVs are also ised for keyword queries in entity-relation graphs.
In ObjectRank [1], a PPV for each keyword in a graph database is
pre-computed. However, it is impractical to pre-compute the PPVs
for each keyword when the vocabulary size is large [6].

Chakrabarti [6] apply and extend PPVs to the keyword query on
entity-relation graphs. This work is novel in how it chooses a set of
nodes as hub nodes based on query logs; and it adopts the approach
of Fogaras et al. [12] to store approximate PPVs in the form of
fingerprints.
Block PageRank: There is a large body of work on global PageR-
ank computation. Some works consider computations of global
PageRank values over subgraphs (e.g., [2, 17]). The problem of
computing global PageRank is different from computing Prestige-
base Relevance, and these proposals are therefore not directly ap-
plicable to our problem.

A final note is that two works [9, 18] that employ the PageRank
algorithm to do propagation on document similarity graphs focus
on effectiveness without considering efficiency issues.

384

