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Abstract: Quantum effects arising from manifestly broken time-reversal symmetry are investigated using 9 
time-dependent perturbation theory in a simple model. The forward time and the backward time Hamiltonians 10 
are taken to be different and hence the forward and backward amplitudes become unsymmetrical and are not 11 
complex conjugates of each other. The effects vanish when the symmetry breaking term is absent and ordinary 12 
quantum mechanical results such as Fermi Golden rule are recovered.  13 
Keywords: Time reversal; Retro-causality; Fermi Golden rule; Perturbation theory 14 
 15 

1. Introduction 16 

Time reversal invariance has been a contentious issue [1, 2] in non-relativistic quantum mechanics since its first 17 
description given by Wigner [3]. The Schrodinger equation  Hti  )/(  is not invariant under 18 

tt  and for conservation of transition probabilities requires it to be taken along with complex conjugation. 19 
Due to the hermiticity of the Hamiltonian the conjugate Schrodinger equation ** )/(  Hti  20 
represents the evolution of the conjugate state in backward time. But, in standard Quantum Mechanics (QM), 21 
both  and * are always treated on equal footing as they contain identical information about the system, 22 
though * is hardly ever given an independent and explicit interpretation separately from , except in 23 
Cramer’s transactional interpretation [4]. Aharonov, Bergmann and Lebowitz (ABL) [5] developed the 24 
time-symmetric version of QM, called the two state vector formalism (TSVF) using the forward evolving state 25 

| and backward evolving quantum state |  as equal players in the determination of probabilities of 26 
measurement of an observable Q by the ABL rule:  27 
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2
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where nq is the nth eigenvalue of Q . This formula reduces to the usual Born rule of standard QM when there 29 

is no post-selection. Here the state of the system is described completely by the two-state vector | |  and 30 

|| jjj   is the usual projection operator for the jth state [6].   31 

A causally symmetric Bohm model has been proposed by Sutherland [7] wherein time-symmetry is utilized to 32 
explain quantum non-locality while maintaining Lorentz invariance. Time reversal symmetry however is 33 
contrary to our experience since we remember the fixed past and can only surmise on the uncertain future, and 34 
hence the forward-evolving physical state |  and the backward-evolving conjugate state |  cannot have 35 
equal significance. The entropic, cosmological and psychological arrows of time do point to manifestly broken 36 
time reversal invariance in nature and so do the CP-violating weak interactions, though the magnitude of the 37 
effect is very small in the latter case. Effects of PT symmetric non-hermitian interactions that violate P as well as 38 
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T symmetry have also been studied in the literature [8] in various systems.  Pegg [9] has analysed 39 
retro-causality in quantum measurements and has shown that it violates only the weak causality principle and 40 
hence cannot be used for physical signal transmission. 41 
In this note, we study the effects of manifestly breaking time-reversal invariance using standard 42 
time-dependent perturbation theory by introducing a small T-breaking coefficient in the interaction term for the 43 
backward-evolving states.  It turns out that retro-causation can be seen to be the effect (rather than the cause) 44 
of non-locality at a more fundamental level. 45 
2. Breaking T-invariance by hand 46 

Let the general physical state ),(| tt i for a system evolve forward in time from initial time it by the 47 

forward-evolution Hamiltonian   0F
while the general backward evolving state |),( tt f48 

evolves by the backward evolution Hamiltonian   FB )1(0
 from a final time ft where, 49 

 is a small real-valued (in general time-dependent) dimensionless parameter that determines the extent of 50 
T-violation. Standard time-dependent perturbation theory of QM will be recovered when .0  0 is the 51 
unperturbed Hamiltonian of the system having orthonormal eigen states defined by:  nn n ||0

. Note 52 
that both F and B are self-adjoint but they are not adjoints of each other, precisely because of the presence 53 
of the T-violating parameter  via the additional interaction term in 

B .  54 
Such distinct evolutions by different forward and backward Hamiltonians have been studied by Hahne [10] 55 
using direct sum of the forward and backward Hilbert spaces as the state space. Here we examine the effects of 56 
introducing a time-dependent (in general) parameter  in the perturbation Hamiltonian for the backward 57 
evolution, somewhat as a simple hidden variable, which affects the quantum mechanical transition 58 
probabilities in a retrocausal manner.  59 
Our aim is to find out the probability that if the system was in a given eigenstate i| of 

0 at 
it , what is the 60 

probability that it will be found in the eigenstate  f|  at time ft  due to the different evolutions of the 61 

forward and backward evolving states. Further, using its dependence on the T-violating parameter , can we 62 
bring in a reasonable change in the spectrum of transition probabilities, thereby reducing quantum 63 
indeterminism? We consider some simple applications. 64 
 65 
3. Modified Transition Probabilities 66 
The transition probability in standard QM is calculated by the applying Born rule viz. taking modulus squared 67 
of the amplitude for the forward transition: 68 

)2...(*)}({)()( fimpfimpfir                                                                            69 
In view of T-symmetry in standard QM, we can write the backward transition amplitude as: 70 

)3...(*)}({)( fimpifmp                                                                                                 71 
And, hence the probability can be written as:  72 

)4)...(()()( ifmpfimpfir                                                                                 73 
In the model considered here, since the forward and backward amplitudes are not in general conjugates of each 74 
other due to broken T-symmetry, there will be a  -dependence of the probabilities. Following Cramer[11, 12], 75 
this can be explained as stemming from the interaction of the system with the backward travelling advanced 76 
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waves (Confirmation echoes) from the future state, which can affect the transition probabilities during the 77 

interval ].,[ fi tt  78 

The forward amplitude for fi  and to first order in the interaction  , is given by [13]: 79 

)5...()(1)( tdte
i

fimp fi

t

t

tif

i

fi   



                                                                                         80 

where, iffi  and    itftfi |)(|)( is the matrix element of the interaction 81 

connecting the initial and final states in the forward time direction.  82 
Following the same way, the backward amplitude is given by: 83 
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Using eq. (4), the probability then becomes: 85 

)7)...(()( retroQM rrfir                                                                                                   86 

where the first term is the standard quantum mechanical probability for the transition while the second term is 87 
the additional retrocausal  -dependent contribution to the probability. For this reason, the argument on the 88 
LHS has been signified with a left-right arrow. Some special cases of interest can now be considered: 89 
(a) If is a constant independent of time, then the probability becomes: 90 

)8...()1()( QMrfir                                                                                                             91 

If we can somehow have control over the parameter , we can deselect final states f| other than the single 92 

final state f|  by choosing 01 '  f for all such states, thereby maximizing the probability of, and 93 

selecting, the state f|  by retrocausal means. 94 

(b) If   is a constant perturbation turned on at 0it , then the probability is: 95 

)9...()()1(
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 96 

Now, if  does not depend on time, then the formula again reduces to (8) with QMr given by the well-known 97 

oscillatory formula: 98 
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From eq. (8) and eq. (10), one then obtains a modified Fermi golden rule containing the multiplicative factor100 
)1(  , for the transition rate to the state f| within the group of states }{| f with energies nearly 101 

equal to the initial energy 
i  and having density of states )( f :  102 

)11)...((||2)1()1( 2
ffiffifi ww    


                                                                   103 

where, in the last step we have introduced the state dependence of  by writing it as 
f to signify future state 104 

selection.  105 
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(c) For a harmonic perturbation of the form: ..chVe ti    turned on at 0it and with constant , the 106 

transition probabilities for emission )(  if
and absorption )(  if

 are given 107 

respectively by: 108 

)(||2)1()1( 2  


  iffiffifi Vww            … (12)                                      109 

This formula is also applicable to find the transition probabilities for electric dipole transitions for an atom 110 
interacting with an applied electromagnetic field.  111 
4. Discussion  112 
In the above simple extension of quantum mechanical perturbation theory, we have interpreted the conjugate 113 
amplitudes as the backward time (retrocausal) amplitudes for a process by introducing a retro-causality 114 
parameter  . We have shown that if the parameter is independent of time, then the transition probabilities are 115 
modified and the probabilities remain real and we have true retrocausal influences on the system. However, if116 
  is time-dependent, then as is evident from eq. (9), the standard quantum mechanical formulae will be 117 
modified non-trivially depending on the exact nature of the dependence and probabilities will not remain real 118 
and will have an additional imaginary part which is difficult to interpret. It has been argued [7] that negative 119 
probabilities can be accommodated as long as the system is in transit, and when it approaches a measurement 120 
instant, the probabilities return to the interval [0,1]. This argument can be applied to cases in which some states 121 

are deselected by choosing 1f , so that the probability for the retro-causally selected state becomes ~1.  122 

5. Conclusion  123 
The validity of the model depends on whether we are able to detect retrocausal influences and whether the 124 
parameter   can be controlled by some means. For this, we must have temporal non-locality in some sense, 125 
since the final state must be known with greater degree of certainty in advance in order for us to influence the 126 
system in the backward time sense from the future. This in some sense has already been investigated [14] and 127 
encouraging results have been obtained using weak measurements [15] in the TSVF. In the model discussed 128 
here which is in terms of standard quantum mechanical perturbation theory, the uncertainty of the future state 129 
must correspondingly decrease as signified by the parameter  becoming ~1 for that state and ~0 for the rest of 130 
the states. There must be probability flows from rest of the final states to the intended one making it more 131 
certain as an outcome than when  is absent. It turns out that causal symmetry by itself cannot explain “true” 132 
retrocausal influences, which bring in more certainty of the realisation of the state. In contrast, the causal 133 
symmetry in the transactional model, Sutherland’s Bohmian model as well as in the TSVF will always keep 134 
intact the quantum mechanical probability assignments. Truly retrocausal influences via some kind of breaking 135 
of the T-symmetry as attempted here opens up new possibilities. How to exploit this is a matter to be taken up 136 
in future work. 137 
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