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Abstract

Contextualized word embedding models, such

as ELMo, generate meaningful representations

of words and their context. These models

have been shown to have a great impact on

downstream applications. However, in many

cases, the contextualized embedding of a word

changes drastically when the context is para-

phrased. As a result, the downstream model

is not robust to paraphrasing and other linguis-

tic variations. To enhance the stability of con-

textualized word embedding models, we pro-

pose an approach to retrofitting contextualized

embedding models with paraphrase contexts.

Our method learns an orthogonal transforma-

tion on the input space, which seeks to mini-

mize the variance of word representations on

paraphrased contexts. Experiments show that

the retrofitted model significantly outperforms

the original ELMo on various sentence classi-

fication and language inference tasks.

1 Introduction

Contextualized word embeddings have shown to

be useful for a variety of downstream tasks (Pe-

ters et al., 2018, 2017; McCann et al., 2017). Un-

like traditional word embeddings that represent

words with fixed vectors, these embedding mod-

els encode both words and their contexts and gen-

erate context-specific representations. While con-

textualized embeddings are useful, we observe

that a language model-based embedding model,

ELMo (Peters et al., 2018), cannot accurately cap-

ture the semantic equivalence of contexts. Specif-

ically, in cases where the contexts of a word have

equivalent or similar meanings but are changed

in sentence formation or word order, ELMo may

assign very different representations to the word.

Table 1 shows two examples, where ELMo gen-

erates very different representations for the bold-

faced words under semantic equivalent contexts.
∗ Both authors contributed equally to this work.

Paraphrased contexts L2 Cosine

How can I make bigger my arms?
How do I make my arms bigger?

6.42 0.27

Some people believe earth is flat. Why?
Why do people still believe in flat earth?

7.59 0.46

It is a very small window.
I have a large suitcase.

5.44 0.26

Table 1: L2 and Cosine distances between embeddings

of boldfaced words. The distance between the shared

word in the paraphrases is even greater than the dis-

tance between large and small in random contexts.
.

Quantitatively, 28.3% of the shared words in the

paraphrase sentence pairs on the MRPC corpus

(Dolan et al., 2004) is larger than the average dis-

tance between good and bad in random contexts,

and 41.5% of those exceeds the distance between

large and small. As a result, the downstream

model is not robust to paraphrasing and the per-

formance is hindered.

Infusing the model with the ability to cap-

ture the semantic equivalence no doubt benefits

semantic-oriented downstream tasks. Yet, find-

ing an effective solution presents key challenges.

First, the solution inevitably requires the embed-

ding model to effectively identify paraphrased

contexts. On top of that, the model needs to min-

imize the difference of a word’s representations

on paraphrased contexts, without compromising

the varying representations on unrelated contexts.

Moreover, the long training time prevents us from

redesigning the learning objectives of contextual-

ized embeddings and retraining the model.

To address these challenges, we propose a

simple and effective paraphrase-aware retrofitting

(PAR) method that is applicable to arbitrary pre-

trained contextualized embeddings. In particular,

PAR prepends an orthogonal transformation layer

to a contextualized embedding model. Without re-

training the parameters of an existing model, PAR

learns the transformation to minimize the differ-
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ence of the contextualized representations of the

shared word in paraphrased contexts, while differ-

entiating between those in other contexts. We ap-

ply PAR to retrofit ELMo (Peters et al., 2018) and

show that the resulted embeddings provide more

robust contextualized word representations as de-

sired, which further lead to significant improve-

ments on various sentence classification and infer-

ence tasks.

2 Related Work

Contextualized word embedding models have

been studied by a series of recent research ef-

forts, where different types of pre-trained lan-

guage models are employed to capture the context

information. CoVe (McCann et al., 2017) trains

a neural machine translation model and extracts

representations of input sentences from the source

language encoder. ELMo (Peters et al., 2018) pre-

trains LSTM-based language models from both

directions and combines the vectors to construct

contextualized word representations. Recent stud-

ies substitute LSTMs with Transformers (Radford

et al., 2018, 2019; Devlin et al., 2019). As shown

in these studies, contextualized word embeddings

perform well on downstream tasks at the cost of

extensive parameter complexity and the long train-

ing process on large corpora (Strubell et al., 2019).

Retrofitting methods have been used to incorpo-

rate semantic knowledge from external resources

into word embeddings (Faruqui et al., 2015; Yu

et al., 2016; Glavaš and Vulić, 2018). These tech-

niques are shown to improve the characterization

of word relatedness and the compositionality of

word representations. To the best of our knowl-

edge, none of the previous approaches has been

applied in contextualized word embeddings.

3 Paraphrase-Aware Retrofitting

Our method, illustrated in Figure 1, integrates the

constraint of the paraphrased context into the con-

textualized word embeddings by learning the or-

thogonal transformation on the input space.

3.1 Contextualized Word Embeddings

We use S = (w1, w2, · · · , wl) to denote a se-

quence of words of length l, where each word w
belongs to the vocabulary V . We use boldfaced

w ∈ R
k to denote a k-dimensional input word em-

bedding, which can be pre-trained or derived from

a character-level encoder (e.g., the character-level
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Figure 1: Learning framework of PAR

CNN used in ELMo (Peters et al., 2018)). A con-

textualized embedding model E takes input vec-

tors of the words in S, and computes the context-

specific representation of each word. The repre-

sentation of word w specific to the context S is

denoted as E(w, S).

3.2 Paraphrase-aware Retrofitting

PAR learns an orthogonal transformation M ∈
R
k×k to reshape the input representation into a

specific space, where the contextualized embed-

ding vectors of a word in paraphrased contexts are

collocated, while those in unrelated contexts are

differentiated. Specifically, given two contexts S1

and S2 that both contain a shared word w, the con-

textual difference of a input representation w is

defined by the L2 distance,

dS1,S2
(w) = ‖E(w, S1)− E(w, S2)‖2 .

Let P be the set of paraphrases on the training cor-

pus, we minimize the following hinge loss (LH ).

∑

(S1,S2)∈P

∑

w∈S1∩S2

[

dS1,S2
(Mw)+γ−d

Ŝ1,Ŝ2
(Mw)

]

+
.

(S1, S2) ∈ P thereof is a pair of paraphrases in P .

(Ŝ1, Ŝ2) /∈ P is a negative sample generated by

randomly substituting either S1 or S2 with another

sentence in the dataset that contains w. γ > 0 is

a hyper-parameter representing the margin. The

operator [x]+ denotes max(x, 0).

The orthogonalization is realized by the follow-

ing regularization term.

LO =
∥

∥

∥
I−M

⊤
M

∥

∥

∥

F
,
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where ‖·‖F denotes the Frobenius norm, and I is

an identity matrix. The learning objective of PAR

is then denoted as L = LH + λLO with a positive

hyperparameter λ.

Orthogonalizing M has two important effects:

(i) It preserves the word similarity captured by the

original input word representation (Rothe et al.,

2016); (ii) It prevents the model from converging

to a trivial solution where all word representations

collapse to the same embedding vector.

4 Experiment

Our method can be integrated with any contextual-

ized word embedding models. In our experiment,

we apply PAR on ELMo (Peters et al., 2018) and

evaluate the quality of the retrofitted ELMo on a

broad range of sentence-level tasks and the adver-

sarial SQuAD corpus.

4.1 Experimental Configuration

We use the officially released 3-layer ELMo (orig-

inal), which is trained on the 1 Billion Word

Benchmark with 93.6 million parameters. We

retrofit ELMo with PAR on the training sets of

three paraphrase datasets: (i) MRPC contains

2,753 paraphrase pairs; (ii) Sampled Quora con-

tains randomly sampled 20,000 paraphrased ques-

tion pairs (Iyer et al., 2017); and (iii) PAN train-

ing set (Madnani et al., 2012) contains 5,000 para-

phrase pairs.

The orthogonal transformation M is initialized

as an identity matrix. In our preliminary experi-

ments, we observed that SGD optimizer is more

stable and less likely to quickly overfit the training

set than other optimizers with adaptive learning

rates (Reddi et al., 2018; Kingma and Ba, 2015).

Therefore, we use SGD with the learning rate of

0.005 and a batch size of 128. To determine the

terminating condition, we train a Multi-Layer Per-

ceptron (MLP) classifier on the same paraphrase

training set and terminate training based on the

paraphrase identification performance on a set of

held-out paraphrases. The sentence in the dataset

is represented by the average of the word em-

beddings. λ is selected from {0.1, 0.5, 1, 2} and

γ from {1, 2, 3, 4} based on validation set. The

best margin γ and epochs ζ by early stopping are

{γ = 3, ζ = 20} on MRPC, {γ = 2, ζ = 14} on

PAN, and {γ = 3, ζ = 10} on Sampled Quora,

with λ = 1 in all settings.

4.2 Evaluation

We use the SentEval framework (Conneau and

Kiela, 2018) to evaluate the sentence embeddings

on a wide range of sentence-level tasks. We con-

sider two baselines models: (1) ELMo (all layers)

constructs a 3,074-dimensional sentence embed-

ding by averaging the hidden states of all the lan-

guage model layers. (2) ELMo (top layers) en-

codes a sentence to a 1,024 dimensional vector by

averaging the representations of the top layer. We

compare these baselines with four variants of PAR

built upon ELMo (all layers) that trained on differ-

ent paraphrase corpora.

4.3 Task Descriptions

Sentence classification tasks. We evaluate the

sentence embedding on four sentence classifi-

cation tasks including two sentiment analysis

(MR (Pang and Lee, 2004), SST-2 (Socher et al.,

2013)), product reviews (CR (Hu and Liu, 2004)),

and opinion polarity (MPQA (Wiebe et al., 2005)).

These tasks are all binary classification tasks. We

employ a MLP with a single hidden layer of 50

neurons to train the classifer, using a batch size of

64 and Adam optimizer.

Sentence inference tasks We consider two sen-

tence inference tasks: paraphrase identification on

MRPC (Dolan et al., 2004) and the textual entail-

ment on SICK-E (Marelli et al., 2014). MRPC

consists of pairs of sentences, where the model

aims to classify if two sentences are semantically

equivalent. The SICK dataset contains 10,000 En-

glish sentence pairs annotated for relatedness in

meaning and entailment. The aim of SICK-E is to

detect discourse relations of entailment, contradic-

tion and neutral between the two sentences. Sim-

ilar to the sentence classification tasks, we apply

a MLP with the same hyperparameters to conduct

the classification.

Semantic textual similarity tasks. Semantic Tex-

tual Similarity (STS-15 (Agirre et al., 2015) and

STS-16 (Agirre et al., 2016)) measures the degree

of semantic relatedness of two sentences based

on human-labeled scores from 0 to 5. We report

the Pearson correlation between cosine similarity

of two sentence representations and normalized

human-label scores.

Semantic relatedness tasks The semantic relat-

edness tasks include SICK-R (Marelli et al., 2014)

and the STS Benchmark dataset (Cer et al., 2017),

which comprise pairs of sentences annotated with
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Method
Classification (Acc %) Relatedness \ Similarity (ρ) Inference (Acc %)

MPQA MR CR SST-2 SICK-R STS-15 STS-16 STS-Benchmark MRPC SICK-E

ELMo (all layers) 89.55 79.72 85.11 86.33 0.84 0.69 0.64 0.65 71.65 81.86
ELMo (top layer) 89.30 79.36 84.13 85.28 0.81 0.67 0.63 0.62 70.20 79.64

ELMo-PAR (MRPC) 92.61 83.40 87.01 86.83 0.87 0.70 0.66 0.64 - 82.89
ELMo-PAR (Sampled Quora) 93.76 81.14 85.52 88.71 0.83 0.71 0.66 0.69 73.22 81.51
ELMo-PAR (PAN) 92.13 83.11 85.73 88.56 0.85 0.73 0.67 0.70 74.86 83.37
ELMo-PAR (PAN+MRPC+Quora) 93.40 82.26 86.39 89.26 0.86 0.73 0.68 0.67 - 84.46

Table 2: Performance on downstream applications. We report accuracy for classification and inference tasks, and

Pearson correlation for relatedness and similarity tasks. We do not report results of ELMo-PAR on MRPC when

MRPC is used in training the model. The baseline results are from (Perone et al., 2018).

Model
AddOneSent AddSent
EM F1 EM F1

BiSAE 47.7 53.7 36.1 41.7

BiSAE-PAR(MRPC) 51.6 57.9 40.8 47.1

Table 3: Exact Match and F1 on Adversarial SQuAD.

semantic scores between 0 and 5. The goal of

the tasks is to measure the degree of semantic re-

latedness between two sentences. We learn tree-

structured LSTM (Tai et al., 2015) to predict the

probability distribution of relatedness scores.

Adversarial SQuAD The Stanford Question An-

swering Datasets (SQuAD) (Rajpurkar et al.,

2016) is a machine comprehension dataset con-

taining 107,785 human-generated reading com-

prehension questions annotated on Wikipedia ar-

ticles. Adversarial SQuAD (Jia and Liang, 2017)

appends adversarial sentences to the passage in

the SQuAD dataset to study the robustness of the

model. We conduct evaluations on two Adversar-

ial SQuAD datasets: AddOneSent which adds a

random human-approved sentence, and AddSent

which adds grammatical sentences that look simi-

lar to the question. We train the Bi-Directional At-

tention Flow (BiDAF) network (Seo et al., 2017)

with self-attention and ELMo embeddings on the

SQuAD dataset and test it on the adversarial

SQuAD datasets.

4.4 Result Analysis

The results reported in Table 2 show that PAR

leads to 2% ∼ 4% improvement in accuracy on

sentence classification tasks and sentence infer-

ence tasks. It leads to 0.03 ∼ 0.04 improvement

in Pearson correlation (ρ) on semantic relatedness

and textual similarity tasks. The improvements

on sentence similarity and semantic relatedness

tasks shows that ELMo-PAR is more stable to the

semantic-preserving modifications but more sen-

sitive to subtle yet semantic-changing perturba-

tions. PAR model trained on the combined corpus

(PAN+MRPC+Sampled Quora) achieves the best

improvement across all these tasks, showing the

model benefits from a larger paraphrase corpus.

Besides sentence-level tasks, Table 3 shows that

the proposed PAR method notably improves the

performance of a downstream question-answering

task. For AddSent, ELMo-PAR achieves 40.8% in

EM and 47.1% in F1. For AddOneSent, it boosts

EM to 51.6% and F1 to 57.9%, which clearly

shows that the proposed PAR method enhances

the robustness of the downstream model combined

with ELMo.

4.5 Case Study

Shared word distances We compute the average

embedding distance of shared words in paraphrase

and non-paraphrase sentence pairs from test sets of

MRPC, PAN, and Quora. Results are listed in Ta-

ble 4. Table 5 shows the ELMo-PAR embedding

distance for the shared words in the examples in

Table 1. Our model effectively minimizes the em-

bedding distance of the shared words in the para-

phrased contexts and maximize such distance in

the non-paraphrased contexts.

5 Conclusion

We propose a method for retrofitting contextual-

ized word embeddings, which leverages semantic

equivalence information from paraphrases. PAR

learns an orthogonal transformation on the input

space of an existing model by minimizing the

contextualized representations of shared words on

paraphrased contexts without compromising the

varying representations on non-paraphrased con-

texts. We demonstrate the effectiveness of this

method applied to ELMo by a wide selection of

semantic tasks. We seek to extend the use of PAR

to other contextualized embeddings (Devlin et al.,

2019; McCann et al., 2017) in future work.
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Model
Paraphrase Non-paraphrase
MRPC Quora PAN MRPC Quora PAN

ELMo(all layers) 3.35 3.17 4.03 3.97 4.42 6.26

ELMo-PAR(PAN+MRPC+Quora) 1.80 1.34 1.21 4.73 5.49 6.54

Table 4: Averaging L2 distance for the shared word in paraphrased and non-paraphrased contexts.

Paraphrased contexts L2 Cosine

How can I make bigger my arms?
How do I make my arms bigger?

2.75 0.14

Some people believe earth is flat. Why?
Why do people still believe in flat earth?

3.29 0.16

It is a very small window.
I have a large suitcase.

5.84 0.30

Table 5: L2 and Cosine distance between embeddings

of boldfaced words after retrofitting.
.
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