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Abstract

Developing a diagnostic tool within the diagnostic measurement framework is the
optimal approach to obtain multidimensional and classification-based feedback on

examinees. However, end users may seek to obtain diagnostic feedback from existing

item responses to assessments that have been designed under either the classical test
theory or item response theory frameworks. Retrofitting diagnostic classification

models to existing assessments designed under other psychometric frameworks

could be a plausible approach to obtain more actionable scores or understand more
about the constructs themselves. This study (a) discusses the possibility and prob-

lems of retrofitting, (b) proposes a step-by-step retrofitting framework, and (c)

explores the information one can gain from retrofitting through an empirical applica-
tion example. While retrofitting may not always be an ideal approach to diagnostic

measurement, this article aims to invite discussions through presenting the possibility,

challenges, process, and product of retrofitting.
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The current landscape in educational measurement appears to be shifting away from

creating and administering assessments that result in a single score for a large content

domain toward assessments that can provide mastery decisions for multiple smaller

domains. Researchers have urged the measurement field to maximize educational

benefits from assessments (de la Torre & Minchen, 2014; Nichols, 1994; Nichols,

Chipman, & Brennan, 2012), and practitioners have expressed their interest in using

assessment results to better inform interventions (Bennett, 1999; Huff & Goodman,

2007; National Research Council, 2010).

In response to those demands, diagnostic measurement has become increasingly

popular. Diagnostic measurement is an effective framework that provides multidi-

mensional, classification-based feedback about examinees (Rupp, Templin, &

Henson, 2010). Developing a measurement tool within the diagnostic measurement

framework is no doubt the exemplary approach to obtain such information. However,

there are contexts where examinees have already provided item responses to assess-

ments that are designed under the classical test theory (CTT) or item response theory

(IRT) frameworks, but end users are interested in obtaining diagnostic feedback from

existing item responses. Retrofitting diagnostic measurement models has been used

as a plausible approach to obtain such information (e.g., Jang, Dunlop, Wagner, Kim,

& Gu, 2013; Kim, 2014; Li, Hunter, & Lei, 2016). These models are called diagnos-

tic classification models (DCMs), which are a class of probabilistic, confirmatory,

multidimensional latent class models (Rupp et al., 2010).

While retrofitting DCMs to existing assessments has the potential to produce greater

information regarding examinee’s latent traits, this process goes directly counter to the

inferences attempted to be made from the original assessment. Under unidimensional

IRT, for example, retrofitting requires practitioners to extract multidimensionality from

assessments developed to remove any multidimensionality. As shown consistently in

Gierl and Cui (2008), Haberman (2008), Sinharay (2010), Sinharay and Haberman

(2008), and Sinharay (2014), test construction practices for unidimensional assessments

almost always explicitly seek to maximize reliability of the total score. This means that

items with high discriminations (e.g., point-biserial correlations or a-parameters) are

often selected in the assessment, while those with the possibility of inducing multidi-

mensionality are left out. Thus, retrofitting multidimensional DCMs can introduce a

conundrum with respect to dimensionality that may not be easily resolved. However,

retrofitting provides a way to attempt to reap the benefits of DCM in the current land-

scape in which not many tests have been designed to assess multidimensional skills, and

it will be a number of years before that situation changes given the time intensive nature

of developing such assessments. Therefore, it is possible that retrofitting may be a pri-

mary source of DCM applications for the near future until the test construction processes

for multidimensional assessments become more ingrained in practice. We support the

notion that retrofitting should not be encouraged as a standard approach to a measure-

ment endeavor and not all assessments are suitable for retrofitting. But it also may be

justifiable to recognize the struggle between the urging needs of diagnostic information

and limited resources to develop and administer new diagnostic assessments.
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The purpose of this study is to (a) discuss the possibility and challenges of retro-

fitting, (b) propose a step-by-step retrofitting framework, and (c) explore the infor-

mation one can gain from retrofitting through an application example. We aim to

present this study from a comprehensive perspective on retrofitting, inform end users

of the challenges and opportunities in retrofitting, and leave the decision of whether

to retrofit under specific assessment contexts open to discussion.

Possibility and Challenges of Retrofitting

In this study, we define ‘‘retrofitting’’ as the practice of fitting DCMs to responses

obtained from assessments that are not designed under the diagnostic measurement

framework. The primary difference between diagnostic and nondiagnostic frameworks

is that the former specifies multiple categorical traits and classifies examinees on each

trait (e.g., possessing or not possessing a cognitive latent trait; mastery or non-mastery

in a content domain), while the latter specifies one or multiple continuous trait(s) and

assigns scores to examinees on the trait continuum or continua (e.g., estimating a score

for each examinee that falls on a standardized scale similar to z scores). A commonly

cited example of assigning scores on elementary-level math ability (e.g., Kunina-

Habenicht, Rupp, & Wilhelm, 2009) can be used for a brief conceptual description of

these two frameworks. In nondiagnostic frameworks, math ability could be repre-

sented through a unidimensional continuous latent trait (i.e., math ability) or multiple

continuous traits (e.g., addition, subtraction, and multiplication skills) in the assess-

ment, and scores are provided to order examinees on the latent trait continua. In the

diagnostic measurement framework, math ability must be represented through multi-

ple categorical traits (e.g., addition, subtraction, and multiplication skills) and exami-

nees are classified into two or more categories (e.g., has mastered or has not mastered)

on each latent trait based the estimated probability of mastery of each trait.

It is critical that we treat different psychometric frameworks as mere lens through

which we come to understand examinees. In other words, the product of these frame-

works per se should not be considered legitimate and encompassing evaluations of

examinees. Thissen’s (2016) demonstrates the inappropriateness of asking definitive

questions about IRT model fit and about data dimensionality because there is no model

that perfectly fits a data set nor any data set that reflects pure unidimensionality. A

model is considered ‘‘fit’’ or an assessment is called ‘‘unidimensional’’ when one sets a

cut-off value and compares statistics against that value (Ho, 2016), but the truth (i.e.,

examinee characteristics in this case) per se is much more complex than what an assess-

ment framework or a statistical model could cover. The interaction between items and

examinees involves many factors such as cultural diversity, learning styles, and many

individual differences that are in human nature. Instead of offering a definitive answer

on whether an assessment is unidimensional or multidimensional or whether it should

provide scores or classifications, the intended purpose of the assessment should rather

inform psychometric decisions (Thissen, 2016).
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With that in mind, one might argue that retrofitting might be plausible for two rea-

sons. First, fitting DCMs to existing responses could fulfill the purpose of obtaining

skill-level information about examinees, which is not directly available under nondiag-

nostic measurement frameworks. Second, just because an assessment has been devel-

oped under a unidimensional framework does not mean that during test development

skill-level considerations were ignored. In fact, content development for any assessment

often involves the theoretical breakdown of a larger construct into subdomains. Those

subdomains could be considered as multiple dimensions when retrofitting DCMs.

In sum, the possibility of retrofitting is inherent due to the complexity of human

characteristics and the resulting fact that a unidimensional trait can always be broken

down theoretically into smaller attributes.

The general concept of retrofitting has been described as ‘‘the addition of a new

technology or feature to an older system’’ (Gierl, Roberts, Alves, & Gotzmann,

2009). Although no study has focused on the methodology of retrofitting DCMs or

evaluated what information could be gained from this highly debatable practice, ret-

rofitting has been used widely as an add-on to simulation studies addressing different

research questions in diagnostic measurement (e.g., Chen & de la Torre, 2013; Chen,

de la Torre, & Zhang, 2013; Cui, Gierl, & Chang, 2012; de la Torre, 2009; de la

Torre & Douglas, 2004; Henson, Templin, & Willse, 2009; Hou, de la Torre, &

Nandakumar, 2014; Ravand, 2016; Templin & Bradshaw, 2013; von Davier, 2005,

2007, 2014). Practitioners have also applied DCMs to existing nondiagnostic assess-

ments to provide diagnostic feedback in specific content areas (e.g., Jang, 2009; Jang

et al., 2013; Kim, 2014; Lee & Sawaki, 2009; Li & Suen, 2013; Li et al., 2015;

Ravand, Barati, & Widhiarso, 2012). Either in methodological or application studies,

retrofitting has fulfilled its purposes in a variety of contexts.

Despite its benefits, some researchers argue that retrofitting is unlikely to produce

satisfactory results from the perspective of either assessment design (e.g., DiBello &

Stout, 2007; Gierl, 2007; Gierl & Cui, 2008) or statistical quality (Buck & Tatsuoka,

1998; Svetina, Gorin, & Tatsuoka, 2011; VanderVeen et al., 2007).

Three major problems have been highlighted in terms of assessment design. First,

the power of diagnostic measurement cannot be realized without a principled assess-

ment design (Nichols, Kobrin, Lai, & Koepfler, 2016). The cognitive theories that

should underlie the diagnostic assessment design are missing; thus, it is often difficult

to support the attribute specifications in DCMs either theoretically or empirically.

Second, it is more problematic to retrofit DCMs to unidimensional assessments than

to multidimensional ones because of the conflicting goals between those two dimen-

sionality assumptions (de la Torre & Karelitz, 2009; Gierl & Cui, 2008). When items

are developed for a unidimensional assessment, content, and measurement experts

often work together to revise or remove items that introduce multidimensionality to

obtain a more reliable total score. As a result, multidimensional diagnostic informa-

tion is difficult to obtain. Sinharay and Haberman (2008) and Sinharay (2014) have

highlighted the issue of dimensionality in their work on extracting subscores from

unidimensional tests. They found that assessments overwhelmingly fail to produce
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valuable subscores in classical test theory context due to low reliabilities of, and high

correlations among, subscores (Sinharay, 2010). Third, one may argue that some

attributes have not been measured sufficiently for producing reliable results (Templin

& Bradshaw, 2013), or that some attributes are always measured together resulting in

confounding (Tatsuoka, 1995). Unfortunately, these three issues cannot be easily

resolved because the items have already been developed.

In terms of statistical quality, at least three problems have been identified, includ-

ing (a) attributes identified from the single trait are often highly correlated

(VanderVeen et al., 2007), (b) correlations between an attribute and total score may

be low or negative (Buck & Tatsuoka, 1998; Svetina et al., 2011), and (c) model fit

indices may show poor results (Gierl & Cui, 2008). Fortunately, these three problems

can be investigated empirically to assess the degree to which they occurred, allowing

the retrofitting team to make informed decisions about their particular application.

None of these problems are trivial when one tries to obtain accurate and reliable

information from retrofitting. As stated before, there is no doubt that developing an

assessment under the diagnostic framework is a better way to obtain diagnostic infor-

mation than retrofitting. One needs to exercise caution when retrofitting, which

should only be considered when it is not possible to develop a diagnostic assessment.

Also, retrofitting may be best used for low-stakes decisions or purely for the purpose

of learning more about the construct. We continue this article by proposing a metho-

dological approach that can minimize the problems and maximize the benefits of ret-

rofitting within such contexts.

Boosting the Suboptimal Approach: A Framework

for Retrofitting

Similar to developing a diagnostic assessment, retrofitting is an iterative process that

encompasses core procedures in operational testing practices. A unique feature of retrofit-

ting is that the items have already been developed and that responses have been collected

from examinees. The iteration in retrofitting is thus about revising the specification of

attributes and the relationships between attributes and items, instead of revising the items

themselves. Based on a review of published retrofitting examples cited above and on

experience in retrofitting, we propose that retrofitting consists of four stages as shown in

Figure 1: gathering information, specifying attributes and attribute–item relationships,

modeling item responses, and interpreting results. The following sections present this

process and discuss decisions one should make when retrofitting is used.

Gathering Information

Retrofitting begins with gathering information about the assessment, end users, and

item responses. It not only involves necessary groundwork for specifying attributes

and attribute–item relationships, but also prepares information that is critical for any

inferences one intends to make after retrofitting.
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At a minimum, three aspects of information must be gathered about the assess-

ment: design framework, dimensionality, and parameter estimates. First, the design

framework of the assessment is helpful for separating the subskills that are underlying

the overall latent trait. For example, if the assessment has been developed under the

evidence-centered design framework (Mislevy & Haertel, 2006), it would be helpful

to obtain the student, evidence, task, and assembly models to understand the underly-

ing structure and motivations behind content, item, and other assessment develop-

ment choices. The attributes and/or behaviors identified in the assessment conceptual

framework could help practitioners explore possible underlying attributes that need to

be specified. Attributes in science domains (e.g., mathematics) may be more distin-

guishable at the item level than non-science domains (e.g., reading comprehension;

Rupp et al., 2010), possibly making assessments in the former domains easier to ret-

rofit. Second, one must also explore the intended dimensionality of the assessment. If

the assessment is intended to be multidimensional, it may not be appropriate to sim-

ply borrow the original item-to-dimension specifications into the DCMs. A review of

such decisions is probably still warranted. If the assessment is intended to be unidi-

mensional, retrofitting may be more difficult. Third, one must obtain the item para-

meters to understand the item characteristics. For example, if the assessment has been

developed under the unidimensional framework and previously analyzed using the

two-parameter IRT model, one could examine the discrimination and difficulty para-

meters of each item (e.g., parameter estimates obtained from a technical report on that

particular assessment). An understanding of item statistics is necessary before con-

necting items to attributes because item statistics influence the retrofitting process in

a variety of ways. For example, if item difficulty values are widely spread across the

Figure 1. The iterative process of retrofitting DCMs.
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latent continuum, this can impact the type of DCM one might want to use for retrofit-

ting. In many DCMs, item difficulty parameter estimates are not allowed to vary

across latent classes and hence misclassifications may be likely to occur. In fact, most

DCMs only model between-class differences and each class has the same item diffi-

culty parameters (Choi, 2010). We further discuss options for this type of item diffi-

culty spread in the Discussion section.

In addition to understanding the assessment, one needs to gather information about

test takers and other end users of the assessment. Ultimately, if one is retrofitting then

it is implied that the results will be used in some way different from the original

intended use of the assessment. Hence, as test use is critical to evaluating the validity

of any measurement analysis output (Kane, 2013), it is important to go back and

redefine what the new assessment output and scores will be used for.

Finally, one should explore the item responses collected that are going to be retro-

fitted. This includes examining descriptive statistics of the responses on each item as

well as score distributions. If scores were ever reported in performance categories

(e.g., pass/fail decisions in licensure tests), information should be gathered about the

cut-scores used to create those categories so that they can be applied to the current

data set and the frequencies of examinees in each category can be explored.

Comparing these unidimensional classifications based on cut-scores to the multidi-

mensional classifications obtained from retrofitting can help evaluate whether retro-

fitting provides additional information about examinees. One should also explore the

dimensionality of the data set, which may or may not be the same as the intended

dimensionality when developing the assessment. For an assessment on which a sin-

gle score is reported, one could directly assess dimensionality through software pro-

grams such as the DIM-pack (DIMTEST, DETECT, and HAC; Stout, Froelich, &

Gao, 2001). One could also use the Haberman (2008) approach to compare the relia-

bility or assess the reduction in mean squared error of unidimensional and multidi-

mensional scores to help decide whether subscores from each dimension provide

meaningful and reliable information beyond total scores. If the data set is approxi-

mately unidimensional, retrofitting may not be appropriate. If there is more than one

dimension, the number of dimensions may inform the number of attributes one wants

to specify in the next stage.

Specifying Attributes and Attribute–Item Relationships

When developing a diagnostic tool, attributes are specified before developing items.

Retrofitting is different in a way that it specifies attributes from developed items.

Based on the research that is currently published in DCM, attributes are usually spec-

ified as ordinal variables, which could be either dichotomous (e.g., has mastered or

has not mastered) or polytomous (e.g., has fully mastered, has partially mastered, and

has not mastered). We limit this discussion to dichotomous attributes for simplicity,

although polytomous attributes can also be specified (e.g., Chen & de la Torre, 2013;

von Davier, 2005). In the dichotomous case, if one specifies A attributes, examinees
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are classified into one of the 2A attribute profiles, also known as latent classes (Rupp et

al., 2010). Each profile is a unique mastery pattern, denoted as an A-length vector ac =

{a1, a2, . . ., aA}. Each examinee is assigned either a value of 1 for mastery or 0 for non-

mastery for each attribute. For example, examinees with attribute profile {1, 0, 1} have

mastered the first and third attributes (a1 and a3), but not the second attribute (a2).

Specifying attributes from existing items involves at least three important consid-

erations. First, an item could measure one or more attribute(s), although attributes that

are measured in isolation are likely to have higher classification accuracy (Madison

& Bradshaw, 2015). If two attributes are measured together all the time, we suggest

combining those two attributes into one larger attribute when retrofitting, because

items cannot be further revised. Second, one could hypothesize the relationships

among attributes. Attributes could be hypothesized as either correlated or sequentially

ordered (Templin & Bradshaw, 2014). By default, if attributes are directly entered

into the next stage of fitting DCMs, they are considered as correlated. In other con-

texts, some attributes may depend on each other. This dependency, also known as an

attribute hierarchy (Leighton, Gierl, & Hunka, 2004), means that one attribute can

only be mastered after the mastery of another attribute (Liu & Huggins-Manley,

2017). One could specify an attribute hierarchy either at the time of specifying the

attributes based on theory or after analyzing the model fitting results (Liu, Huggins-

Manley, & Bradshaw, 2016). Third, the total number of attributes should be fairly

small. A large number of attributes would not be only difficult to estimate within a

given test length, but also difficult to interpret (Embretson & Yang, 2013; Tatsuoka

et al., 2016; Xu & Zhang, 2016). de la Torre and Minchen (2014) recommended a

rule of thumb for the maximum number of attributes as 10. However, 10 attributes

may be difficult to handle because examinees will be classified into 210 = 1,024 pos-

sible latent classes, if no attribute hierarchy is assumed. Generally, most above-

mentioned retrofitting studies specify three to five attributes; thus, examinees are

classified into one of as few as 23 = 8 or as many as 25 = 32 attribute profiles, unless

an attribute hierarchy is assumed.

After each item is associated with one or more attributes, attribute–item relation-

ships need to be contained in an item-by-attribute incidence matrix known as a Q-

matrix (Tatsuoka, 1983). In a Q-matrix, each entry qia equals to 1 if item i measures

attribute a, and 0 otherwise. When designing the Q-matrix, it is necessary to make

sure that each attribute is measured enough times, no matter if it is measured in isola-

tion or with other attributes (Madison & Bradshaw, 2015). When retrofitting, attri-

butes that are not measured enough times may be either (a) combined with another

similar attribute or (b) retained for the completion of the Q-matrix but not to be inter-

preted. In addition, it is not necessary that all items need to be specified in the Q-

matrix for retrofitting. Instead, one could select specific items that are associated with

attributes of interest.

A correct specification of the Q-matrix is essential because the misspecification

of the Q-matrix can result in model-data misfit and bias in examinee classifications

(Kunina-Habenicht, Rupp, & Wilhelm, 2012; Rupp & Templin, 2008a, 2008b). To
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ensure that the hypothesized Q-matrix is supported by item responses, one may con-

sider validating the Q-matrix using the methods proposed in de la Torre (2008) or de

la Torre and Chiu (2016), which can help identify and correct misspecified entries in

the Q-matrix. Ideally, the construction of the final Q-matrix should take both theory

and empirical item responses into consideration.

Modeling Item Responses

After attributes and attribute–item relationships are specified, it is time to fit DCMs

to the item responses. Since the early 1980s, more than 20 DCMs have been pro-

posed to model various hypotheses about the relationships among attributes or to sat-

isfy different assessment needs. Readers can refer to Ma, Iaconangelo, and de la

Torre (2016) for the relationships as well as suggestions for selection, among differ-

ent models. It is common to first fit more than one DCM to the item responses and

then select the final model based on fit statistics (e.g., Lei & Li, 2016). The follow-

ing sections discuss steps of fitting and evaluating DCMs.

Specifying and Fitting Model(s) to Response Data. Among all DCMs, we briefly present

five models that may be useful in retrofitting. Although other models may also be

available for retrofitting, we present these five because they represent most common

assumptions about the relationship between attributes and items. These models are

the generalized DINA (G-DINA; de la Torre, 2011) model, the additive CDM (A-

CDM; de la Torre, 2011), the deterministic inputs, noisy ‘‘and’’ gate (DINA; Haertel,

1989; Junker & Sijtsma, 2001; Macready & Dayton, 1977) model, the deterministic

input, noisy ‘‘or’’ gate (DINO; Templin & Henson, 2006) model, and the higher-

order DINA (HO-DINA; de la Torre & Douglas, 2004) model.

The G-DINA model is a general model that subsumes most DCMs including the

A-CDM, DINA, and DINO models. Let j = 1, . . . , J index items and k = 1, . . . , K

index attributes, and K�
j is the number of required attributes for item j. a�

lj is the

reduced attribute vector indexing the attributes required for item j. The G-DINA

models the conditional probability that an examinee with attribute profile a�
lj scores a

1 on item j as:

g P a
�
lj

� �h i

= lj0 +
X

K�
j

k = 1

ljkalk +
X

K�
j

k0 = k + 1

X

K�
j �1

k = 1

ljkk0alkalk0 + � � � + lj12...K�
j

Y

K�
j

k = 1

alk ; ð1Þ

where g P a
�
lj

� �h i

is P a
�
lj

� �

, log P a
�
lj

� �h i

and logit P a
�
lj

� �h i

when the identity, log

and logit links are used, respectively. lj0 is the intercept for item j, ljk is the main

effect of attribute k, ljkk0 is the two-way interactional effect of attribute k and k0, and

lj12...K�
J
is the higher-order interaction among a1, . . . ,aK�

j
. Equation 1 shows that the

G-DINA model is a saturated model because it includes all possible effects of

attributes.
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The A-CDM assumes that attributes do not interact in their effects on items. For

example, on an assessment measuring both depression and anxiety, removing interac-

tion terms assumes that the attributes of depression and anxiety do not interact in their

relationship to item responses. The A-CDM is the G-DINA model without interaction

terms. The item response function (IRF) in A-CDM is as follows:

g P a
�
lj

� �h i

= lj0 +
X

K�
j

k = 1

ljkalk : ð2Þ

The DINA model assumes that an item can be correctly answered only if all the

required attributes on that item are mastered. It is also known as a noncompensatory

model, reflecting the assumption that a deficit in one attribute cannot be compensated

for by a surplus in another attribute. It constrains every effect to zero except the inter-

cept and highest order interaction among the attributes. Its IRF can be written as

P a
�
lj

� �

= lj0 + lj12...K�
i

Y

K�
j

k = 1

alk : ð3Þ

The DINO model assumes that a deficit in one attribute can be compensated by a

surplus in another attribute. Therefore, it is known as a compensatory model. It con-

strains absolute values of all the main and interaction effect parameters in the G-DINA

model to different signs by the order of interactions. Its IRF can be formulated as:

P a
�
lj

� �

= lj0 + ljkalk;
ð4Þ

where ljk = �1ð Þljk0k00 = � � � = �1ð ÞK
�
j + 1lj12...K�

j
. Under the DINO model, the prob-

ability of a correct response is the same for an examinee mastering one required attri-

bute on item j and an examinee mastering all required attributes on item j.

The HO-DINA model assumes that the attributes share a continuous higher-order

factor, denoted as u. It uses a two-level model where the lower-level is a DCM and

the higher-level is an IRT model. The HO-DINA model defines the probability of an

examinee e’s mastery status as a function of attribute k, given his/her higher-order

latent trait u as

P aek uejð Þ=
exp tkue � bkð Þ

1 + exp tkue � bkð Þ
; ð5Þ

where tk and bk are the discrimination and difficulty parameters, respectively, of

attribute k. The HO-DINA model might be promising for retrofitting because the

higher-order factor resembles the overall unidimensional score.

In practice, one could fit a general DCM (e.g., the G-DINA model) to the data if

no prior hypothesis is made and sample sizes allow (J. Templin, personal communi-

cation, January 15, 2016). This modeling approach would allow for free estimation of
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all parameters associated with any possible relationships between attributes and item

responses. If there are prior hypotheses about the effects of attribute relationship on

items, one could fit both the selected model that reflects those hypotheses and a gen-

eral DCM to the data. A comparison of fit indices between the selected and general

models would help determine if those hypotheses are supported in item responses.

The next section presents several types of available fit indices that have been used in

evaluating DCMs.

Evaluating Fit Indices. Acceptable fit is a prerequisite to studying model results, but is

insufficient for describing a useful retrofitting. Three types of fit indices should be

examined, including model fit, item fit, and person fit. We provide a brief introduc-

tion to some fit statistics below, and refer readers to Lei and Li (2016) and Hu,

Miller, Huggins-Manley, and Chen (2016) for a detailed discussion on performance

of fit indices in choosing appropriate DCMs.

For model fit statistics presented below, a smaller value indicates better fit.

Absolute fit indices are used to determine the adequacy of fit of a single model.

Relative fit indices investigate whether two models fit significantly different from

each other. At least six indices could be used when evaluating the absolute fit: the

limited information fit statistics (Joe & Maydeu-Olivares, 2010), the maximum of all

pairwise x
2 statistics (maxX 2, Chen et al., 2013), the mean absolute deviation

between observed and expected correlations (MADcor; DiBello, Roussos, & Stout,

2007), the standardized root mean square root of squared residuals (SRMSR;

Maydeu-Olivares & Joe, 2014), the mean of absolute deviations of residual covar-

iances (Res; McDonald & Mok, 1995), and mean of absolute values of Q3 statistic

(Yen, 1984). Absolute model fit indices are commonly compared with some rule-of-

thumb criteria to determine the level of acceptable fit. For example, SRMSR smaller

than .05 indicates a substantively negligible amount of misfit, thus is considered

good fit (Maydeu-Olivares, 2013). For relative fit, one could compare the 22 log

likelihood (22LL; Neyman & Pearson, 1992), Akaike Information Criterion (AIC;

Akaike, 1987), Bayesian Information Criterion (BIC; Schwarz, 1978), or Consistent

AIC (CAIC; Bozdogan, 1987). Likelihood ratio tests can be used to test the signifi-

cance of the difference between the fit of the saturated model and that of nested

models.

To evaluate item fit, the root mean square error of approximation (RMSEA; von

Davier, 2005) can be computed. Generally, RMSEA smaller than .05 is considered a

good fit (Kunina-Habenicht et al., 2009).

To evaluate person fit, the probability of responding aberrantly (r; Liu, Douglas,

& Henson, 2009) can be computed. It represents the magnitude of an examinee’s

response deviating from the estimated attribute profile. For example, a ‘‘spuriously

high scorer’’ is an examinee who has mastered none of the required attributes but

has correctly answered many items, while a ‘‘spuriously low scorer’’ is an examinee

who has mastered all the required attributes but has incorrectly answered many

items. Generalized likelihood ratio tests are commonly performed at a = .05 to test
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the significance of the difference between the desired response pattern and the actual

response pattern of an examinee. In Liu et al. (2009), around 8% to 14% of N =

2,922 examinees were flagged as spurious scorers. This may be used as a reference

for future applications. Examinees showing large misfit may be at higher risk for

model-based misclassification given that the model does not well represent their item

responses. In this case, it may be that their attribute profiles should not be reported.

In summary, the choice of the final DCM should involve both theory and empirical

fit statistics. If the fit statistics of the best fitting DCM are not satisfactory, retrofitting

may be unlikely to yield accurate and reliable classifications of examinees.

Examining Attribute Correlations and Reliability. For attribute profiles to provide mean-

ingful diagnostic information, they must be distinct from the unidimensional latent

trait and have adequate reliability (Sinharay, 2014). Therefore, attribute correlations

and reliability under the DCM should be evaluated before interpreting results.

First, the tetrachoric correlations between each pair of attributes provide informa-

tion about the distribution of the attribute profiles (Hartz, 2002; Templin & Henson,

2006). Most often, attributes obtained from retrofitting to an assessment that was

originally designed to be unidimensional are expected to be highly correlated. If the

correlations among attributes are close to or equal to 1, it logically follows that exam-

inees will overwhelmingly fall into either the all-mastery or none-mastery profile. In

this case, the assessment is essentially unidimensional, and the classifications along

multiple attributes are most likely to provide misleading information about exami-

nees. As stated by Sinharay (2010), although a unidimensional trait can always be

broken down into smaller attributes, it is very likely that those attributes are too cor-

related to provide useful information.

Second, the tetrachoric correlations can be used to compute reliability using the

method developed by Templin and Bradshaw (2013). That method can be conceptua-

lized as the consistency of examinee classifications across different administrations

and mirrors test–retest reliability in IRT (Templin & Bradshaw, 2013). Similar to

other psychometric frameworks, reliability is one of the most important prerequisites

of validity (Kane, 2013). Unreliable attribute classifications can ultimately lead to

invalid inferences from the DCM results.

Interpreting Results

The primary outcome from retrofitting is examinee profiles. Suppose three attributes

are specified when one retrofits to an elementary math ability test: addition, subtrac-

tion, and multiplication. Two hypothetical individual diagnostic reports are presented

in Figure 2. In this example, two examinees have received the same overall score

(i.e., 325) with different attribute mastery decisions and a different probability of

mastery on each attribute. As mentioned in Rupp et al. (2010), statistically, exami-

nees have greater than or equal to a 0.5 probability of mastery on an attribute are

classified as mastery on that attribute, and less than 0.5 as nonmastery. Examinees
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that near the 0.5 cut point may be classified as ‘‘undecided’’ because the assessment

does not provide enough information about them (Rupp et al., 2010). Although both

students in Figure 2 have received the same total test score, student A has mastered

addition and subtraction, but not multiplication, while student B has mastered addi-

tion and multiplication, but not subtraction.

Providing diagnostic feedback to examinees along with their single, unidimen-

sional test scores may help individuals identify their attribute-level strengths and

weaknesses. In addition to obtaining individual diagnostic feedback, one may also (a)

aggregate individual information to the classroom, school, or state level for instruc-

tion planning or low-stakes decision making (e.g., Ketterlin-Geller & Yovanoff,

2009); (b) infer a learning sequence from the number of examinees in each attribute

profile (Templin & Bradshaw, 2014); (c) use the correlation among attributes to learn

more about theories of constructs (Templin & Henson, 2006); and (d) investigate the

relationship between examinees’ single, unidimensional test scores (e.g., ue) and their

categorical diagnostic profiles (ae) to see if some attributes are more difficult to mas-

ter than others. The first three types of results could be obtained through regular

DCM practices, but the last one is unique to retrofitting. We present these four types

of results through an empirical example in the next section.

An Empirical Example of Retrofitting

To help readers understand the retrofitting framework, an empirical example is pre-

sented in this section. The purpose of the example is not to examine whether this

specific assessment or dataset could be used for retrofitting; instead, it aims to

demonstrate possible outcomes that one can gain from the methodological frame-

work of retrofitting.

Response data were collected from 422 examinees who participated in a 51-item

mock TOEFL (Test of English as a Foreign Language) listening test. This mock

Figure 2. Example individual diagnostic reports from retrofitting.
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TOEFL test was developed by a testing-prep company in Nanjing, China. The items

were developed following the TOEFL 2000 framework (Douglas, Jamieson, Nissan,

& Turner, 2000) and the assessment content, format, and length were approximating

the original TOEFL listening. This mock test has three sections with 17 items in each

section. The sections were designed to measure the same construct but have different

difficulty levels. The test was administered to a larger sample of 6,250 examinees

and a single score was reported for each examinee. The three-parameter logistic

(3PL; Birnbaum, 1968) model was used for item calibration. The a (discrimination),

b (difficulty), c (guessing) parameters for each item on the three sections are shown

in the right columns of Table 1. The means of each parameter in the ‘‘summary’’

row show that the a and c parameters in the three tests have similar values, while the

values of the b parameter differ across the three banks.

The primary purpose of this mock test was to predict students’ TOEFL scores and

place them in different test-prep classes. However, after scores are obtained, students

want to identify the specific listening skills that they need to improve, and teachers

are interested in gaining more information to facilitate instruction. Retrofitting is

therefore considered a possible approach to provide this kind of formative

information.

Table 1. Q-matrix in DCM and a, b, c Parameters in IRT.

Item

DCM_Q IRT_Easy IRT_Medium IRT_Hard

A1 A2 A3 a b c a b c a b c

1 1 0 0 0.59 21.04 0.26 0.42 20.76 0.29 0.84 0.3 0.03
2 1 0 0 0.88 0.06 0.05 0.54 0.64 0.13 0.92 1.3 0.12
3 0 0 1 1.07 21.19 0.05 0.17 0.89 0.01 0.46 1.26 0.04
4 1 0 0 0.72 20.6 0.05 0.96 1.14 0.19 0.38 0.29 0.28
5 0 1 0 0.87 21.14 0.24 1.2 20.4 0.07 0.71 0.54 0.02
6 1 0 0 0.95 20.71 0.12 0.86 20.27 0.24 1.06 1.09 0.04
7 0 1 1 0.55 21.28 0.27 0.69 1.07 0.14 1.12 0.66 0.02
8 0 1 1 0.52 20.92 0.06 1.09 0.24 0.05 0.71 1.29 0.03
9 0 0 1 1.05 21.32 0.01 1.12 0.11 0.21 0.58 1.05 0.13
10 0 1 0 0.39 20.9 0.2 0.47 0.32 0.08 0.91 1.24 0.02
11 0 1 1 1.1 21 0.02 0.13 21.01 0.16 1.06 1.09 0.1
12 1 0 0 1 21.1 0.08 0.43 20.98 0.01 0.27 1.88 0.28
13 0 1 0 0.78 20.67 0.04 0.72 20.81 0.02 0.69 1.57 0.04
14 1 0 0 0.95 21.1 0.08 0.57 0.05 0.1 0.78 0.8 0.05
15 1 0 1 0.69 20.84 0.08 0.88 0.11 0.06 0.85 0.76 0.04
16 0 1 0 0.85 20.05 0.02 1.1 20.6 0.11 0.59 1.2 0.01
17 0 0 1 0.75 20.11 0.02 0.32 0.02 0.13 0.43 0.84 0
Summarya 7 7 7 0.81 20.82 0.10 0.69 20.01 0.12 0.73 1.01 0.07

aThe ‘‘Summary’’ row in ‘‘DCM_Q’’ columns refers to the total number of items measuring an attribute.

The ‘‘Summary’’ row in ‘‘IRT’’ columns refers to the mean value of a parameter of all items.
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This specific assessment may be well-suited for retrofitting because three skills

were identified under the overall listening ability in the original assessment develop-

ment framework. Based on Douglas et al. (2000), the three skills are (a) basic com-

prehension, (b) pragmatic understanding, and (c) connecting information and

understanding organization. During the retrofitting process, we worked alongside

content developers of the mock TOEFL test to link items to the three skills. The final

Q-matrix is specified in the left column of Table 1. In the final Q-matrix, each skill

is measured seven times within 17 items. Please note that we are treating the three

sections as distinct item banks because the skills bear different meanings (in terms of

difficulty) across the three banks, although they share the same name. The five

DCMs that were introduced in the previous section were fit to the responses. R (R

Core Team, 2016) and the ‘‘CDM’’ package (Robitzsch, Kiefer, George, & Uenlue,

2016) were used for retrofitting. ‘‘ROFDM’’ (Liu, 2016) was used for producing out-

puts. In the following sections, we briefly evaluate fit statistics and focus on present-

ing the information that one can obtain from retrofitting.

Fit Statistics, Attribute Correlations, and Reliability

Table 2 presents the results for absolute fit. Overall, models within each item bank

had a similar fit. All models had SRMSR values smaller than 0.05, indicating accep-

table fit. Models fit better to data in the medium item bank than in the easy or hard

item banks. Table 3 presents results for relative fit. The relative fit statistics were also

very similar across models. Across the three item banks, DINA model was the best

fit according to AIC, and the HO-DINA model was the best fit according to BIC and

CAIC. One of the reasons that the HO-DINA model had better relative fit according

Table 2. Absolute Model Fit.

maxX2 MADcor SRMSR 100�Res MQ3

Easy

G-DINA 5.597 0.034 0.042 0.718 0.046
A-CDM 4.516 0.034 0.042 0.705 0.046
DINA 4.495 0.035 0.043 0.726 0.045
DINO 4.458 0.036 0.043 0.751 0.045
HO-DINA 4.398 0.035 0.044 0.737 0.045

Medium

G-DINA 47.236 0.038 0.046 0.893 0.041
A-CDM 3.823 0.031 0.039 0.741 0.042
DINA 3.721 0.033 0.040 0.776 0.042
DINO 3.667 0.033 0.040 0.775 0.042
HO-DINA 3.579 0.033 0.040 0.778 0.042

Hard

G-DINA 5.669 0.034 0.043 0.792 0.042
A-CDM 4.907 0.033 0.042 0.780 0.042
DINA 5.134 0.034 0.042 0.793 0.042
DINO 5.231 0.034 0.042 0.791 0.041
HO-DINA 5.442 0.035 0.043 0.814 0.043
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to BIC and CAIC is that these two indices impose a large penalty for highly parame-

terized models. The HO-DINA model had only 40 parameters, the least among five

models. Table 4 presents the likelihood ratio tests between the saturated G-DINA

model and each nested model. Results show that only the DINO model in the easy

item bank fit significantly worse than the saturated G-DINA model at a = .05. To

conclude, all five models fit similarly well to the data.

Figure 3 presents RMSEA values for item fit. In our dataset, item fit seems ade-

quate given all RMSEA values were below .05, except for the G-DINA model in the

medium item bank. Generally, the spread of the RMSEA was smaller in the hard item

bank and the largest in the easy item bank. Across models, the G-DINA model had

Table 3. Relative Model Fit.

22LL AIC BIC CAIC NP

Easy

G-DINA 8617.03 8715.03 8913.23 8962.23 49
A-CDM 8620.02 8710.02 8892.05 8937.05 45
DINA 8624.76 8706.76 8872.60 8913.60 41
DINO 8634.33 8716.33 8882.17 8923.17 41
HO-DINA 8627.12 8707.12 8868.92 8908.92 40

Medium

G-DINA 9353.86 9451.86 9650.07 9699.07 49
A-CDM 9359.68 9449.68 9631.70 9676.70 45
DINA 9365.31 9447.31 9613.15 9654.15 41
DINO 9367.39 9449.39 9615.24 9656.24 41
HO-DINA 9369.32 9449.32 9611.12 9651.12 40

Hard

G-DINA 9302.91 9400.91 9599.11 9648.11 49
A-CDM 9307.85 9397.85 9579.88 9624.88 45
DINA 9314.15 9396.15 9561.99 9602.99 41
DINO 9316.17 9398.17 9564.01 9605.01 41
HO-DINA 9316.66 9396.66 9558.46 9598.46 40

Note. NP is the number of parameters.

Table 4. Likelihood Ratio Test Among Models.

Model1 Model2 x2 df p

Easy
A-CDM G-DINA 2.992 4 .559
DINA G-DINA 7.729 8 .460
DINO G-DINA 17.300 8 .027

Medium
A-CDM G-DINA 5.816 4 .213
DINA G-DINA 11.447 8 .178
DINO G-DINA 13.531 8 .095

Hard
A-CDM G-DINA 4.942 4 .293
DINA G-DINA 11.237 8 .189
DINO G-DINA 13.259 8 .103
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the worst item fit across three item banks, especially in the medium item bank. DINA

had the best item fit in the easy and medium item banks, and DINO had the best item

fit in the hard item bank. When an item did not fit adequately, one can consider drop-

ping it from retrofitting. Ultimately, we did not drop any items as all item fit ade-

quately in this dataset, but in other datasets that would have been further considered.

Figure 4 presents person fit results. Due to limitations of space, we only show per-

son fit statistics under the HO-DINA model, given that it was the most parsimonious

and showed adequate model fit. Across three item banks, about 7% of examinees

were spurious high scorers and 7% were spurious low scorers at a = .05. This

Figure 3. Item fit statistics.

Note. The ‘‘RMSEA’’ in von Davier (2005) is computed differently from the ‘‘RMSEA’’ often

used in structural equation modeling.

Figure 4. Person fit statistics.

Liu et al. 373



percentage is lower than the results from an assessment designed under the DCM

framework in Liu et al. (2009). Hence, for this assessment and dataset, person fit

seems adequate.

Figure 5 shows the tetrachoric correlations in each item bank across the five

DCMs. Although different models did not all agree with each other, the correlations

between each pair of attributes were mostly above .70 across all item banks. This is

expected as we retrofitted to a test that was developed under a unidimensional struc-

ture. We hypothesized that attributes were less correlated in the HO-DINA model

partly because that model incorporated a higher-order latent trait. Reliability was the

highest in the medium item bank and the lowest in the easy item bank and this find-

ing was consistent across models. For example, under the HO-DINA model, the

reliability for the easy, medium, and hard banks were .71, .81, and.73, respectively.

Overall, the attribute correlations, the reliability estimates, and the majority of the

fit indices showed adequate results in this dataset. However, in other retrofitting

applications, this may or may not occur. Evaluating those indices is necessary but

insufficient to inform users whether retrofitting could provide useful information.

Results Interpretation

As discussed in the above framework, one of the most important pieces of informa-

tion one could gain from retrofitting is examinee classification on each of the

Figure 5. Tetrachoric correlations among attributes.
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attributes. The information includes both a probability of mastery and mastery deci-

sions on each attribute, similar to what we have shown in Figure 2. In the remainder

of this section, we present the four pieces of information that were mentioned in the

retrofitting framework.

First, beyond individual-level information, one could aggregate mastery status

across a large cohort of examinees. Figure 6 shows the aggregated examinee attribute

mastery rate in each item bank. In the easy item bank, most examinees have mas-

tered a1 and a3. In the medium and hard item banks, around half of the examinees

were classified as having mastered each attribute.

Second, the frequency of examinees in each attribute pattern may also be informa-

tive to end users. We present this information in Figure 7. Across three banks, most

examinees were classified either as nonmastery on each attribute ({0, 0, 0}) or all-

mastery ({1, 1, 1}). This should be expected in most retrofitting contexts in which the

test was originally developed under the unidimensional framework. However, there

were some examinees classified as mastering only one or two of the attributes. For

example, in the easy item bank, around 20% of examinees were classified as master-

ing a1 and a3 (i.e., {1, 0, 1}).

Third, one could examine whether some pairs of attributes are more correlated

than others using the information presented in Figure 5. For example, a1 and a3 are

Figure 6. Aggregated examinee attribute mastery rate.
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more correlated than the other two pairs in the easy item bank. This means that exam-

inees who have mastered a1 more likely have also mastered a3 instead of a2. This

information can be cycled back for learning, instruction, and future assessment devel-

opment (Rupp et al., 2010).

The last piece of information we present here is a unique product one can gain

from retrofitting. It is the relationship between attribute profile in the DCM (a) and

the general ability (û) estimated under the IRT. This information is presented in

Figure 8. In all item banks, as the number of mastered attributes increased, û

increased. However, the trend is clearer in the medium item bank than in the easy or

hard item banks. This information can be used in several ways by end users. For

example, the alignment of a and û in the medium item bank can be used to hypothe-

size a sequence of attribute difficulty as follows: a3 ! a1 ! a2 ! a1a3 !
a1a2 ! a2a3 ! a1a2a3. For the examinees in the easy and hard item bank, it may

not be easy to perfectly associate their mastery profiles to their û scores. However,

this exemplifies the value of retrofitting which is to provide nuanced attribute mas-

tery information when examinees obtain similar û scores.

Conclusion

One core issue of validity lies within the usefulness of an assessment tool and the

evidence that can be provided for those uses (Kane, 2013). The overall value of

Figure 7. Aggregated examinee attribute pattern frequency.
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retrofitting, assuming that the results are accurate and reliable, is the increased utility

for some applications. However, we want to restate that retrofitting should not be

encouraged as an ideal approach. Furthermore, results obtained from assessments

without a sound development framework should not be used for any high-stakes

decision making. We posit that retrofitting is not always successful and useful, but

can be in particular situations. For example, some high-stakes licensure tests (e.g.,

The United States Medical Licensing Examination; USMLE) provide both a single

score with pass/fail decisions to examinees and subscores for subcontent areas

because those tests must cover multiple subcontent areas within the large domain to

ensure that an examinee with a ‘‘pass’’ has mastered all the required knowledge and

skills to practice (Greenburg, Case, Golden, & Melnick, 1997; Raymond, Kahraman,

Swygert, & Balog, 2011). For those tests, retrofitting may be successful because

there are distinct subcontent areas that each item is intended to measure (e.g., anat-

omy and epidemiology on the USMLE) and factor analyses on data from that test

display multidimensionality (e.g., De Champlain, Swygert, Swanson, & Boulet,

2006). It may also be useful because the mastery decisions on each subcontent area

could inform examinees of what they need to learn and improve. In sum, we propose

that retrofitting may be considered when (a) it is impossible to develop a diagnostic

test due to practical constraints, (b) the purpose is to obtain formative information

that supports learning or informs the theory of construct, and (c) underlying multiple

skills or behaviors were clearly specified during item development and supported

through dimensionality assessment.

There are many obstacles one may face when retrofitting. For example, it is possi-

ble that items measuring the same set of attributes can have different levels of diffi-

culty. As mentioned by Choi (2010), if we ignore the discrepant levels of difficulty

in retrofitting, classification accuracy may decrease. There are three approaches to

accommodate varied item difficulty that are currently available. The first approach is

to treat item difficulty as a continuous variable and directly incorporate it into the

modeling process using the diagnostic classification mixture Rasch model (Choi,

2010). The second approach is to treat item difficulty as an ordinal variable (e.g.,

easy, medium, and difficult) and define the required attribute level of mastery using

Figure 8. Relationship between attribute profiles in DCM and the general ability in IRT.
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polytomous DCMs (e.g., Chen & de la Torre, 2013). The third approach is to use the

multicomponent latent trait model for diagnosis (MLTM-D; Embretson & Yang,

2013), which involves both a continuous latent trait and multiple categorical attri-

butes in one model. Embretson and Yang (2013) has demonstrated that he MLTM-D

works well for heterogeneous item pools such as the licensure tests mentioned above.

Beyond item difficulty, other item and test statistics in IRT may affect the classifica-

tion accuracy of retrofitting. Future research on these topics would be helpful for

practitioners to evaluate the potential of retrofitting.

Beyond providing information about specific examinees, retrofitting may be

applied to some large-scale standardized assessments not for the purpose of obtaining

information about examinees, but for using the large amount of data available from

standardized assessments to understand more about the construct domains them-

selves. Indeed, the process of diagnostic measurement can provide a wealth of infor-

mation about construct and learning theories (Rupp et al., 2010). Retrofitting DCMs

into data from these assessments could help to refine theories about how these

domains are interrelated, learned by students, and more.

An alternative approach of exploring the possibility of retrofitting is to investigate

the mathematical equivalence between IRT models and DCMs. Raykov and

Marcoulides (2015) have shown that CTT and IRT are mathematically equivalent

approaches with some constraints. Future research demonstrating the mathematical

relationships between DCMs and IRT models would be very helpful.

We argue that retrofitting should not be seen as a strong alternative to principled

assessment development practices. While retrofitting presents a feasible approach to

gain more actionable information from existing assessments of other psychometric

frameworks under certain circumstances, much caution is needed to use and interpret

DCMs appropriately. At a bare minimum, persons performing retrofitting should be

able to fully and clearly explain to end users the quality of information obtained from

the retrofitting and the potential risks of using it in various ways. However, as the

interest in obtaining information on multidimensional attributes increases, it is recog-

nized that assessments that are developed under the diagnostic framework will better

support learning, teaching, and decision making.
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