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Abstract

Researchers have argued that the best way to construct

a secure system is to proactively integrate security into the

design of the system. However, this tenet is rarely fol-

lowed because of economic and practical considerations.

Instead, security mechanisms are added as the need arises,

by retrofitting legacy code. Existing techniques to do so are

manual and ad hoc, and often result in security holes.

We present program analysis techniques to assist the pro-

cess of retrofitting legacy code for authorization policy en-

forcement. These techniques can be used to retrofit legacy

servers, such as X window, web, proxy, and cache servers.

Because such servers manage multiple clients simultane-

ously, and offer shared resources to clients, they must have

the ability to enforce authorization policies. A developer

can use our techniques to identify security-sensitive loca-

tions in legacy servers, and place reference monitor calls to

mediate these locations. We demonstrate our techniques by

retrofitting the X11 server to enforce authorization policies

on its X clients.

1. Introduction

Researchers have traditionally argued that the best way

to construct secure systems is to proactively design them

for security. While this is unquestionably the best way to

construct secure systems, economic and practical consider-

ations force developers to choose functionality and perfor-

mance over security. As a result, commodity systems often

ship with inadequate security mechanisms built in, and se-

curity is retroactively added, as the need arises. For exam-

ple, this was done in the case of the Linux Security Mod-

ules (LSM) framework [39], where the Linux kernel was

retrofitted with mechanisms to enforce mandatory access

control policies. Similarly, several popular server applica-
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tions lack mechanisms to enforce authorization policies on

their clients, and there is growing interest to retrofit these

servers to add such mechanisms [25, 33].

Unfortunately, existing techniques to retrofit legacy code

with security mechanisms, such as the ability to enforce au-

thorization policies, are manual and ad hoc. Not surpris-

ingly, security holes have been found in manually-retrofitted

code [22, 43]. Thus, it is desirable to have automated tech-

niques to retrofit legacy code.

In this paper, we address the problem of retroactively

adding security mechanisms to legacy software systems.

We focus on techniques to retrofit a class of legacy servers

for authorization policy enforcement. Examples of servers

to which our techniques are applicable include window

servers, such as the X server [41], middleware, web, proxy,

cache, and database servers. Because these servers of-

fer shared resources to their clients, and manage multiple

clients simultaneously, they must have the ability to en-

force authorization policies on their clients. For example,

an X server must be able to prevent an unauthorized client

from reading the contents of other client windows.

The main challenge in retrofitting a legacy server is in

identifying locations where security-sensitive operations,

i.e., primitive operations on critical server resources, are

performed. The idea is that having identified these lo-

cations, authorization policy lookups can be added to the

server code so as to completely mediate these locations [32].

We develop techniques to assist (1) identification of loca-

tions in server code where security-sensitive operations are

performed, and (2) instrumentation of these locations, such

that the operation is performed only if allowed by an autho-

rization policy. We have prototyped these techniques in two

tools, A and A, discussed below.

1. A (assistant for fingerprint identification) is a hybrid

static/dynamic analysis tool, which helps a developer

identify locations in server code where security-sensitive

operations are performed. The key idea behind A is

that each security-sensitive operation is typically charac-

terized by certain canonical code-patterns being executed

by the server. We call these code-patterns the finger-

print of the security-sensitive operation—just as a human

fingerprint identifies an individual, these code-patterns

identify the security-sensitive operation. The challenge



is to find fingerprints for security-sensitive operations.

We identify fingerprints using a novel observation:

security-sensitive operations are typically associated

with tangible side-effects. Thus, by tracing the server as

it performs a side-effect, and analyzing code-patterns in

the trace, we can extract fingerprints of security-sensitive

operations associated with the side-effect.

For example, consider the X server: the security-

sensitive operation Window Create creates a window

(window creation is a tangible side-effect) for an

X client. By analyzing the trace generated by the

X server as it opens a client window on the screen, A

identifies that a call to the function CreateWindow, which

is implemented in the X server, is the fingerprint of Win-

dow Create. Indeed, this function allocates memory for,

and initializes, a variable of type Window in response to

a client request. Thus, each call to CreateWindow in the

X server results in Window Create.

A is a two-phase tool. In the first phase, it traces the

server and identifies fingerprints for security-sensitive

operations, as discussed above. In the second phase, it

statically identifies locations in the code of the server

where these fingerprints occur; each of these locations

is deemed to perform the security-sensitive operation.

2. A (assistant for reference monitoring) is a tool to in-

strument locations discovered by A. In particular, A

adds calls to a reference monitor, which encapsulates the

authorization policy to be enforced. These calls, which

perform authorization policy lookups, completely me-

diate security-sensitive locations, thus ensuring that a

security-sensitive operation is performed only if allowed

by the authorization policy.

While A and A are not yet fully automatic, we

feel that they are an improvement over existing techniques,

which are completely manual. We also note that for our

techniques to be applicable, legacy code must satisfy cer-

tain assumptions, which we lay out in Section 2.

1.1. Case study: Retrofitting the X server

The X server accepts connections from multiple

X clients, and manages resources (e.g.,windows, buffers)

that it offers to these clients. Thus, it is important for the

X server to enforce authorization policies on its X clients.

A manual effort to retrofit the X server with authorization

policy enforcement mechanisms was initiated by the NSA

in early 2003 [25], and a retrofitted X server was produced

only recently [35], taking approximately two years.

We demonstrate that our techniques can assist with,

and potentially reduce the turnaround time of efforts to

retrofit legacy servers, by performing a case study with the

X server. Specifically, we retrofitted the X server to enforce

mandatory access control policies on window operations re-

quested by X clients. Using A and A, we were able to

identify security-sensitive locations in the X server, and add

reference monitoring code, with a few hours of manual ef-

fort. We ran the retrofitted X server on a security-enhanced

operating system (SELinux [28]), so that X clients have as-

sociated security-labels, such as Top-secret and Unclassi-

fied. The retrofitted X server enforced authorization poli-

cies on X clients based upon their security-labels.

A question that may arise is why the server itself needs

to be retrofitted to enforce authorization policies on its

clients. In particular, why can’t existing policy enforce-

ment mechanisms in a security-enhanced operating system

(e.g., SELinux), upon which the server runs, be used to en-

force these policies? The answer is that the server may pro-

vide channels of communication between clients that are

not readily visible to the operating system. For example,

consider enforcing a policy in the X server that disallows

a cut operation from a Top-secret window followed by a

paste operation into an Unclassified window. Cut and paste

are X server-specific channels for X client communication.

While these operations do have a kernel footprint, they are

not as readily visible in the operating system as they are

within the X server, where they are primitive operations. It

is not advisable in such cases to use the operating system to

enforce authorization policies, because it must be modified

to be made aware of kernel footprints of X server-specific

operations, which introduces application-specific code into

the operating system. In addition, the X server must also

be modified to expose more information to the operating

system, such as internal data structures that will be affected

by the requested operation. It has been argued that this is

impractical [25].

1.2. Contributions

To summarize, our main contributions are:

• Program analysis techniques to identify security-

sensitive locations in legacy code, and retrofit these loca-

tions with reference monitor calls for authorization pol-

icy enforcement.

• Prototype implementations of these techniques in two

tools. A (Section 3) uses a novel approach based upon

program tracing to find fingerprints of security-sensitive

operations, and uses these fingerprints to statically find

security-sensitive locations. A (Section 4) retrofits

these locations with reference monitor calls.

• Application of these tools to retrofit the X server to en-

force authorization policies on its X clients (Section 5).

More broadly, we feel that it is valuable to have retroac-

tive techniques and tools, such as the ones presented in this

paper, to add security mechanisms to legacy code.



2. Overview of our approach

Our goal is to enforce an authorization policy on the

security-sensitive operations requested by a client that con-

nects to a server. In this section, we show how our tech-

niques can be used to securely retrofit the server to do so.

We begin by stating our assumptions.

2.1. Assumptions

Server not adversarial. We assume that the server itself is

not adversarial, i.e., it is not written with malicious intent,

and does not actively try to defeat retroactive instrumen-

tation. Thus, we assume that the server does not remove,

or modify the instrumentation that we insert. This can be

ensured by the operating system as it loads the server for

execution, by comparing a hash of the executable against a

precomputed value. We also require that the server be non-

self-modifying, to preclude the possibility that instrumenta-

tion is modified at runtime. This property can be enforced

by making code pages write-protected.

Defense against control-hijacking exploits. Existing vul-

nerabilities, such as buffer-overflow vulnerabilities, could

possibly be exploited by malicious hackers to bypass our in-

strumentation. Because we cannot hope to eliminate these

vulnerabilities statically, we assume that the server is pro-

tected using techniques such as CCured [30], Cyclone [23],

or runtime execution monitoring and sandboxing, which ter-

minate execution when the behavior of the server differs

from its expected behavior.

Cooperation from environment. The environment that the

server runs in must cooperate with it to enforce authoriza-

tion policies, and must not be malicious in intent. In par-

ticular, the server relies on the operating system for several

policy enforcement tasks. First, it requires that operating

system ensure that the authorization policy is tamper-proof.

Second, because clients typically connect to the server via

the operating system, the server relies on the operating sys-

tem for important information, such as the security-labels

associated with the clients.

Client communication. We assume that clients cannot

communicate directly with each other, and that their com-

munication is mediated by the server or the operating sys-

tem. If client communication is mediated by the operating

system, then the policy must be enforced by the operating

system itself. Thus, we restrict ourselves to the case where

communication is mediated by the server. We also note that

if the clients communicate via the operating system, they

cannot avail of server-specific security-sensitive operations,

such as cut and paste in the case of the X server. Thus our

goal is to enforce authorization policies on server-specific

security-sensitive operations requested by clients.

Finally, we assume that client-server communication is

not altered by any intervening software layers. For example,

most commercial deployments of the X server are accompa-

nied by a window manager, (e.g., gnome and kde). Because

the window manager controls how clients connect to the

X server, it can in theory, alter any information exchanged

between the X server and its clients. However, because win-

dow managers are few in number (unlike X clients), we as-

sume that they can be verified to satisfy the above assump-

tion (though we have not done so). Further, the operating

system can ensure that only certified window managers are

allowed to run with the X server.

In summary, it suffices to ensure that the operating sys-

tem is in the trusted computing base. It then bootstraps se-

curity by ensuring that the instrumentation inserted in the

server is not tampered with. The clients are not trusted,

and could be malicious. Client security information, in par-

ticular its security-label, is bootstrapped by the operating

system during client connection, and is stored within the

server, thus ensuring that clients cannot tamper with their

security information after connection has been established.

As we will describe in the rest of this paper, client requests

for security-sensitive operations are mediated by the instru-

mentation that we add, thus enabling enforcement of autho-

rization policies on clients.

2.2. Basic tools

We enforce authorization policies by retrofitting a server

to ensure that security-sensitive operations requested by

clients are mediated and approved by an authorization pol-

icy. We do so using a reference monitor [2].

An authorization policy is defined as a set of triples 〈sub,

obj, op〉, where each triple denotes that the subject sub is

allowed to perform a security-sensitive operation op on an

object obj. Subjects and objects are often associated with

security-labels; for instance, all top-secret documents may

have the security-label Top-Secret. Authorization policies

are often represented using the security-labels of subjects

and objects, rather than the subjects and objects themselves.

A reference monitor is a quadruple 〈Σ, S, U, R〉, and is

parameterized by an authorization policyA, where:

• Σ is a set of security events, where each security event is

a triple 〈sub, obj, op〉;

• S is the state of the reference monitor, and is a set storing

current associations of security-labels with subjects and

objects;

• U: Σ×S×A→S is a state update function, which de-

notes how subject and object security-labels change in

response to policy decisions;

• R: Σ×S×A→Bool is a policy consulter, which returns

True if and only if a security event is permitted by the

reference monitor.



An enforcer observes events in Σ generated in response

to client requests, and passes them on to the reference mon-

itor. Any violations of the policy, will result in R returning

False, following which the enforcer will take appropriate

action. Enforcing authorization policies entails implement-

ing the enforcer and the reference monitor.

The enforcer. An implementation of the enforcer must have

the (1) ability to monitor all security events generated in

response to client requests, and (2) ability to take action if

a security event results in authorization failure. The action

may be to terminate the client whose request resulted in the

authorization failure.

1. To monitor security events, the enforcer must be able

to infer the security-sensitive operation requested, the

security-label of the subject that requests the operation

(typically the client), and the object upon which the op-

eration is to be performed.

2. To take preventive action if the security event is not per-

mitted by the authorization policy, the enforcer must be

able to control the execution of clients of the server, or

audit the failure appropriately.

The reference monitor. An implementation of the refer-

ence monitor must ensure that the state of the reference

monitor and the authorization policy are tamper-proof. In

addition, the state of the reference must be updated appro-

priately in response to security events, usingU. Implement-

ing R entails looking up the policy, and can be achieved us-

ing off-the-shelf policy management libraries, such as the

SELinux policy development toolkit [36].

2.3. Our approach

In this section, we present a high-level, informal

overview of our approach, and describe how we implement

the enforcer and the reference monitor. Details omitted

from this section appear in Section 3 and Section 4. Our ap-

proach proceeds in six steps, as shown in Figure 1. Where

applicable, we illustrate the technique using an example

from the X server.

Step 1: Find security-sensitive operations to be pro-

tected. The first step, that of determining the security-

sensitive operations to be protected, is manual. Typically, a

design team considers security requirements for the server,

and determines security-sensitive operations based upon

these requirements. This approach was followed in the case

of the LSM framework [39] and the X server [25], where

security-sensitive operations were identified for kernel re-

sources, and X server resources, respectively. The design

team typically considers a wide range of policies to be en-

forced by the server. Because security-sensitive operations

are typically the granularity at which authorization policies

are written (a policy A is a set of triples of the form 〈subi,

obji, opi〉), the set of operations {opi} can be identified.

In this paper, we assume that the set of security-sensitive

operations is given. For the X server, we used the set of op-

erations identified manually by Kilpatrick et al. [25]. This

set of operations, 59 in number, considers security-sensitive

operations on several key X server resources, including the

Client, Window, Font, Drawable, Input, and xEvent data

structures. Of these, 22 security-sensitive operations are

for the Window data structure, such as Window Create, Win-

dow Map, and Window Enumerate (we will denote security-

sensitive operations in this paper using suggestive names,

like the ones above).

However, only an informal description of these security-

sensitive operations is provided by Kilpatrick et al., and a

precise code-level description of these operations is needed

for enforcement. A, described in the next two steps,

achieves this by identifying fingerprints of these operations.

It must be noted that our techniques are parameterized on

the set of security-sensitive operations, and additions or

deletions from this set do not affect any of our algorithms.

Step 2: Find fingerprints of security-sensitive opera-

tions. The second step identifies fingerprints of security-

sensitive operations. As mentioned in the introduction,

the server executes certain canonical code-patterns when

it performs a security-sensitive operation, and these code-

patterns are the fingerprint of the operation. However, the

association between each security-sensitive operation, and

the code-patterns that are executed is not known a priori,

and the goal of this step is to recover the association.

Two key observations help us achieve this goal. The

first observation is that each security-sensitive operation is

typically associated with a tangible side-effect. For exam-

ple, the security-sensitive operations Window Create, Win-

dow Map and Window Enumerate of the X server are asso-

ciated with opening, mapping, and enumerating child win-

dows of an X client window, respectively. Thus, if we in-

duce the server to perform a tangible side-effect associated

with a security-sensitive operation, and trace the server as

we do so, the code-patterns that form the fingerprint of the

security-sensitive operation must be in the trace.

However, program traces are typically long, and it is still

challenging to identify the code-patterns that form the fin-

gerprint of a security-sensitive operation from several thou-

sand entries in a program trace. Our second observation

addresses this challenge—to identify the fingerprint of a

security-sensitive operation, it suffices to compare program

traces that produce a tangible side-effect associated with

the operation, against those that do not. For example, dis-

playing a visible X client window (e.g., xterm), which in-

volves mapping the window on the screen, is associated

with Window Map; closing and typing to an xterm window

are not. Thus, to identify the code-patterns canonical to Win-

dow Map, it suffices to compare the trace generated by open-

ing an xterm window against the trace generated by closing,
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Figure 1. Steps involved in retrofitting a server for authorization policy enforcement.

or typing to the window. Similarly, closing a browser win-

dow is associated with closing all child windows, which in-

volves Window Enumerate, while typing to a window is not.

With these two observations, identifying fingerprints

reduces to studying about 15 entries, on average, in

a program trace. Using this technique, we identified,

for example, the fingerprints of Window Create as Call

CreateWindow; of Window Map as writes of True to the

field mapped of a variable of type Window and MapNotify

to the field type of a variable of type xEvent; and of

Window Enumerate as Read WindowPtr->firstChild and

Read WindowPtr->nextSib and WindowPtr , 0, which are

intuitively performed during linked-list traversal. Note that

code-patterns are expressed at the granularity of reads and

writes to individual fields of data structures. We discuss the

tracing infrastructure, and algorithms to compare traces to

identify fingerprints in more detail in Section 3.1.

MapSubWindows(pParent, pClient) {

pWin = pParent->firstChild;

for (;pWin; pWin = pWin->nextSib) {

pWin->mapped = TRUE; ...

event.u.u.type = MapNotify; ...

}

}

Figure 2. X server function MapSubWindows

Step 3: Find all locations that are security-sensitive.

The third step uses the results of fingerprint analysis to

statically identify all locations in the server where code-

patterns that form the fingerprint of a security-sensitive op-

eration occur; each of these locations performs the oper-

ation. Consider Figure 2, which shows a snippet of code

from MapSubWindows, a function in the X server. It con-

tains writes of True to pWin->mapped, and MapNotify to

event.u.u.type, as well as a traversal of the children of

the window pointer pParent. Thus, a call to the function

MapSubWindows performs both the operations Window Map

and Window Enumerate. We identify the set of security-

sensitive operations performed by each function call using

static analysis, as described in Section 3.3.

In addition to identifying the locations where security-

sensitive operations occur, in this step we also try to iden-

tify the subject and object associated with the operation. To

do so, we identify the variables corresponding to subject

and object data types (such as Client and Window) in scope.

In most cases, this heuristic is good-enough to identify the

subject and the object. In Figure 2, the subject is the client

requesting the operation (pClient), and the object for Win-

dow Enumerate is the window whose children are enumer-

ated (pParent), and the object for Window Map is the vari-

able denoting the child windows (pWin), which are mapped

to the screen.

Steps 2 and 3 together identify all locations where the

server performs security-sensitive operations. These steps

are realized in A.

Step 4: Instrument the server. Once A has identified

all locations where security-sensitive operations are per-

formed, the server can be retrofitted by inserting calls to

a reference monitor at these locations, to achieve complete

mediation. In particular, if A determines that a statement

Stmt is security-sensitive, and that it generates the secu-

rity event 〈sub, obj, op〉, it is instrumented as shown below.

Note that if Stmt is a call to a function foo, the query can

alternately be placed in the function-body of foo.

if (¬ query refmon(〈 sub, obj, op〉))

then handle failure; else Stmt;

For example, because MapSubWindows performs the

security-sensitive operation Window Enumerate (where chil-

dren of pParent are enumerated) calls to MapSubWindows are

protected as shown below.

if (¬query refmon(〈pClient, pParent, Window Enumerate〉))

then handle failure;

else MapSubWindows(pParent,pClient)

The statement handle failure can be used by the server

to take suitable action against the offending client, either by



terminating the client, or by auditing the failed request. As

mentioned earlier, authorization policies are expressed in

terms of security-labels of subjects and objects. Security-

labels can be stored in a table within the reference monitor,

or alternately, with data structures used by the server to rep-

resent subjects and objects. For example, in the X server,

extra fields can be added to the Client and Window data

structures to store security-labels. In either case, because

we pass pointers to both the subject and the object to the ref-

erence monitor using query refmon, the reference monitor

can lookup the corresponding security-labels, and consult

the policy.

Step 5: Generate reference monitor queries. This step

generates code for the query refmon function. We gener-

ate a template for this function, omitting two details that

must be filled-in manually by a developer. First, the de-

veloper must specify how the policy is to be consulted,

i.e., he must implement R using an appropriate policy man-

agement API (e.g., [36]). Second, he must implement the

state update function, U, by specifying how the state of

the reference monitor is to be updated. For example, when

a security-event 〈pClient, pWin, Window Create〉 succeeds,

corresponding to creation of a new window, the security-

label of pWin, the newly-created window, must be initial-

ized appropriately. Similarly, a security-event that copies

data from pWin1 to pWin2 may entail updating the security-

label of pWin2 (e.g., under the Chinese-Wall policy [10]).

Because security-labels are either stored as a table within

the reference monitor, or as fields of subject or object data

structures, as described earlier, the developer must modify

these data structures appropriately to update security-labels.

This step is described in further detail in Section 4. Note

that while steps 2-4 are policy independent, step 5 requires

implementation of R and U, which depend on the specific

policy to be enforced. Steps 4 and 5 together ensure com-

plete mediation of security-sensitive operations identified

by A, are realized in the tool A.

Step 6: Link the modified server and reference moni-

tor. The last step involves linking the retrofitted server and

the reference monitor code to create an executable that can

enforce authorization policies.

We now examine the security of our approach.

• The enforcer is implemented using instrumentation in-

serted in Step 4. Because the subject, object, and opera-

tion are passed to the reference monitor, security-labels

can be retrieved, and the authorization policy consulted.

If the requested operation is not permitted by the policy,

the instrumentation ensures that it will not be executed.

Further, because the server controls client connections,

it can use handle failure to terminate the execution of

malicious clients.

• The reference monitor is part of the server’s address

space, and is thus tamper-proof by our assumptions in

Section 2.1. Alternately, the reference monitor can run

as a separate process, and communicate with the server

using IPC. The policy itself must be protected by storing

it on the file-system with permissions such that it can be

modified only by a privileged system user.

A noteworthy feature of our approach is its modular-

ity. In particular, alternate implementations of fingerprint-

finding (e.g., using dynamic slicing [1, 26, 44]) and instru-

mentation (e.g., using aspect weavers [3]) can be used in

place of A and A, respectively. Thus, our technique

benefits directly from improved algorithms for these tasks.

3. Locating security-sensitive operations

A analyzes legacy servers and identifies locations

where they perform security-sensitive operations. As dis-

cussed earlier, this is done in two phases: identifying finger-

prints of security-sensitive operations, in our case, combi-

nations of code-patterns that identify an operation followed

by a static analysis phase, which identifies all locations in

the code where these code-patterns occur. We discuss these

steps in detail.

3.1. Identifying fingerprints using analysis
of program traces

Recall that our ultimate goal is to retrofit a legacy server

to ensure that policy lookups completely mediate security-

sensitive operations. A necessary step in this process is

to locate where security-sensitive operations are performed.

We use fingerprints of security-sensitive operations for this

task.

Formally, a code-pattern is defined to be a function call, a

read or a write to a field of a data-structure, or a comparison

of two values, as shown in Figure 3. Note that code-patterns

are expressed in terms of abstract-syntax-trees (ASTs). This

allows us to express code-patterns generically in terms data-

structures, rather than individual variables. The fingerprint

of a security-sensitive operation is defined to be a conjunc-

tion of one or more code-patterns.

CodePat := Call AST | Read AST

|Write Value to AST

| Compare(Value, Value)

Value := constant | AST

AST := (type-name->)∗field

Figure 3. Code-pattern definition

For example, in the X server, the finger-

print of Window Create is Call CreateWindow,

while one fingerprint of Window Enumerate, which



enumerates all the children of a window is

(WindowPtr , 0 ∧ Read WindowPtr->firstChild ∧

Read WindowPtr->nextSib), which intuitively denotes

the code-patterns used to traverse the list of children of a

window. A security-sensitive operation can have several

fingerprints, corresponding to different ways of performing

the operation. Both forward and backwards traversal of the

linked list of children of a window constitute fingerprints

for Window Enumerate, for instance.

The key challenge, however, is to discover fingerprints

of security-sensitive operations, as this is often not known

a priori—this is especially the case with legacy and third-

party code. Further, fingerprints must be succinct, i.e., a

fingerprint must be a small combination of code-patterns

that identifies the security-sensitive operation. We address

this challenge by making two novel observations.

Observation 1 (Tangible side-effects) Security-sensitive

operations are associated with tangible side-effects.

Tangible side-effects help us determine whether a server

has performed a security-sensitive operation. Thus if we in-

duce the server to perform a security-sensitive operation—

the occurrence of a tangible side-effect denotes that the op-

eration is performed—then the code-patterns in a finger-

print of that security-sensitive operation must be in the trace

generated by the server. Thus, identifying fingerprints re-

duces to tracing the server as it performs a tangible side-

effect, and recording the code-patterns from Figure 3 that it

executes in the process. However, the program trace gener-

ated by the server as it performs a tangible side-effect may

be huge. Using our tracing infrastructure, the X server gen-

erates a trace of length 10459 when the following experi-

ment is performed: start the X server, open an xterm, close

the xterm, and close the X server (each of these is a tan-

gible side-effect). It is impossible to identify succinct fin-

gerprints of security-sensitive operations (e.g., those of Win-

dow Create and Window Destroy) by studying this trace. Our

second observation addresses this problem.

Observation 2 (Comparing traces) Comparing a trace

associated with a security-sensitive operation, against

traces that are not associated with the operation yields suc-

cinct fingerprints.

The key idea underlying this observation is that if a run

of the server does not perform a security-sensitive opera-

tion, then the trace produced by the server will not contain

a fingerprint of that operation. For example, the trace Topen

that opens an X client window on the X server will con-

tain the fingerprint of Window Create, but the trace Tclose

that closes a window will not. Thus, Topen - Tclose, a shorter

trace, still contains the fingerprint of Window Create. Con-

tinuing this process with other traces that do not perform

Window Create reduces the size of the trace to be examined

even further. In fact, for the X server we were able to reduce

the size of the trace several-fold using this technique (Fig-

ure 4), whittling down the search for fingerprints to about

15 functions, on average.

A technical difficulty must be addressed before we com-

pare traces. A tangible side-effect may be associated with

multiple security-sensitive operations, and all the security-

sensitive operations associated with it must be identified.

For instance, when an xterm window is opened on the

X server, the security-sensitive operations include (amongst

others) creating a window (Window Create), mapping it to

the screen (Window Map), and initializing several window

attributes (Window Setattr).

We manually identify the security-sensitive operations

associated with each tangible side-effect. Because the side-

effects we consider are tangible, programmers typically

have an intuitive understanding of the operations involved

in performing the side-effect. The trace generated by the

tangible side-effect is then assigned a label with the set

of security-sensitive operations that it performs. It is im-

portant to note that tangible side-effects are not specific to

the X server alone, and are applicable to other servers as

well. For example, in a database server, dropping or adding

a record, changing fields of records, and performing table

joins are tangible side-effects. Because labeling traces is a

manual process, it is conceivable that the they are not la-

beled correctly. However we show empirically that finger-

prints can be identified succinctly and precisely, in spite of

errors in labeling. Because each trace can be associated

with multiple security-sensitive operations, we formulate

set-equations for each operation in terms of the labels of

our traces.

Definition 1 (Set equation) Given set S , a set B ⊆S , and a

collection C={C1, C2, . . ., Cn} of subsets of S , a set equation

for B is B=C j1*C j2 *. . .*C jk , where each C ji is an element,

or the complement of an element of C, and ‘*’ is ∪ or ∩.

Algorithm : F F(X, S , Seff)

Input : (i) X: Server to be retrofitted, (ii) S : A set of

security-sensitive operations {op1, . . ., opn}, and (iii) Seff :

A set of tangible side-effects {seff1, . . ., seffm}.

Output : FP1 , . . ., FPn : Each FPi is the fingerprint of the

security-sensitive operation opi.

X′ := X instrumented to perform tracing;1

foreach (tangible side-effect seffi ∈ Seff ) do2

Ti := Trace generated by X′ when induced to perform seffi;3

label(Ti) := Set of operations (from S ) involved in seffi;4

foreach (opi ∈ S ) do5

SEi := Set-equation for opi in terms of label(T1), . . ., label(Tm);6

CPseti := Set of code-patterns in Ti;7

FPi := Result when the set operations in SEi are performed on8

CPset1, . . ., CPsetm;

Algorithm 1: Algorithm to find fingerprints of

security-sensitive operations.



To find a fingerprint for an operation op, we do the fol-

lowing: Let S be the set of all security-sensitive operations,

and B = {op}. Let Ci denote the label (i.e., the set of se-

curity sensitive operations performed) of trace Ti, which is

obtained when the server performs the tangible side-effect

seffi. Formulate a set-equation for B in terms of Ci’s, and

apply the same set-operations on the set of code-patterns in

the corresponding Ti’s. The resulting set of code-patterns is

the fingerprint for op.

For example, if T1 is a trace of side-effect seff1, which

performs op and op′, and T2 is a trace of side-effect seff2,

which performs op′, then C1 = {op, op′}, and C2 = {op′}.

Say T1 contains the set of code-patterns {p1, p2}, and T2

contains the set of code-patterns {p2}. Then to find the fin-

gerprint of op, we let B = {op}, and observe that B = C1 -

C2. We perform the same set-operations on the set of code-

patterns in T1 and T2 to obtain {p1}, which is then reported

as the fingerprint of op. This process is formalized in Algo-

rithm 1.

Finding set-equations is, in general, a hard problem.

More precisely, define a CNF-set-equation as a set-equation

expressed in conjunctive normal form, with ‘∩’ and ‘∪’

as the conjunction and disjunction operators, respectively.

Each disjunct in the equation is a clause. It can be shown

that the CNF-set-equation problem, which is a restricted

version of the general problem of finding set-equations, is

NP-complete.

Definition 2 (CNF-set-equation problem) Given a set S ,

a set B ⊆ S , a collection C of subsets of S (as in Defini-

tion 1), and an integer k, does B have a CNF-set-equation

with at most k clauses?

We currently use a simple brute-force algorithm to find

set-equations. This works for us, because the number of

sets we have to examine (which is the number of traces we

gather) is fortunately quite small (15 for the X server).

3.2. Evaluation of fingerprint-finding algo-
rithm

We have implemented Algorithm 1 in A. We use a

modified version of gcc to compile the server. During com-

pilation, instrumentation is inserted statically at statements

that read and write to fields of critical data structures. We

log the field and the data structure that was read from, or

written to, and the function name, file name, and the line

number at which this occurs. We then induce the modified

server to perform a set of tangible side-effects, and proceed

as in Algorithm 1 to find fingerprints.

We applied this to find fingerprints of security-sensitive

operations in the X server. In particular, we recorded

reads and writes to fields of data structures such as Client,

Window, Font, Drawable, Input, and xEvent. Figure 4 shows

a portion of the result of performing lines (1)-(4) of Algo-

rithm 1. Columns represent traces of 9 tangible side-effects,

and rows represent 11 security-sensitive operations on the

Window data structure. We manually labeled each trace

with the security-sensitive operations it performs. These

entries are marked in Figure 4 using 3 and 52. For ex-

ample, opening an xterm on the X server includes creat-

ing a window (Window Create), mapping it onto the screen

(Window Map), placing it appropriately in the stack of win-

dows that X server maintains (Window Chstack), getting and

setting its attributes (Window Getattr, Window Setattr), and

drawing the contents of the window (Window DrawEvent).

This trace of operations contains 115 calls to distinct func-

tions in the X server, as shown in the last row of Figure 4.

Figure 5 shows the result of performing lines (5)-(8) of

Algorithm 1 with the labeled traces obtained above. For

each operation, the set-equation used to obtain fingerprints,

the size of the resulting set, and the set of fingerprints is

shown. Note that each security-sensitive operation can have

more than one fingerprint, as for example, is the case with

Window Enumerate and Window InputEvent.

To find errors in manual labeling of traces, we did the

following. After finding fingerprints of security-sensitive

operations, we checked each trace for the presence of these

fingerprints. Presence of a fingerprint of a security-sensitive

operation in a trace that is not labeled with that security-

sensitive operation shows an error in manual labeling; such

entries are marked 51 in Figure 4. For example, we did not

label the trace generated by opening a browser (htmlview)

with Window Unmap. On the other hand, absence of fin-

gerprints of a security-sensitive operation in a trace that is

labeled with the security-sensitive operation also shows an

error in manual labeling; such entries are marked 52 in Fig-

ure 4. Thus for example, we did label the trace generated

by moving a window with Window Getattr, whereas in fact,

this operation is not performed when a window is moved.

We now evaluate A’s fingerprint finding algorithm by

answering the following questions:

1. How effective is A at locating fingerprints? Raw-

traces generated by tangible-side effects, have on aver-

age, 53829 code-patterns. However, A abstracts each

trace to function calls: it first identifies fingerprints at the

function-call level; if necessary, it delves into the code-

patterns exercised by the function. The number of dis-

tinct functions called in each trace is shown in the last

row of Figure 4. The third column of Figure 5 shows,

in terms of the number of function calls, the size of

FP, which is the result obtained by computing the set-

equation for each security-sensitive operation, to deter-

mine fingerprints. A was able to achieve about one or-

der of magnitude reduction in terms of the number of

distinct functions to be examined for fingerprints.

We examined each of the functions in FP to deter-
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Window Create 3 3 3 3

Window Destroy 3 51 3 3 51

Window Map 3 3 3 3

Window Unmap 3 51 3 3 51

Window Chstack 3 3 3 3 3

Window Getattr 3 3 52 52 3

Window Setattr 3 3 3 52 51 3

Window Move 51 3 51 51

Window Enumerate 51 51 3 3 3 51 3 3

Window InputEvent 3 3 3 3 3

Window DrawEvent 3 3 3 3 51 3 3 3 3

Distinct
Functions 115 148 251 161 68 148 96 93 166

Figure 4. Examples of labeled traces of tangible side-effects obtained from the X server. A “3”

entry in (row, column) denotes that the trace represented by column performs the security-sensitive

operation represented by row. A “51” or a “52” entry denotes a mistake in manual labeling.

Operation Set Equation |FP| Fingerprint

Window Create ∩(A, C, G) - D - H 9 Call CreateWindow
Window Destroy ∩(B, D) - A 7 Call DeleteWindow
Window Map ∩(A, C, G) - D - H 9 Write True to Window->mapped ∧ Write MapNotify to xEvent->union->type
Window Unmap ∩(B, D) - A 7 Write UnmapNotify to xEvent->union->type
Window Chstack ∩(A, C, G, H, I) - D - E 6 Call MoveWindowInStack
Window Getattr ∩(A, C, I) - B - D - E - F 25 Call GetWindowAttributes
Window Setattr ∩(A, C, F, I) - B - D - E 15 Call ChangeWindowAttributes
Window Move F - A - B - D - E - G 38 Call ProcTranslateCoords
Window Enumerate ∩(C, D, F, H, I) 21 Read WindowPtr->firstChild ∧ Read WindowPtr->nextSib ∧ WindowPtr,0,

Read WindowPtr->lastChild ∧ Read WindowPtr->prevSib
Window InputEvent E - C 19 Call CoreProcessPointerEvent, Call CoreProcessKeyboardEvent,

Call xf86eqProcessInputEvents
Window DrawEvent ∩(A, B, C, D, E, F, G, H, I) 12 Call DeliverEventsToWindow

Average value of |FP|: 15.3

Figure 5. Fingerprints obtained by applying Algorithm 1 to the labeled traces from Figure 4.

mine if it is indeed a fingerprint. In most cases, we

found that for a security-sensitive operation, a single

function in FP performs the operation. However, in

some cases, multiple functions in FP seemed to per-

form the security-sensitive operation. For example, both

Call MapWindow and Call MapSubWindow, which were

present in FP, performed Window Map. In such cases,

we examined the traces generated by A to determine

common code-patterns exercised by the call to these

functions. Doing so for Window Map reveals that the

common code-patterns in MapWindow and MapSubWindow

are (Write True to Window->mapped ∧ Write MapNotify

to xEvent->union->type). For security-sensitive opera-

tions such as Window InputEvent, where we did not find

common code-patterns exercised by candidate functions

from FP, we deemed each of these function calls to be

fingerprints of the operation.

2. How precise are the fingerprints found? For each of

the fingerprints recovered by A for the X server, we

manually verified that it is indeed a fingerprint of the

security-sensitive operation in question.

However, in general, A need not recover all finger-

prints of a security-sensitive operation. Because A is

a runtime analysis, it can only capture the fingerprints of

a security-sensitive operation exercised by the runtime

traces, and may miss other ways to perform the opera-

tion. By collecting traces for a larger number of tangible

side-effects, and verifying the fingerprints collected by

A against these traces, confidence can be increased in

the precision of fingerprints obtained by A. In the fu-

ture, we plan to investigate static techniques to identify

fingerprints to overcome this limitation.

3. How much effort is involved in manual labeling of



traces? In all, we collected 15 traces for different

tangible side-effects exercising different Window-related

security-sensitive operations. It took us a few hours to

manually label traces with security-sensitive operations.

4. How effective is manual labeling of traces? In most

cases, it is easy to reason about the security-sensitive

operations that are performed if a tangible side-effect is

induced. However, because this process is manual, we

may miss security-sensitive operations that may be per-

formed (51 entries in Figure 4), or erroneously label a

trace with security-sensitive operations that are not actu-

ally performed (52 entries). Our experience of manually

labeling traces for the X server shows that this process

has an error rate of approximately 15%.

However, it must be noted that we were able to recover

fingerprints precisely in spite of labeling errors. If a

security-sensitive operation is wrongly omitted from the

labels of a trace that performs a tangible side-effect as-

sociated with that operation (the 51 case), then because

the same security-sensitive operation often appears in the

labels of other traces, a set-equation can still be formu-

lated for the operation, and the fingerprint can be recov-

ered. On the other hand, if a security-sensitive opera-

tion is wrongly added to the labels of a trace (the 52

case), none of the functions in FP will perform the tangi-

ble side-effect. In this case, trace labels are refined, and

the process is iterated until a fingerprint is identified.

3.3. Identifying security-sensitive locations
using static analysis

Having identified fingerprints of security-sensitive oper-

ations, A employs static analysis to find all locations in

the code of the server where these fingerprints occur.

A currently identifies security-sensitive locations at

the granularity of function calls. Note that several, but

not all, fingerprints are function calls. A considers fin-

gerprints that are not function calls, such as those of

Window Map, Window Unmap, and Window Enumerate, and

identifies functions that contain these code-patterns. The

idea is that by mediating calls to functions that contain these

patterns, the corresponding security-sensitive operations are

mediated as well. This is done using a flow-insensitive, in-

traprocedural analysis, as described in Algorithm 2. A

first identifies the set of code-patterns that appear in the

body of a function, and then checks to see if the fingerprints

of a security-sensitive operation appear in this set. If so,

the function is marked as performing the security-sensitive

operation. For a security-sensitive operation whose finger-

prints contain only function calls, Algorithm 2 marks each

of these functions as performing the operation. A also

supports interprocedural search for code-patterns (for fin-

gerprints that cross procedure boundaries); however, we did

Algorithm : F S- L(X, S , FP)

Input : (i) X: Server to be retrofitted, (ii) S : Set of

security-sensitive operations {op1, . . ., opn}, and (ii) FP:

Set of fingerprint sets fp1 , . . ., fpn of op1, . . ., opn,

respectively.

Output : Opset: X→ 2S , where Opset( f ) denotes the set of

security-sensitive operations performed by a call to f , a

function of X.

/* Process fingerprints with only function calls */;1

foreach (fingerprint set fpi in FP) do2

fpseti := Set of code-patterns in fpi;3

if (fpseti == {Call f1, . . ., Call fm)} then4

foreach ( f ∈ {f1, . . ., fm}) do5

Opset( f ) = Opset( f ) ∪ {opi};6

FP = FP - {fpi};7

/* Process other fingerprints */;8

foreach (function f in X) do9

Opset( f ) := φ;10

CP( f ) := Set of code-patterns in f (as determined using the ASTs of11

statements in f );

foreach (fingerprint set fpi in FP) do12

if (fpseti ⊆ CP( f )) then Opset( f ) := Opset( f ) ∪ {opi};13

return Opset;14

Algorithm 2: Finding functions that contain code-

patterns that appear in fingerprints.

not encounter any such fingerprints for the X server.

Consider the function MapSubWindows in the X server

(see Figure 2). This function maps all children

of a given window (pParent in Figure 2) to the

screen. Note that it contains code-patterns that consti-

tute the fingerprint of both Window Enumerate and Win-

dow Map. Thus, Opset(MapSubWindows) = {Window Map,

Window Enumerate}.

A uses a slightly more powerful variant of the

code-pattern language in Figure 3 to match code-patterns

in function bodies. In particular, it extends Figure 3

with the ability to specify simple relations between

different instances of ASTs. Thus, for example, it can

match patterns such as Read WindowPtr1->firstChild

∧ Read WindowPtr2->nextSib Where WindowPtr1 ,

WindowPtr2, which can be useful for matching code-

patterns such as the ones in Figure 2, where the parent’s

firstChild field is read, followed by nextSib of child

windows.

Finally, A also helps identify the subject requesting,

and the object upon which the security-sensitive operation

is to be performed. To do so, it identifies variables of the rel-

evant types that are in scope. For example, in the X server,

the subject is always the client requesting the operation,

which is a variable of the Client data type, and the ob-

ject can be identified based upon the kind of operation re-

quested. For window operations, the object is a variable of

the Window data type. This set is then manually inspected to

recover the relevant subject and object at each location.



3.4. Evaluation of security-sensitive
location-finding algorithm

We have implemented A’s static analysis algorithm as

a plugin to CIL [29]. We evaluate A’s security-sensitive

location finding algorithm by answering two questions:

1. How precise are the security-sensitive locations

found? Algorithm 2 precisely identifies the set of

security-sensitive operations performed by each func-

tion, with one exception. A reports false positives for

the Window Enumerate operation, i.e., it reports that cer-

tain functions perform this operation, whereas in fact,

they do not. Out of 20 functions reported as performing

Window Enumerate, only 10 actually do.

We found that this was because of the inadequate ex-

pressive power of the code-pattern language. In par-

ticular, A matches functions that contain the code-

patterns WindowPtr , 0, Read WindowPtr->firstChild,

and Read WindowPtr->nextSib, but do not perform

linked-list traversal. These false positives can be elimi-

nated by enhancing the code-pattern language with more

constructs (in particular, loop constructs).

2. How easy is it to identify subjects and objects? As

mentioned earlier, we identify subjects and objects us-

ing variables of relevant data types in scope. This sim-

ple heuristic is quite effective: out of 25 functions that

were identified as performing Window operations, the

subject, of type Client, and object, of type Window, were

available as formal parameters or derivable from for-

mal parameters in 22 of them. In the remaining func-

tions, specifically, those performing Window InputEvent,

the subject and object were derived from global vari-

ables. Even in this case, however, manual inspection

quickly reveals the relevant global variables.

4. Protecting security-sensitive locations

Locations identified as performing security-sensitive op-

erations by A are protected by A using instrumenta-

tion. Because A helps recover the complete description of

security-events, adding instrumentation is straightforward,

and calls to query refmon are inserted as described in Sec-

tion 2. If the function to be protected is implemented in

the server itself (and not within a library), as is the case

with all the security-sensitive function calls in the X server,

calls to query refmon can be placed within the function

body itself. Because the same variables that constitute the

security-event are also passed to query refmon (i.e., if 〈sub,

obj, op〉 is the security event, then the corresponding call is

query refmon(〈sub, obj, op〉)), and the data structures used

to represent subjects and objects are internal to the server,

A avoids TOCTTOU bugs [9] by construction.

bool query refmon(Client *sub, Window *obj, Operation OP) {

switch (OP) {

case WINDOW CREATE:

rc = policy lookup(sub->label, NULL, WINDOW CREATE);

if (rc == success) {

obj->label = sub->label;

return True;

} else { return False; }
case WINDOW MAP:

. . .

}

}

Figure 6. Code fragment showing the imple-

mentation of query refmon for Window Create.

A also generates a template implementation of

query refmon, as shown in Figure 6. The developer is then

faced with two tasks:

1. Implementing the policy consulter: The developer

must insert appropriate calls from a policy management

API of his choice into the template implementation of

query refmon, generated by A. We impose no restric-

tions on the policy language, or the policy management

framework. Figure 6 shows an example: it shows a snip-

pet of code generated by A. Subject and object labels

are stored as fields (label) in the data structures rep-

resenting them. The statement in italics, a call to the

function policy lookup, must be changed by the devel-

oper, and substituted with a call from the API of a policy-

management framework of the developer’s choice.

Several off-the-shelf policy-management tools are now

available, including the SELinux policy management

toolkit [36], which manages policies written in the

SELinux policy language. If this tool is used, the rele-

vant API call to replace policy lookup is avc has perm.

2. Implementing reference monitor state updates: The

developer must update the state of the reference monitor

based upon the state update function U. Note that U

depends on the policy to be enforced; different policies

may choose to update security-labels differently. Func-

tionality to determine how security-labels must change

based upon whether an authorization request succeeds or

fails must ideally be provided by the policy-management

tool that is used (because how security-labels change is

policy-dependent).

However, if this functionality is not available in the

policy-management tool used, the developer must update

the state of the reference monitor manually. The frag-

ment of code in bold in Figure 6 shows a simple example

of U: When a new window is created, its security-label

is initialized with the security-label of the client that cre-

ated it.

It is worth noting for this example that a pointer to the



window is created only after memory has been allocated

for it (in the CreateWindow function of the X server).

Thus we place the call to query refmon in CreateWindow

just after the statement that allocates memory for a

window; if this call succeeds, the security-label of the

window is initialized. Otherwise, we free the mem-

ory that was allocated, and return a NULL window (i.e.,

handle failure is implemented as return NULL;).

Finally, it remains to explain how we bootstrap security-

labels in the server. As mentioned earlier, we assume that

the server runs on a machine with a security-enhanced op-

erating system. We use operating system support to boot-

strap security-labels based upon how clients connect to the

server (as has been done by others [35]). For example, in

an SELinux system, all socket connections have associated

security-labels, and X clients connect to the X server us-

ing a socket. Thus, we use the security-label of the socket

(obtained from the operating system) as the security-label

of the X client. We then propagate X client security-labels

as they manipulate resources on the X server, as shown in

Figure 6, where the client’s security-label is used as the

security-label for the newly-created window.

5. Enforcing authorization policies on X clients

using a retrofitted X server

We demonstrate how an X server retrofitted using A

and A enforces authorization policies on X clients.

We run the retrofitted X server on a machine running

SELinux/Fedora Core 4. Thus, we bootstrap security-labels

in the X server using SELinux security-labels (i.e., a client

gets the label of the socket it uses to connect to the server).

For brevity, we describe two attacks that are possible using

the unsecured X server, and describe corresponding poli-

cies, which when enforced by the retrofitted X server pre-

vent these attacks. In each case we implemented the policy

to be enforced within the query refmon function itself.

Attack I. Several well-known attacks against the X server

rely on the ability of an X client to set properties of win-

dows belonging to other X clients, for e.g., by changing

their background or content [25].

Policy I. “Disallow an X client from changing properties

of windows that it does not own”. Note that this policy is

enforced more easily by the X server than by the operating

system. The operating system will have to understand sev-

eral X server-specific details to enforce this policy. X clients

communicate with each other (via the X server) using the X

protocol. To enforce this policy, the operating system will

have to interpret X protocol messages to determine which

messages change properties of windows, and which do not.

On the other hand, this policy is easily enforced by the

X server because setting window properties involves exer-

cising the Window Chprop security-sensitive operation.

Enforcement I. The call to query refmon placed in the

ChangeProperty function of the X server mediates Win-

dow Chprop. To enforce this policy, we check that the

security-label of the subject requesting the operation, and

the security-label of the window whose properties are to be

changed are equal.

Attack II. Operating systems can ensure that a file belong-

ing to a Top-secret user cannot be read by an Unclassified

user (the Bell-LaPadula policy [7]). However, if both the

Top-secret and Unclassified users have xterms open on an

X server, then a cut operation from the xterm belonging to

the Top-secret user and a paste operation into the xterm of

the Unclassified user violates the Bell-LaPadula policy.

Policy II. “Ensure that cut from a high-security X client

window can only be pasted into X client windows with

equal or higher security”. Existing security mechanisms for

the X server (namely, the X security extension [38]) can-

not enforce this policy if there are more than two security-

levels.

Enforcement II. The cut and paste operations cor-

respond to the security-sensitive operation Win-

dow Chselection of the X server. A identifies the

fingerprints of Window Chselection as calls to two func-

tions, ProcSetSelectionOwner and ProcConvertSelection

in the X server. It turns out that the former is responsible

for the cut operation, and the latter for the paste operation.

Calls to query refmon placed in these functions are used

to mediate the cut and paste operations, respectively. We

created three users on our machine with security-labels

Top-secret, Confidential and Unclassified, in decreasing or-

der of security. The X clients created by these users inherit

their security-labels. We were able to successfully ensure

that a cut operation from a high-security X client window

(e.g., Confidential) can only result in a paste into X client

windows of equal or higher security (e.g., Top-secret or

Confidential).

Performance of the retrofitted X server. We measured

the runtime overhead imposed by instrumentation by run-

ning a retrofitted X server and a vanilla X server on 25

x11perf [40] benchmarks. We ran the retrofitted X server

with a null policy, i.e., all authorization requests succeed,

to measure overhead (defined as
Time in retro f itted server

T ime in vanilla server
×100 -

100). Overhead ranged from 0% to 18% across the bench-

marks, with an average overhead of 2%.

6. Limitations

The techniques presented in this paper have limitations,

some fundamental, and some artifacts of our current imple-

mentation.

First, because A uses analysis of runtime traces, it is

ideally suited for cases where a security-sensitive opera-

tion has a unique, or a small number of fingerprints. While



we have observed that this is typically the case in practice

(specifically, with the X server, and in the context of a pre-

vious study, with the Linux kernel [20]), A could poten-

tially miss fingerprints in paths not exercised by any of the

runtime traces that it analyzes. Further research on code-

coverage metrics and static fingerprint-finding algorithms

is needed to address this shortcoming.

Second, our techniques are incapable of analyzing ob-

fuscated code. While it may be possible to identify indi-

vidual code-patterns in obfuscated code, it will be harder

to identify fingerprints with multiple code-patterns (e.g., to

identify that all these patterns appear together in a function).

In addition, identifying subjects and objects, and modifying

code to insert instrumentation becomes harder with obfus-

cated code.

Third, our infrastructure is currently built to analyze C

source code, and we cannot analyze binary executables.

However, this is not a fundamental limitation. Analyzing

executables requires two key enhancements:

• The ability to instrument executables, both for

fingerprint-finding (e.g., to trace reads and writes

to key data structures, as discussed in Section 3.1), and

for adding reference monitor calls. Both these objectives

can be achieved using static binary rewriters, or dynamic

rewriters, such as Dyninst [12].

• The ability to express code-patterns in terms of abstract

syntax trees of executables. Currently, code-patterns are

expressed in terms of abstract syntax trees at the source

code level (see Figure 3), thus constraining our analysis

to work with source code.

7. Related work

Techniques for authorization policy enforcement. Ref-

erence monitors [2] have been used as the standard ve-

hicle for authorization policy enforcement. Historically,

policy enforcement has been performed by the operating

system. Linux, for example, provides mechanisms to en-

force discretionary access control policies. Recent work on

SELinux [28] aims to augment Linux with mechanisms to

enforce mandatory access control policies. SELinux is cur-

rently architected using the LSM framework [39], which

adds a reference monitor as a loadable kernel module. This

kernel module encapsulates a policy to be enforced, and

presents an authorization hook interface. These hooks are

placed so as to mediate security-sensitive locations within

the kernel. In the context of LSM, these authorization hooks

were placed manually using an informal process. Unfortu-

nately, this process resulted in vulnerabilities in hook place-

ment [22, 43]. Hook placement was found to violate com-

plete mediation [32], and the hook interface left room for

TOCTTOU exploits [9, 43]. This example shows the need

for automated techniques to retrofit legacy code.

In prior work, we evaluated the use of static analy-

sis techniques to automate the placement of authorization

hooks in LSM [20]. In particular, given an implemen-

tation of the hook interface, and a non-hook-placed ver-

sion of Linux, we used static analysis to determine the

set of hooks to protect security-sensitive kernel locations.

However, in that work, our static analysis algorithm relied

on manually-written fingerprints (called idioms in [20]) to

identify security-sensitive kernel locations, and the hook

placement depended on the accuracy of these idioms. A

addresses this shortcoming by providing tool-support to

write fingerprints.

Java’s security mechanism [21] is also conceptually sim-

ilar to the LSM framework; the reference monitor is im-

plemented by an object of type AccessController, and

AccessController.checkPermission() calls are manually

inserted at appropriate locations within the code to enforce

authorization policies. The techniques presented in this pa-

per are applicable to secure legacy Java applications as well.

While SELinux was obtained by retrofitting the Linux

kernel, there have also been efforts to proactively construct

secure operating systems. For example, Asbestos [13] in-

corporates several mechanisms to isolate user data and con-

tain the effects of exploits. It enforces security policies us-

ing security-labels, as in SELinux.

Languages and techniques for safety policy enforce-

ment. Reference monitoring and code retrofitting tech-

niques have also been used to enforce safety policies in

legacy code. Inlined reference monitors (the PoET/PSLang

toolkit) [17], Naccio [18], and Polymer [6] are three such

frameworks, which have been used to enforce several poli-

cies on legacy code. The most important difference be-

tween our work and these tools is that they require the code-

patterns that must be protected to be specified in the pol-

icy. For example, the PoET/PSLang framework requires the

names of security-sensitive Java methods to be mentioned

in the policy. Our work does not require code-patterns to be

known a priori; it uses A to recover them.

Aspect-oriented programming. An aspect is defined to be

a concern, such as security or error-handling, that crosscuts

a program [3]. In aspect-oriented programming (AOP) [24]

languages, (e.g., AspectJ [5], AspectC++ [4]) these con-

cerns are developed independently, as advice. An aspect-

weaver merges advice with the program at certain join-

points, which are specified to the weaver using pointcuts.

Pointcuts are patterns that serve to succinctly identify a set

of join-points—the weaver matches these patterns with the

program to identify join-points.

The techniques developed in this paper bear close resem-

blance to the aspect-oriented programming paradigm. In

particular, each combination of code-patterns (i.e., a finger-

print) written in the language shown in Figure 3 identifies



several locations in server code where reference monitor

calls must be inserted. Thus, a fingerprint is a pointcut that

identifies security-sensitive locations, which are join-points.

A, which inserts reference monitor calls, is a compile-

time aspect-weaver, while the code of the reference monitor

and the authorization policy serve as the advice. A key issue

in AOP is how to identify join-points—in our context, this is

the problem of identifying security-sensitive locations. As

we have discussed, A assists with this task.

Root-cause analysis. Root-cause analysis techniques, de-

veloped primarily for debugging, typically use “good” and

“bad” traces to localize the root-cause of a bug [11, 27, 42].

A is similar to these techniques because it classifies pro-

gram traces, and uses this classification to find fingerprints

of security-sensitive operations. The primary difference be-

tween these techniques and A is that A uses a much

richer set of labels, namely, an arbitrary set of security-

sensitive operations, rather than just “good” or “bad”. An-

other approach for trace analysis (primarily for debugging)

is dynamic slicing [1, 26, 44]. Dynamic slicers use data-

flow analysis to work backwards from the effect of a vul-

nerability, such as a program crash, to the cause of the vul-

nerability. An interesting avenue for future research will

be to adapt A to use dynamic slicing to work backwards

from the effect of a security-sensitive operation (a tangible

side-effect) to the fingerprint of the operation.

Security of window systems. The X server was histori-

cally developed to promote cooperation between X clients,

and security (e.g., isolation) of X clients was not built into

the design of the server. The X protocol, which X clients

use to communicate with the X server, has well-documented

security flaws, too [37]. There is a rich body of work

to rectify this situation, and identify security requirements

for, and create secure versions of the X server. Most of

this work was carried out in the context of the Compart-

mented Mode Workstation [8, 15, 31], and the Trusted X

projects [14, 16], which built prototype windowing systems

to meet the Trusted Computer System Evaluation Criteria.

While these efforts focus on retrofitting the X server, there is

also work on building X server-like window systems, with

security proactively designed into the system [19, 34].

The X security extension [38] extends the X server by

enabling it to enforce authorization policies. It does so

by placing reference monitor calls at appropriate locations

in the X server, as discussed in this paper. To the best

of our knowledge, these calls were placed manually, and

thus the techniques presented in this paper could have as-

sisted in that effort. However, the X security extension is

quite limited in the policies that it can enforce. It statically

partitions clients into Trusted, and Untrusted, and only en-

forces policies on interactions between these two classes of

clients. Thus for example, if three clients, with security-

labels Top-secret, Confidential, and Unclassified connect to

the X server simultaneously, the X security extension will

group two of them into the same category, and will not en-

force policies on clients in the same category.

8. Summary and future work

We have shown that program analysis can assist with the

process of retrofitting legacy code for authorization policy

enforcement. Using our prototype tools, A and A, we

retrofitted the X server to enforce authorization policies on

its X clients.

In addition to using these tools to retrofit more servers,

we plan to explore several avenues of research to improve

the basic techniques presented in this paper. First, identify-

ing security-sensitive operations is a manual process, and

we plan to develop tool-support to assist with this task.

Second, because A uses runtime analysis, it can poten-

tially miss fingerprints of security-sensitive operations, as

discussed earlier. We plan to address this by exploring code-

coverage and static fingerprint-finding algorithms. Last, by

investigating how reference monitor calls can be added to

running executables (e.g., using the Dyninst API [12]), we

plan to extend the techniques presented in this paper to

cases where source code is unavailable.
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