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Retroposon analysis of majol 

monophyly of toothed whale 

of river dolphins 
Masato Nikaidot, Fumio Matsunot, Healy Hamiltont, Robert L. B 

Andrew M. Shedlockt?, R. Ewan Fordyce**, Masami Hasegawal, 

tGraduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 
of Paleontology, University of California, Berkeley, CA 94720; ?NOAA, Southwest Fi 

Mathematics, Tokyo 106-8569, Japan; Illnstitute of Hydrobiology, The Chinese Acad' 

**Department of Geology, University of Otago, P.O. Box 56, Dunedin, New Zealanc 

Communicated by James W. Valentine, University of California, Berkeley, CA, Marcl 

SINE (short interspersed element) insertion analysis elucidates hi 
contentious aspects in the phylogeny of toothed whales and ati 

dolphins (Odontoceti), especially river dolphins. Here, we charac- ph 
terize 25 informative SINEs inserted into unique genomic loci 17 

during evolution of odontocetes to construct a cladogram, and ab 
determine a total of 2.8 kb per taxon of the flanking sequences of sk 
these SINE loci to estimate divergence times among lineages. We fo 
demonstrate that: (/) Odontocetes are monophyletic; (il) Ganges se 
River dolphins, beaked whales, and ocean dolphins diverged (in 
this order) after sperm whales; (ii/) three other river dolphin taxa, (s] 
namely the Amazon, La Plata, and Yangtze river dolphins, form a cc 

monophyletic group with Yangtze River dolphins being the most in 

basal; and (iv) the rapid radiation of extant cetacean lineages th 
occurred some 28-33 million years B.P., in strong accord with the th 
fossil record. The combination of SINE and flanking sequence wi 

analysis suggests a topology and set of divergence times for ur 
odontocete relationships, offering alternative explanations for ch 
several long-standing problems in cetacean evolution. in 

Be 

SINE I evolution I divergence times pr 

fr( 

xtant whales, dolphins, and porpoises (order Cetacea; refs. 1 m 

and 2) are usually grouped into two suborders, Odontoceti er 

(echolocating toothed whales) and Mysticeti (filter-feeding ba- of 
leen whales), both of which were thought to be monophyletic on ha 
the basis of morphological, physiological, and behavioral char- us 

acteristics (3-5). The extant-toothed whales have been divided M 
into 4 broad groups consisting of 10 families: sperm whales 

(Physeteroidea-families Physeteridae and Kogiidae), beaked 
whales (family Ziphiidae), river dolphins (4 families, below), and We 
ocean dolphins or delphinoids (Delphinoidea-families Mon- Ol 

odontidae, Delphinidae, and Phocoenidae) (4). Among these 
four broad groups, the physeteroids are usually basal (e.g., refs. or 

6 and 7), and the delphinoids are the most recently diverged. l] 

River dolphins often are placed as sisters to delphinoids, and f 
beaked whales have either been allied with river dolphins and 

delphinoids or placed together in a clade with sperm whales. ar 
Since Milinkovitch et al. (8-10) proposed the paraphyly of the te 

Odontoceti, suggesting sperm whales are closer to the morpho- b 
logically highly divergent baleen whales than to other Odontoceti m 

(Fig. 1A), the phylogenetic position of sperm whales has been m 
debated widely (8-14). Another contentious issue is the rela- w' 
tionships among river dolphins, which have long been placed in 

up to four monotypic subfamilies or families (4). These species 
are the Ganges River and Indus River dolphins (Platanistidae, Ab 
Platanista gangetica-1 or 2 species), Amazon River dolphins D 
(Iniidae, Inia geoffrensis), La Plata dolphins (Pontoporiidae, da 
Pontoporia blainvillei) and the Yangtze River dolphins (Lipoti- +r 
dae, Lipotes vexillifer). Because river dolphins are similar in Th 
external appearance and/or habits, or for nomenclatural con- art 
venience, cetologists historically placed river dolphins in a single ?1 
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gher group, the Platanistoidea (15). However, the appropri- 
mess of this grouping has been doubted long by both mor- 

ologists and molecular phylogeneticists (refs. 4, 6, 12, 13, 16, 
, 18, and 19; Fig. 1), and the debate is ongoing. Uncertainty 
out the phylogeny of river dolphins reflects not only high 
eletal disparity among living species, but also a fragmentary 
;sil record that reveals little about origins. Fig. 1 summarizes 
veral different hypotheses of odontocete relationships. 
To elucidate odontocete phylogeny, we adopted the SINE 
iort interspersed element) insertion method (20-25). As a 

nsequence of the replicative mechanism of retroposons, the 

:egration of a SINE at a new locus is an irreversible event, and 
e sites of such integration are distributed randomly throughout 
e genome. The probabilities that a SINE will be removed 
thout detection or inserted into the same independent locus in 
related lineages are infinitesimally small, thus homoplasy and 
aracter conflicts are very unlikely (20, 21, 25) and problems of 

group sampling (e.g., long branch attraction) are negligible. 
,cause the polarity of SINE insertion is fixed (absence vs. 

esence), outgroup identification is straightforward and free 
)m artifacts of taxon sampling (20, 25). Recently, the SINE 
:thod has clarified successfully previously contentious phylog- 
ies of salmonid fishes (22), of African cichlid tribes (23), and 
whales in relation to even-toed ungulates (24, 25). The method 
s become an attractive and powerful tool to complement the 
e of DNA sequence comparisons in phylogeny. 

iterials and Methods 

)urteen cetacean species (3 mysticetes and 11 odontocetes) 
,re examined in this study, with the hippopotamus as an 

tgroup. DNA clones were screened from a genomic library for 
e presence of the given SINE unit by using either the CHR-1 
CHR-2 SINE sequence (24, 25) as a probe. Positively hybrid- 
ng clones were identified and sequenced. Primers nested in the 

inking sequence of the particular SINE unit were designed. 
quence information for primers is available on request. PCR 
d other experimental procedures were performed by standard 

:hniques (26-28). PCR amplification was conducted followed 

electrophoretic visualization of size-dimorphic bands (frag- 
rnts possessing or lacking target SINE inserts). Final confir- 
ation of the presence or the absence of the SINE in the locus 
is obtained by sequencing. The nucleotide sequence data have 
en deposited in GenBank (AB054370-AB054523). 

breviations: SINE, short interspersed elements; Myr, million years; B.P., before present. 

ta deposition: The sequences reported in this paper have been deposited in the GenBank 

abase (accession nos. AB054370-AB054523). 
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Fig. 1. Four proposed phylogenetic trees among the major lineages of (W 

cetaceans. (A) The Milinkovitch tree (8). (B) The cytochrome b tree deduced by esl 

Arnason and Gullberg (12). (C) A majority tree by morphological data. (D) The O? 
tree of the present study. Phylogenetic position of Physeteroidea (sperm an 

whales) was boxed. 
Di! 
Th 

For phylogenetic analysis, the SINE insertion data were ph 
organized into a transformation series, where the absence of a clI 
retroposon at a particular locus was coded as 0 and the presence in( 
of a retroposon at that same locus was coded as 1 (Fig. 2). The alt 
parsimony program PAUP* (29) was used to reconstruct phylo- (8 

genetic relationships among taxa (Fig. 3). By using concatenated fr( 
sequences of the 12 flanking loci (2792 nucleotides in total ba 
excluding insertion/deletion sites), the branching orders among no 
7 major taxa were estimated by the BASEML program (30) with su 
the HKY + r model (31, 32). The Bayesian method (33) was no 
used for estimation of branching times. of 

Results 
F 
be 

Fig. 2 shows PCR patterns of 25 informative SINE loci, using a cr( 
filled arrowhead to indicate a SINE-presence locus. Because the sta 
PCR pattern is unambiguous, the species with a SINE in each lo( 
locus can be grouped as a clade, leading to the generation of a aft 

unique cladogram shown in Fig. 3 [corroborated by maximum of 

parsimony analysis using PAUP* (29)]. Fig. 4 shows compilation 
of parts of sequences of the representative 11 SINE loci. 0( 

Two newly isolated SINE loci (Figs. 2 and 3, clade A), together wh 
with three previously characterized loci (Pm72, Pm52, and Mll), m( 

clearly indicate the monophyly of Cetacea. The monophyly of sic 
odontocetes (including sperm whales) is recorded by 3 indepen- iol 
dent SINE insertion events (Figs. 2 and 3, clade B). Furthermore, ph 
SINE loci also indicate the branching order of the primary in( 
odontocete lineages as sperm whales (clade B), Ganges River 

dolphins (clade C), beaked whales (clade D), and finally the po 
marine and remaining freshwater dolphins (clade E). Locus syi 
patterns unambiguously demonstrate the polyphyly of river cr( 

dolphins [Platanistoidea sensu (15)]. One SINE locus (Figs. 2 au 
and 3, clade F) supports the monophyly of ocean dolphins str 

(Delphinoidea), and two loci (Figs. 2 and 3, clade G) show a m( 
sister relationship between the two South American dolphins, ot] 
Inia and Pontoporia. (The relationship of Lipotes is resolved by crn 

using flanking sequences described below.) Seven SINE inser- ret 
tions indicate clades from H to L (Figs. 2 and 3). For example, so 
the Amzll locus indicates a species-specific insertion for the ill; 
Amazon river dolphins. The Sp2 locus indicates a species-specific ski 
insertion for the Pygmy sperm whales, whereas the Sp9 locus ptl 

Nikaido et a/. 

licates an insertion in a common ancestor of the Sperm and 

: Pygmy sperm whales. 
3ecause SINEs are inserted into unique orthologous loci, their 

nking sequences can provide phylogenetic information (34). 
analyzed SINE flanking sequences to resolve the relation- 

ps between the South American river dolphins (Inia and 

ntoporia) and the Yangtze River dolphins (Lipotes). Contrary 
recent molecular phylogenetic analyses (18, 19), we found 

ong support for monophyly of the Yangtze and South Amer- 
n river dolphins (99% bootstrap value). The SINE flanking- 
luence analysis finds moderate support for odontocete mono- 

yly with a 72% bootstrap value and firmly rejects the 

een/sperm whale grouping, which has only a 4% bootstrap 
ue. 
Fo predict the timing of phylogenetic events, the relaxed clock 

cytochrome b amino acid sequences (data from ref. 12) was 
ibrated first with a 55-million-year (Myr) date for the sepa- 
ion of Cetacea from the hippopotamus (35). Using this 

ibration, the baleen/toothed whale separation was estimated 
32.3 +/-5.1 Myr B.P. (+/-: 1SE), and then this date was 
-d in calibrating the relaxed clock of SINE flanking sequences 
ith the HKY model). The major clades of odontocetes have 
imated divergence dates from about 25-30 Myr B.P. (Fig. 5). 
'erall, these estimates suggest a very rapid early radiation 

long the major groups of odontocetes and mysticetes. 

;cussion 
e SINE method is a new and powerful tool for exploring 
ylogeny. Here, three independent SINE loci (Figs. 2 and 3 
de B) plus the analysis of SINE flanking sequences clearly 
licate odontocete monophyly. There is no support for 
ernative molecular hypotheses of odontocete paraphyly 
-11, 36, 37). The SINE results clearly separate Platanista 
)m the other river dolphins, thus supporting morphologically 
sed concepts of Platanistoidea and Delphinida (Delphi- 
idea + Inioidea + Lipotes; refs. 6, 16, 17, 38, and 39), but 

ggest a surprising phylogenetic position for Platanista. Until 

w, it seemed that Platanista branched after the divergence 
sperm and beaked whales (refs. 6, 7, and 13 but see ref. 40; 
;. 1C). Recent molecular analyses have placed Platanista and 
aked whales in a clade between sperm whales and more 
)wn-ward odontocetes (18) or, notably, have placed Platani- 
between sperm and beaked whales (19). Here, the 10 SINE 
:i in clades C, D, and E confirm that Platanista branched 
er the divergence of sperm whales but before the divergence 
beaked whales. 
Fhe proposed near-basal position for Platanista within the 
lontoceti has significant implications. Sperm and beaked 
ales are neither sister-taxa (6, 40) nor adjacent clades (7), and 

)rphological similarities between these lineages could be ple- 
morphies or convergences associated with deep-diving behav- 

and/or suction-feeding. These similarities involve skull com- 

:xes traditionally given significant phylogenetic value, 
luding the pterygoid sinuses and ear bones (6, 41, 42). 
We know of no anatomical features that preclude the pro- 
sed position for Platanista within the Odontoceti. Presumed 

lapomorphies [cited previously (6, 7)] to support a more 
)wn-ward position for Platanista are perhaps plesiomorphies, 
tapomorphies, or homoplasies. Different interpretations of 
ucture arise because, anatomically, Platanista is one of the 
)st peculiar mammals (43). The skull is highly disparate from 
ler Cetacea, especially in having high pneumatized maxillary 
:sts that arch over the face, probably acting as acoustic 
'lectors for echolocation sounds generated in the underlying 
ft nasofacial tissues. The pneumatic sinuses within the max- 

iry crests arise ventrally in the pterygoid sinus complex of the 
ill base (41). Sperm and beaked whales have simple large 

:rygoid sinuses with reduced bony walls, and complex multi- 
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47), Isis (nos. 14, 36, and 38), Magos (nos. 8, 13, 19, 21, 22, 24, 26, and 32), Tutis (24 a 

203), and Bandor were newly isolated by cloning and sequencing from genomic librar 

dolphin, humpback whale, and bottlenose dolphin, respectively. 

lobed sinuses occur elsewhere only in the Delphinida (Delphi- sis 

noidea + Inioidea + Lipotes) (41). We conclude that complex Ini 
multilobed sinuses have evolved at least twice in odontocete rel 

phylogeny. Further, unlike the Inioidea and Lipotes, the fossil ph 

record for the Platanista clade is long and extensive, including the an 

Platanistidae and the extinct Squalodelphinidae, Dalpiazinidae, Lii 

Waipatiidae, and Squalodontidae (5, 6, 16, 40). Fossils show Es 

that complex multilobed sinuses evolved in the Squalodel- lin 

phinidae, and that sinus-bearing maxillary crests appeared in the hi' 

Platanistidae. 

Morphologists (6, 7) and molecular phylogeneticists (18, 19) ab 

disagree about the relationships of Inia, Pontoporia, Lipotes, and a 

ocean dolphins (Delphinoidea), and almost every combination co 

of taxa has been proposed. Heyning (7) clustered Inia, Ponto- TI 

poria, and Lipotes together, whereas Barnes (44) proposed a LI 

7386 | www.pnas.org/cgi/doi/10.1073/pnas. 121139198 
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id 35), Sps (nos. 2, 9, and 316), Amzs (nos. 11 and 13), Humps (nos. 20 and 

es 1of Dal4 M 1 2 fi 4d pot 10 11 12 e3 14 

3S 

;er relationship between Pontoporia and Lipotes, excluding 
a. Alternatively, others (6, 18, 19) have proposed a sister 

alysis strongly supports a clade for Inia, Pontoporia, and 

otes to the exclusion of ocean dolphins (Delphinoidea). 

tablishing the monophyly of three such geographically disjunct 

eages is a critical step toward understanding the evolutionary 

tory of these enigmatic animals. 12 

imp 

ur study identifies a rapid radiation of extant cetaceans at 

Dut 28-33 Myr B.P. (Fig. 6) in the Oligocene Epoch. This is 

)ioneering result for molecular studies in that it is strongly 
adsistent with the fossil record of Odo ntoceti and Mysrespectively. 

e oldest reported f ossil mysticete is the archaic toothed 

ocetus denticrenatus, dat ed at about 34.2 Myr B.P. (45-47) 

Nikaido et a.quence 

nsistent with the fossil record of Odontoceti and Mysticeti. 

ie oldest reported fossil mysticete is the archaic toothed 

anoc.tus denticrenatus, dated at about 34.2 Myr B.P. (45-47) 

Nikaido et al. 
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Fig. 3. Phylogenetic relationships among the major lineages of cetaceans. Newly isc 

ref. 57 (Copyright 1998, Simon & Schuster).] 

and, presumably, the sister taxon Odontoceti had appeared by B. 
that time (5). There is no compelling fossil evidence of an older sh 

origin, 40-45 Myr, for Mysticeti + Odontoceti within the stem pr 
Cetacea (Archaeoceti) (cf. 18). Among archaeocetes, the re 

putative sister taxa for Mysticeti + Odontoceti are the Late op 
Eocene species of Saghacetus and Zygorhiza dated at 35-36 in, 

Myr B.P. (48)-barely older than Llanocetus. Further, the th 

relatively dense Eocene record of Cetacea beyond 34 Myr B.P. as 

(e.g., ref. 49) has produced no beaked whales, platanistoids, is 

sperm whales, or mysticetes. Thus, the calculated divergence ch 
dates of Cassens et al. (18) seem markedly too old. Equally, an br 

origin for baleen whales at 25 Myr B.P. (50) is 8-9 Myr younger of 
than what has been predicted by SINEs and what is known ov 
from the fossil record. qu 

The rapid radiation of extant cetaceans predicted by SINE 
methods is elucidated by geological processes. Fossil cetaceans ne 
are rare in the interval from 34 to 29-30 Myr B.P., probably in 
because changing global sea levels (caused by a fluctuating wl 
Antarctic ice-cap) eroded bone-rich strata (5, 51). The global (C 
record, however, is excellent in the Late Oligocene interval P1 

(about 29-30 to 23 Myr B.P.). Late Oligocene fossils include ju 
early sperm whales, archaic Delphinoidea, many Platanis- w( 
toidea (Squalodelphinidae, Dalpiazinidae, Waipatiidae, and (d 

Squalodontidae), and diverse Mysticeti (5). This record indi- su 
cates a major explosive radiation of the Cetacea in Early re 
Oligocene times (34-29 Myr B.P.), immediately after the wi 
archaeocete to mysticete-odontocete transition of 34-35 Myr ap 

Nikaido et al. 
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lated and characterized loci are boxed. [Reproduced with permission from 

P. This Early Oligocene radiation was concurrent with major : 
ifts in global climate (e.g., refs. 52 and 53) and ocean -^i 

oductivity (54), linked to new marine circulation patterns :o 
;ulting from the final breakup of Gondwanaland and the 

ening of the Southern Ocean. The cetacean radiation 
rolved radical and divergent shifts in feeding strategies, with 
: evolution of filter-feeding in Mysticeti and echolocation- 
sisted predation in Odontoceti (51). The cetacean radiation 

explained through a cascade of changing oceanic food 

ains, productivity, climate, circulation, and continental 

eakup (45, 51). A rapid taxonomic and ecological radiation 

cetaceans, with many lineages appearing and diversifying 
er about 5 Myr, plausibly explains why the previous se- 
ence analyses (8, 12) did not give clear estimates. 
A key result of the SINE work is the unexpected phyloge- 
tic position of Platanista, a dolphin that differs dramatically 
biology from its neighboring clades of sperm and beaked 

lales. Platanista now includes only one or two living species 
ranges/Indus River dolphins; ref. 43), but its lineage, the 
atanistoidea, was highly successful in the past 30 Myr, 
Iging from many fossil species from marine strata around the 
?rld. Fossil platanistoids show a high family-level diversity 
escribed above, and e.g., refs. 5, 6, and 16), indicating 
bstantial ecological partitioning in this lineage. Fossils also 
veal that the Platanistidae was marine from its beginnings 
th Zarhachis [about 16 Myr B.P. (55)]; at least until the 
pearance of Pomatodelphis in marine strata of Florida at 
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ity. The looming extinction of this unique clade should be a Dr 
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