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The literature displays change point detection problems in the context of one of the
key issues that belong to testing statistical hypotheses. The main focus in this article
is to review recent retrospective change point policies and propose new relevant
procedures. Commonly applied practical quality control purposes have declared
statements of the change point problems. Various biostatistical and engineering
applications cause consideration of an extended form of the change point problem.
In this article, we consider parametric and distribution free generalized change
point detection policies, attending to different contexts of optimality and robustness
of the procedures. We conducted a broad Monte Carlo study to compare various
parametric and nonparametric tests, also investigating a sensitivity of the change
point detection policies with respect to assumptions required for correct executions
of the procedures. An example based on real biomarker measurements is provided
to judge our conclusions.

Keywords Change point; CUSUM; Entropy; Likelihood ratio; Most powerful;
Nonparametric likelihood; Nonparametric tests; Optimal testing; Robustness;
Shiryayev–Roberts.

Mathematics Subject Classification �. AQ1

1. Introduction

In this article, we aim to introduce and examine different tests for a change in the
distribution of independent observations X1� X2� � � � � Xn with the fixed sample size n.
In the formal context of hypotheses testing, we state the problem to test for

H0� the null: X1� X2� � � � � Xn ∼ F0 versus
(1)

H1� the alternative: Xi ∼ F1� Xj ∼ F2� i = 1� � � � � �− 1� j = �� � � � � n�
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2 Gurevich and Vexler

where F0, F1, F2 are distribution functions that correspond to density functions f0,
f1, f2. The unknown parameter �, 1 ≤ � ≤ n is called a change point. Following
certain applied aspects of quality control studies, the literature assumes commonly
the function F1 is equal to F0 (e.g., Gombay and Horvath, 1994; James et al.,
1987). We state a general case when F1 can be different from the null distribution
F0. Various biostatistical and engineering studies can motivate to eliminate the
constraint F1 = F0 (e.g., Vexler et al., 2009b).

In accordance with the statistical literature, we can investigate the problem
(1) in parametric or nonparametric forms, depending on assumptions made on the
distribution functions F0� F1, and F2. In the parametric case of (1), we assume the
distribution functions F0� F1, and F2 have known forms that can contain certain
unknown parameters (e.g., Gombay and Horvath, 1994; Gurevich, 2007; James
et al., 1987; Vexler, 2006; Vexler and Gurevich, 2009a).

In the nonparametric case of (1), the functions F0, F1, F2 are assumed to
be completely unknown (e.g., Ferger, 1994; Gombay, 2000, 2001; Gurevich, 2006;
Wolfe and Schechtman, 1984; Zou et al., 2007).

In this article, we review, develop, and compare different policies for the
problem (1), in both the parametric and nonparametric cases, attending to different
contexts of optimality of tests. In Secs. 2 and 3 we present the parametric and
nonparametric methods, correspondingly. Section 4 displays a Monte Carlo study to
compare the powers of parametric and nonparametric change point tests, analyzing
sensitivity (robustness) of the change point policies with respect to assumptions that
are required for correct executions of the procedures. Section 5 provides an example
based on real biomarker measurements that judges reviewed change point detection
policies in practice. We state our conclusion in Sec. 6.

2. Parametric Methods

The parametric case of testing the change point problem (1) has been dealt with
extensively in both the theoretical and applied literature (e.g., Chernoff and Zacks,
1964; Csorgo and Horvath, 1997; Gombay and Horvath, 1994; Gurevich, 2007;
Gurevich and Vexler, 2005; James et al., 1987; Kander and Zacks, 1966; Sen and
Srivastava, 1975). Chernoff and Zacks (1964) considered the problem (1) based
on normally distributed observations with F0 = F1 = N��0� 1�, F2 = N��� 1�, where
�0 and � > �0 are unknown. In this case, a noninformative uniform prior for �
was assumed and a Bayesian test statistic was proposed. Kander and Zacks (1966)
extended Chernoff and Zacks’s (1964) results to a case based on data from the
one-parameter exponential family. Sen and Srivastava (1975) used the maximum
likelihood technique to present a test statistic. James et al. (1987) proposed, in the
context of (1), decision rules based on likelihood ratios and recursive residuals. This
change point literature concluded that there is not a globally (with respect to values
of �, under H1� preferable test for (1). It turned out that Chernoff and Zacks’s (1964)
test has a larger power than that of tests based on the likelihood ratio or recursive
residuals when � is around n/2, but this property is reversed if the change point � is
close to the edges; i.e., when � ≈ n or � ≈ 1.

Because the change point � is unknown, the maximum likelihood estimation of
� and unknown parameters of F0, F1, F2 can be applied, and then the likelihood
ratio tests can be defined to test for (1). The resulting tests have a CUSUM type
structure that is well addressed in the literature (e.g., Gombay and Horvath, 1994;
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Retrospective Change Point Tests 3

Gurevich, 2007). Gombay and Horvath (1994), Lai (1995), Gurevich and Vexler
(2005, 2006), and Gurevich (2007) proved that the CUSUM approach implies very
powerful parametric change point policies.

When, in accordance with the statement (1), observations can have the density
functions f0, f1, or f2 based on likelihood ratio, which are assumed to be completely
known, the CUSUM statistic has the form of

�n = max
1≤k≤n

	n
k� (2)

where the likelihood ratios

	n
k =
∏k−1

i=1 f1�Xi�
∏n

i=k f2�Xi�∏n
i=1 f0�Xi�

�
0∏

i=1

f1�Xi� = 1�

(Here, as mentioned above, the maximum likelihood estimator �̂ = argmax1≤k≤n 	
n
k

of the unknown parameter � was used, modifying the most powerful test statistic
	n

� to have the maximum likelihood ratio form �n; for details, see, e.g., Vexler
and Gurevich, 2009a. Under certain assumptions, one can show the estimator
�̂ is consistent; e.g., Borovkov, 1999; Gurevich and Vexler, 2005; Pollak and
Tartakovsky, 2009; Tartakovsky et al., 2009.)

The null hypothesis H0 of (1) is proposed to be rejected for large values of the
CUSUM test statistic. It is clear that, when the density functions f0, f1, and f2 have
forms with unknown parameters, one needs to estimate the unknown parameters
and then an approximated CUSUM type test statistic can be defined. For example,
Gombay and Horvath (1994) considered the following situation; that is,

f0�x� = f�x
 �0�� f1�x� = f�x
 �1�� f2�x� = f�x
 �2�� (3)

where the vector parameters �i ∈ � ⊆ Rd, i = 0� 1� 2 are unknown, �1 �= �2. Gombay
and Horvath suggested rejecting the hypothesis H0 of (1), if, for a fixed test threshold AQ2

C1 > 0,

max
1<k≤n

	∗n
k > C1� (4)

where

	∗n
k = sup�1∈�

∏k−1
i=1 f�Xi
 �1� sup�2∈�

∏n
i=k f�Xi
 �2�

sup�0∈�
∏n

i=1 f�Xi
 �0�
�

To control the type I error of CUSUM-type tests, evaluation of the null distribution
of the corresponding CUSUM test statistics is commonly required. Therefore,
investigators need to use a simulation study or complex asymptotic �n → 
�
propositions to approximate the type I error of CUSUM type tests. Gombay and
Horvath (1994, 1996) obtained the asymptotic null distribution of the statistic (4)
and the rate of convergence of this approximation. Note that there are no results
that show a nonasymptotic optimality of CUSUM-type tests in a general setting
of (1).

Alternatively, and in contrast to the CUSUM method, Vexler (2006, 2008) as
well as Vexler and Gurevich (2009a) proposed to use retrospectively the Shiryayev–
Roberts (SR) approach that is well accepted for developing optimal sequential
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4 Gurevich and Vexler

change point detection procedures (e.g., Krieger et al., 2003; Pollak, 1985; Pollak
and Tartakovsky, 2009; Tartakovsky et al., 2009). In the context of this method, the
authors suggested avoiding estimating the change point � location, when tests for
(1) are considered. When f0, f1, and f2 of (1) are completely known, the SR test
statistic has the form of

Rn =
n∑

k=1

	n
k� (5)

where 	n
k is stated in (2). The hypothesis H0 of (1) is proposed to be rejected if

Rn > C2� (6)

for a fixed test threshold C2 > 0.
The change point literature concludes, generally speaking, there are no

uniformly most powerful tests for (1) (e.g., James et al., 1987). Vexler and Gurevich
(2009a) proved the following proposition, pointing out an optimal nonasymptotic
property of the decision rule (6). To formulate this proposition, we define
probability measures PH0

�A� = Pr�A �H0� and P�=k�A� = Pr�A �H1� � = k�, where A
is a random event, k = 1� � � � � n.

Proposition 1. The policy (6) is average most powerful; i.e., for any decision rule �
based on Xi� i = 1� � � � � n� we have

1
n

n∑
k=1

P�=k�Rn > C� ≥ 1
n

n∑
k=1

P�=k�� rejects H0�� (7)

when the significance level of tests is fixed to be � = PH0
�� rejects H0�.

Remark. While assuming conditions (3), we propose to modify the SR test statistic
(5) to have the appropriate form

n∑
k=2

	∗n
k � (8)

where the ratios 	∗n
k are denoted in (4). (The stated problem (1) with f0 �= f1 has

not been well addressed in the parametric change point literature. The retrospective
test based on (8) is not examined well in the literature, in general cases, even when
f0 = f1.)

3. Nonparametric Methods

When the problem (1) is stated nonparametrically, there is no universal powerful
methodology (e.g., as the likelihood methods mentioned in Sec. 2) for this subject.
In this case, common components of nonparametric change point detection policies
have been proposed to be based on signs and/or ranks and/or U statistics (e.g.,
Csorgo and Horvath, 1997; Ferger, 1994; Gombay, 2000, 2001; Gurevich, 2006;
Wolfe and Schechtman, 1984). Sen and Srivastava (1975) focused on the problem (1)
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Retrospective Change Point Tests 5

with the unknown distributions F0�x� = F1�x�, F2�x� = F1�x − ��, �> 0. The authors
suggested to reject H0, for large values of the statistic

D1 = max
2≤k≤n

{[
Uk−1�n−k+1 −

(
�k− 1��n− k+ 1�

)
/2
]/[

�k− 1��n− k+ 1��n+ 1�/12
] 1

2

}
�

(9)

where Uk−1�n−k+1 is the Mann–Whitney statistic for two samples of size k− 1 and
n− k+ 1. Setting the problem (1) in a similar manner to Sen and Srivastava (1975),
Pettitt (1979) used the statistic

K = max
2≤k≤n

{
−

k−1∑
i=1

n∑
j=k

Qij

}
� Qij = sign�Xi − Xj� =

⎧⎪⎨⎪⎩
1 Xi > Xj

0 Xi = Xj

−1 Xi < Xj

(10)

to propose a change point detection policy. Wolfe and Schechtman
(1984) showed that the statistic K can be presented as 2max2≤k≤n{
Uk−1�n−k+1 − �k− 1��n− k+ 1�/2

}
. Then, the statistics K and D1 have a similar

structure. In this case, Csorgo and Horvath (1988) modified the statistics D1 and K
to have the form of

D2 =
√
3 max

2≤k≤n

Uk

��k− 1��n− k+ 2�n�
1
2

� (11)

where Uk = −∑1≤i≤k−1

∑
k≤j≤n sign�Xi − Xj�. This modification was introduced to

evaluate asymptotically �n → 
� the type I error of the corresponding to the
statistic (11) test that requires rejecting H0, if D2 > C3, where C3 is a test threshold.
When the two-sided statement F0�x� = F1�x�, F2�x� = F1�x − ��, � �= 0 is assumed,
the absolute values of the statistics (9)–(11) should be considered to construct the
tests for the two-sided alternative. Gurevich (2006) analyzed the problem �1�, when
F0 = F1 is unknown and the post-change distribution function F2 is stochastically
larger than the pre-change distribution function F1. In contrast to the methods
above, in this case, a test statistic is suggested to be based on the likelihood ratio
of the ranks of observations, assuming that flat prior information regarding the
pre- and post-change distribution functions F1 and F2 is available. Especially, the
technique of Gurevich (2006) considers the rank-based likelihood ratios

	n
k��� =

fH1��=k���1� n�� ��2� n�� � � � � ��n� n��

fH0
���1� n�� ��2� n�� � � � � ��n� n��

� ��j� n� =
n∑

k=1

IXk≤Xj�

(here, f�·� denotes a joint density, IA� is the indicator function of an event A� to
be main components of the CUSUM-type test statistic. To simplify these likelihood
ratios, presenting analytical forms, Gurevich (2006) invited a method by Gordon
and Pollak (1995) that was proposed to create a robust sequential surveillance
scheme for stochastically ordered alternatives. This approach proposes pretending
that observations follow a distribution from an exponential family, say, � , under
the null hypothesis of (1), whereas, under the alternative H1, the observations are
distributed corresponding to a mixture of distribution functions that belong also to
� and depend on a set of parameters. By virtue of the probabilistic characteristics of
the rank statistics and the maximum likelihood methodology, the parameters can be
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6 Gurevich and Vexler

reasonably derived to maximize EX∼F2
log�fp

1 �F
p−1

0 �F0�X���/f
p
0 �F

p−1

0 �F0�X����� based
on a guess regarding the pre- and post-change distributions F0, F2 (here, fp

0 � f
p
1

denote the pretended pre- and post-change density functions; F−1 corresponds to
the inverse function of F�. In this case, the null hypothesis H0 is proposed to be
rejected if the test statistic

D = max
{

max
n
2+1≤k≤n

	n
k��n� X�� max

n
2+1≤k≤n

	n
k

(
�∗
n� Z
)}

> CD� (12)

for a fixed test threshold CD > 0, where

	n
k��n� X� =

n∑
m=0

�nk�m��n� X�� (13)

�nk�m��n� X�= � n
m �
(
1
2

)n( p�
q�

)Uk�m�n�
�2q��n+1−k

∏m
i=1

(
1+ Vk�i�n�

i
��− 1�

)−1 ∏n
i=m+1

(
1+

Uk�i−1�n�
n+1−i

��− 1�
)−1

, Uk�m� n� =∑n
j=k I��j�n�>m�, ��i� n� =∑n

j=1 IXj≤Xi�
is the rank of

observation Xi, Vk�m� n� = �n+ 1− k�− Uk�m� n�; p, q, �, � are some positive
parameters, q = 1− p; Zi = −Xn−i+1, i = 1� � � � � n,

	n
k��

∗
n� Z� =

n∑
m=0

�nk�m��
∗
n� Z�� (14)

�nk�m��
∗
n� Z� =

(
n
m

)(
1
2

)n(
p∗�∗

q∗�∗

)U∗
k �m�n�

�2q∗�∗�n+1−k
m∏
i=1

(
1+ V ∗

k �i� n�

i
��∗ − 1�

)−1

×
n∏

i=m+1

(
1+ U ∗

k �i− 1� n�
n+ 1− i

��∗ − 1�
)−1

�

U ∗
k �m� n� =∑n

j=k I�∗�j�n�>m�, �∗�i� n� =∑n
j=1 IZj≤Zi�

is the rank of the observation
Zi, V

∗
k �m� n� = �n+ 1− k�− U ∗

k �m� n�, p∗, q∗, �∗, �∗ are some positive parameters,
q∗ = 1− p∗. To obtain optimal values of p, �, �, p∗, �∗, �∗, corresponding to a
maximum power of the test (12), Gurevich (2006) proposed to utilize different
suppositions regarding F1 and F2. For example, when we suspect the pre- and
post-change distribution functions are close to N�0� 1� and N�1� 1�, respectively, the
optimal values of the parameters are

p = p∗ ≈ 0�8413� � = �∗ ≈ 0�531� � = �∗ ≈ 1�703� (15)

The proposed procedure possesses robustness of validity, because it is based on
ranks. Thus, the procedure with near-optimal parameters obtained for specific
alternatives is assumed to be a powerful change point detection policy for various
alternatives (Gurevich, 2006; Gordon and Pollak, 1995). In this article, Sec. 4 will
present Monte Carlo simulations to confirm this proposition.

To evaluate the p-values of the test (12), Gurevich (2006) derived asymptotically
a distribution-free upper bound for the type I error of the policy (12).

We extend the policy of Gurevich (2006) to allow for cases when a stochastic
order between the distribution functions F1 and F2 cannot be assumed to be
known. Note that, when, under H1, X�� � � � � Xn ∼ F2 are stochastically larger
than X1� � � � � X�−1, we can construct a test using similar schemes to those
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Retrospective Change Point Tests 7

that are mentioned above (see the notations (12)–(15)). However, if, under
the alternative H1, observations X�� � � � � Xn ∼ F2 are stochastically smaller than
X1� � � � � X�−1 we transform the sample X1� � � � � Xn� to be presented in the form of
−X1� � � � �−Xn�. Then, −X1� � � � �−X�−1 ∼ F ∗

0 ; −X�� � � � �−Xn ∼ F ∗
2 , where F ∗

0 �x� =
1− F0�−x�, F ∗

2 �x� = 1− F2�−x�. That is, −X�� � � � �−Xn are stochastically larger
than −X1� � � � �−X�−1. For example, if F0 = N�0� 1� and F2 = N�−1� 1�, then

F ∗
0 = N�0� 1� ≺ F ∗

2 = N�1� 1�� (16)

Rewrite the definitions (13) and (14), utilizing −Xi, i = 1� � � � � n, instead of Xi,
i= 1� � � � � n, we have

	1nk��1n�−X� =
n∑

m=0

�nk�m��1n�−X�� (17)

�1nk�m��1n� −X�= � n
m �
(
1
2

)n( p1�1
q1�1

)U1k�m�n�
�2q1�1�

n+ 1− k
∏m

i= 1

(
1+ V1k�i�n�

i
��1 − 1�

)−1∏n
i=m+ 1

(
1+ U1k�i−1�n�

n+1−i
��1 − 1�

)−1
U1k�m� n� =∑n

j=k I�1�j�n�>m�, �1�i� n� =∑n
j=1

I−Xj≤−Xi�
, V1k�m� n� = �n+ 1− k�− U1k�m� n�, p1� q1� �1� �1 are certain positive

parameters, q1 = 1− p1, −Zi = Xn−i+1, i = 1� 2� � � � � n,

	1nk��1
∗
n�−Z� =

n∑
m=0

�1nk�m��1
∗
n�−Z�� (18)

�1nk�m��1
∗
n�−Z� =

(
n
m

)(
1
2

)n(
p∗
1�

∗
1

q∗
1�

∗
1

)U1∗k�m�n�

�2q∗
1�

∗
1�

n+1−k
m∏
i=1

(
1+ V1∗k�i� n�

i
��∗

1 − 1�
)−1

×
n∏

i=m+1

(
1+ U1∗k�i− 1� n�

n+ 1− i
��∗1 − 1�

)−1

U1∗k�m� n� =
n∑

j=k

I�1∗�j�n�>m�� �1∗�i� n� =
n∑

j=1

I−Zj≤−Zi�
� �i = 1� 2� � � � � n��

V1∗k�m� n� = �n+ 1− k�− U1∗k�m� n�� p∗
1, q

∗
1 , �

∗
1, �

∗
1 are certain positive parameters,

q∗
1 = 1− p∗

1. The proposed policy is to reject H0 if

DD = max

{
max

n
2+1≤k≤n

(
1
2
	n

k��n� X�+
1
2
	n

k��
∗
n� Z�

)
�

max
n
2+1≤k≤n

(
1
2
	1nk��1n�−X�+ 1

2
	1nk��1

∗
n�−Z�

)}
> CDD� (19)

for a fixed test threshold CDD > 0. Optimal values of the parameters p1, �1, �1, p
∗
1,

�∗1, �
∗
1 can be defined via the method presented by Gurevich (2006), when suspected

representatives of the pre- and post-change distributions are used. To control the
type I error of the test (19), we present the next proposition.
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8 Gurevich and Vexler

Proposition 2. Set up p� ≥ q�, p1�1 ≥ q1�1, p
∗�∗ ≥ q∗�∗, p∗

1�
∗
1 ≥ q∗

1�
∗
1 . Then, for all

CDD > 0,

lim
n→
 sup

F0

PH0
�DD > CDD� ≤

2
CDD

� (20)

The proof scheme of Proposition 2 is technically based on that of Theorem 2.1 presented
by Gurevich (2006). Proposition 2 provides a distribution free upper bound for the
significance level of the test (19). That is, for large values of the sample size n, we can
use 2/CDD to approximate the significance level of the policy (19). In Sec. 4, we Monte
Carlo study the accuracy of this approximation based on data with different sample sizes.

Remark. One can show that if F0 = F1 and F2 are expected to be close to N�0� 1�
and N��� 1� with ��� = 1, then the optimal values of the parameters of (19) are

p=p1 =p∗ =p∗
1 ≈ 0�8413� �= �1 = �∗ = �∗1 ≈ 0�531� �= �1 = �∗ = �∗

1 ≈ 1�703�
(21)

Thus, we can conclude that the well-addressed nonparametric tests for (1) in
the literature have been initially defined in cases with stochastically ordered one-
sided alternatives. Then, practical applications have required modifying the tests to
be adjusted for two-sided alternatives. Note also that, commonly, the change point
literature has paid attention to different comparisons between the powers of change
point policies, when the pre- and post-change distributions (F1 and F2, respectively)
have the same form with different parameters (e.g., Ferger, 1994; Gurevich, 2006;
Wolfe and Schechtman, 1984).

Alternatively to traditional change point detection schemes’ constructions,
Vexler and Gurevich (2009b) proposed to approximate nonparametrically the
likelihood ratio’s components of the parametric CUSUM (2) and SR (5) test
statistics. Toward this end, principles of the empirical likelihood methodology (e.g.,
Owen, 2001; Vexler et al., 2009a) were proposed to be applied. To approximate
likelihood ratios, Vexler and Gurevich (2009b) used and extended a nonparametric
methodology proposed by Vexler and Gurevich (2010), considering the likelihood
ratio

∏k−1
i=1

f1�Xi�

f0�Xi�

∏n
i=k

f2�Xi�

f0�Xi�
from (2) as a product of n unknown parameters that

should be maximum likelihood estimated, under constraints having forms of
empirical approximations to

∫
f1du = 1 and

∫
f2du = 1. That is, for example,

the Lagrange multiplier method provides values of f1r/f0r � r = 1� � � � � k− 1 to
approximate the ratios f1�X�r�k−1��/f0�X�r�k−1��� r = 1� � � � � k− 1 that are present in

the likelihood ratio
∏k−1

r=1
f1�X�k�k−1��

f0�X�k�k−1��
= ∏k−1

r=1
f1�Xr �

f0�Xr �
, where X�r�k−1� is the r-order statistic

based on X1� � � � � Xk−1. Toward this end, f1r/f0r � r = 1� � � � � k− 1 can be chosen
to maximize the corresponding log likelihood function provided that an empirical
approximation to

∫
f1du = 1 is satisfied; i.e., f1r/f0r � r = 1� � � � � k− 1 can be derived

from the equation

�

��f1r/f0r �

[ k−1∑
i=1

log
f1i
f0i

+ �

(
1−

k−1∑
i=1

f1i
f0i

�i�k−1

)]
= 0�

where � is the Lagrange multiplier;
∑k−1

i=1
f1i
f0i
�i�k−1 is assumed to be equal

to 1, because �i�k−1 must be defined to approximate empirically
∫
f1du using
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∑k−1
i=1

f1i
f0i
�i�k−1. In a similar manner to the

∏k−1
r=1

f1�Xr �

f0�Xr �
approximation, the likelihood

ratio
∏n

i=k
f2�Xi�

f0�Xi�
can be evaluated. Thus, one can show that 	n

k from (2) can be
approximated by

	̃n
k = min

1≤m≤�k−1�1−�

( k−1∏
i=1

2m
�k− 1��F0n�Z�i+m��− F0n�Z�i−m���

)

× min
1≤r≤�n−k+1�1−�

( n−k+1∏
j=1

2r
�n− k+ 1��F0n�Y�j+r��− F0n�Y�j−r���

)
� (22)

where 0 < � < 1, Zi = Xi, i = 1� � � � � k− 1, Yj = Xk−1+j , j = 1� � � � � n− k+ 1; Z�l�

is the order statistic based on Z1� � � � � Zk, Z�l� = Z�1�, if l ≤ 1, and Z�l� = Z�k−1�,
if l ≥ k− 1; Y�l� is the order statistic based on Y1� � � � � Yn−k+1, Y�l� = Y�1�, if l ≤
1, and Y�l� = Y�n−k+1�, if l ≥ n− k+ 1; F0n�x� = n−1∑n

i=1 IXi≤x� = n−1
(∑k−1

i=1 IZi≤x� +∑n−k+1
j=1 IYj≤x�

)
is the empirical distribution function that estimates F0�x�.

Vexler and Gurevich (2009b) proved that the approximate likelihood ratio (22)
is an entropy-based likelihood ratio. Entropy-based methods are well developed in
the context of tests for goodness of fit (e.g., Vasicek, 1976). The statistics 	̃n

k used
instead of 	n

k in the structures of the CUSUM and SR statistics provide the very
powerful nonparametric test statistics

�̃n = max
2≤k≤n

	̃n
k� (23)

R̃n =
n∑

k=2

	̃n
k� (24)

In the next section, we compare numerically the considered tests. We will also
Monte Carlo study how parametric assumptions mentioned in Sec. 2 are robust, in
the context of the parametric change point detection schemes, compared with the
nonparametric policies.

4. Monte Carlo Study

To examine the change point policies, we begin with definitions of notations
presented in Table 1. These notations will be utilized in this section. T1

To conduct the Monte Carlo simulations below, for each distribution set
with different sample sizes, we generated 10,000 times corresponding data. The
Monte Carlo powers of the nonparametric tests were evaluated at the level of
significance 0.05 that was fixed experimentally by choosing special values of the test
thresholds. (Under the null hypothesis of (1), the baseline distribution functions of
the nonparametric test statistics of RDD�RAK�RAD1� NPCUS�NPSR do not depend
on data distributions, only tables of critical values of the tests are required for their
implementation.) The 95% critical values of the parametric tests PCUS and PSR
were calculated using the assumption that under the null hypothesis we observe data
from f0�x� = fN�0�1��x�, because this assumption was used theoretically to construct
the structure of the tests (i.e., when we apply PCUS and PSR, we believe (quasi-
correctly) the parametric assumption).
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Table 1
The notations and their descriptions that are utilized in Sec. 4

Notation Description

RDD Nonparametric test (19), where the parameters of the statistic DD are
defined by (21);

RAK Nonparametric test based on the absolute value of the statistic (10 ); i.e.,
we assume rejecting H0, if �K� > CK;

RAD1 Nonparametric test based on the absolute value of the statistics (9); i.e.,
reject H0 if �D1� > CD1

;
NPCUS Nonparametric test based on the statistic (23); i.e., to reject H0 if �̃n >C�̃;
NPSR Nonparametric test based on the statistic (24); i.e., to reject H0, if

R̃n >CR̃;
PCUS Parametric test (4) based on the adjusted CUSUM statistic, when

a tester believes that f0�x� = fN����2��x�, f1�x� = fN��+�1���
2��x�, f2�x� =

fN��+�2���
2��x� with unknown �� �� �i, i = 1� 2, �1 �= �2; i.e., PCUS

declares rejection of H0, if max1<k≤n 	
∗n
k = max2≤k≤n

({
�k− 1�Sn/n−

Sk−1

}
/
{
�k− 1��1− �k− 1�/n�

} 1
2
)
> C1, Sk =

∑k
i=1 Xi;

PSR Parametric test (8) based on the adjusted Shiryayev–Roberts type
statistic, when a tester believes that f0�x� = fN����2��x�, f1�x� =
fN��+�1���

2��x�, f2�x� = fN��+�2���
2��x� with unknown �� �� �i, i = 1� 2,

�1 �= �2; i.e., PSR rejects H0 if
∑n

k=2

{
�k− 1�Sn/n− Sk−1

}
/
{
�k− 1��1−

�k− 1�/n�
} 1

2 > CSR.

Table 2 reports a Monte Carlo comparison of the powers of the nonparametric T2

tests RDD�RAK�RAD1� NPCUS, and NPSR when the actual pre- and post-
change distributions are N��� �2� and N�� + ��� �2�, � �= 0, respectively. (Note
that computations of the statistics of RDD�RAK�RAD1� NPCUS, and NPSR do
not depend on the parameters � and �.) In this case, it is clear that the tests
PCUS and PSR are created utilizing the correct information regarding the actual
pre- and post-change distributions and hence these tests are expected to be very
powerful. Therefore, we calculated and presented the Monte Carlo powers of the
parametric tests in Table 2 to judge the nonparametric procedures. (The statistics
of the parametric tests do not depend on the parameter � but do depend on the
parameter �.)

The power functions of the tests are symmetric with respect to values of �− 1
regarding �− 1 = n/2. We note also that the powers of these tests do not depend
on a sign of �, for all fixed �. In accordance with Table 2, the parametric PSR
test is mostly more powerful (not just more powerful in average; see Proposition 1)
than the well accepted PCUS test in the literature. However, when the change
point location � is relatively very close to 1, PCUS is weakly superior to PSR. The
proposed nonparametric procedure RDD is very efficient, especially when � is not
relatively large; however, we should note that the parameters setting (21) used in
RDD is appropriate to the cases considered in Table 2 (e.g., when n= 70� �− 1 =
10� � = 1, RDD demonstrated the power that is comparable with that of the
parametric tests). Generally speaking, all the tests displayed good power properties
in Table 1. Here, RAD1 and RAK are known to be especially very efficient when
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Table 2
The Monte Carlo powers of the nonparametric tests

RDD�RAK�RAD1� NPCUS�NPSR, and the parametric tests PCUS� PSR, when the
actual pre- and post-change distributions are F0 = F1 = N�0� 1� and F2 = N��� 1�,
correspondingly. Observations with the subscript �− 1 are the last observations

before the change. The significance level is � = 0�05

n � �− 1 RDD RAK RAD1 NPCUS NPSR PCUS PSR

20 0.8 10 0.283 0.309 0.260 0.215 0.223 0.280 0.331
5 0.175 0.162 0.177 0.144 0.140 0.205 0.220
3 0.096 0.080 0.098 0.084 0.085 0.144 0.134

1.0 10 0.411 0.452 0.383 0.309 0.322 0.421 0.486
5 0.257 0.229 0.257 0.201 0.199 0.311 0.326
3 0.125 0.093 0.128 0.107 0.108 0.206 0.187

1.2 10 0.558 0.602 0.525 0.428 0.447 0.582 0.638
5 0.355 0.310 0.355 0.279 0.277 0.440 0.454
3 0.159 0.109 0.164 0.138 0.139 0.291 0.252

40 0.8 20 0.518 0.570 0.487 0.368 0.401 0.513 0.606
10 0.376 0.329 0.357 0.228 0.241 0.385 0.422
5 0.170 0.099 0.174 0.106 0.104 0.221 0.205

1.0 20 0.720 0.769 0.688 0.553 0.592 0.727 0.797
10 0.545 0.490 0.526 0.358 0.374 0.576 0.609
5 0.255 0.128 0.263 0.147 0.145 0.332 0.290

1.2 20 0.873 0.898 0.852 0.732 0.765 0.884 0.921
10 0.723 0.656 0.694 0.513 0.529 0.763 0.776
5 0.358 0.162 0.367 0.209 0.198 0.473 0.400

70 0.8 35 0.750 0.847 0.766 0.614 0.638 0.771 0.835
20 0.659 0.675 0.648 0.453 0.460 0.667 0.707
10 0.417 0.235 0.382 0.182 0.172 0.404 0.362

1.0 35 0.925 0.960 0.929 0.831 0.846 0.937 0.957
20 0.855 0.869 0.856 0.682 0.693 0.873 0.891
10 0.612 0.361 0.571 0.291 0.276 0.616 0.544

1.2 35 0.986 0.993 0.986 0.953 0.958 0.990 0.994
20 0.958 0.966 0.960 0.864 0.866 0.967 0.969
10 0.781 0.505 0.748 0.448 0.427 0.794 0.723

the change � in a location of observations is in effect (Wolfe and Schechtman,
1984), whereas tests NPCUS and NPSR are developed to attend to various complex
alternatives.

In Table 3, we present results of the Monte Carlo comparison between the T3

powers of the tests RDD�RAK�RAD1� NPCUS�NPSR� PCUS� PSR, when the actual
pre- and post-change distributions are T�3���� and T�3���+ ��, � �= 0, respectively,
where T�3���� denotes a noncentral Student’s distribution with three degree of
freedom and the parameter of noncentrality �. None of the test-statistics depend on
the parameter �.

In fact, the powers of the parametric tests are incorrect, because the actual
Type I error of this tests is not 0.05 (the corresponding critical values were
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Table 3
The Monte Carlo powers of the tests RDD, RAK, RAD1, NPCUS, NPSR, PCUS,

PSR, when the actual distributions are F0 = F1 = T�3��0� and F2 = T�3����.
Observations with the subscript �− 1 are the last observations before the change.

The significance level is fixed to be � = 0�05

n � �− 1 RDD RAK RAD1 NPCUS NPSR PCUS PSR

20 0.8 10 0.262 0.290 0.241 0.193 0.201 0.666 0.627
5 0.173 0.158 0.174 0.139 0.134 0.618 0.561
3 0.098 0.081 0.099 0.090 0.088 0.565 0.483

1.0 10 0.371 0.413 0.352 0.280 0.292 0.756 0.731
5 0.241 0.219 0.243 0.192 0.190 0.711 0.657
3 0.121 0.095 0.126 0.111 0.113 0.640 0.564

1.2 10 0.489 0.543 0.466 0.383 0.400 0.845 0.824
5 0.325 0.288 0.326 0.258 0.263 0.791 0.749
3 0.156 0.112 0.160 0.136 0.141 0.719 0.639

40 0.8 20 0.460 0.535 0.451 0.332 0.363 0.854 0.826
10 0.329 0.301 0.325 0.207 0.217 0.794 0.747
5 0.153 0.095 0.164 0.099 0.099 0.694 0.603

1.0 20 0.642 0.728 0.645 0.490 0.524 0.931 0.919
10 0.490 0.445 0.479 0.314 0.333 0.886 0.848
5 0.225 0.123 0.241 0.135 0.132 0.784 0.698

1.2 20 0.800 0.866 0.805 0.653 0.685 0.974 0.968
10 0.653 0.600 0.638 0.446 0.471 0.950 0.924
5 0.319 0.154 0.339 0.190 0.183 0.865 0.789

70 0.8 35 0.663 0.796 0.714 0.534 0.554 0.950 0.940
20 0.577 0.624 0.599 0.399 0.406 0.924 0.896
10 0.359 0.217 0.352 0.174 0.166 0.838 0.742

1.0 35 0.856 0.938 0.889 0.755 0.770 0.988 0.984
20 0.780 0.816 0.800 0.601 0.610 0.975 0.963
10 0.534 0.320 0.529 0.266 0.255 0.921 0.851

1.2 35 0.956 0.986 0.971 0.903 0.912 0.998 0.997
20 0.914 0.931 0.924 0.776 0.786 0.995 0.990
10 0.703 0.450 0.689 0.391 0.380 0.970 0.927

still chosen under the conjecture f0�x� = fN��0�1��x�; see the paragraph above the
description for Table 2). Table 6 presents the actual Type I error of PCUS and PSR
that are not close to the expected level 0.05, in the case of F0 = T�3��0�. However,
with respect to the risk Prto reject H0�H1�–Prto reject H0�H0�, the rule PSR seems
to be more preferable than PCUS. Note that, in this experiment, the power functions
of the tests are symmetric around �− 1 = n/2 and the powers of the tests do not
depend on a sign of � for a fixed �. Although the parameters setting (21) used in
RDD does not allow for the situations of Table 3, the test RDD is shown to be
reasonable to be applied, especially when values of � are expected to be relatively
close to 1 or n.

Table 4 Monte Carlo compares between the powers of the tests RDD, T4

RAK, RAD1, NPCUS, NPSR, PCUS, PSR, when the actual pre- and post-change
distributions are N�0� 1� and Unif�a� b�, a < b, respectively.
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In Table 4, the parametric decision rule PSR is shown to be more preferable
than the test PCUS. Table 4 considers a setting of the statement (1), when the
post-change distribution has a form that is different from a pre-change distribution
function’s form. In this case, we observe the proposed NPCUS and NPSR procedures
are very efficient. Especially when the variance of observations was changed from
1 to 0.083 (N�0� 1� �→ Unif�0� 1��, the powers of NPCUS and NPSR are frequently
superior to the powers multiplied by more than two of the other nonparametric
tests. In accordance with Table 4, the powers of the proposed nonparametric tests
RDD are significantly superior to those of the parametric tests PCUS and PSR.

Table 4
The Monte Carlo powers of the tests RDD, RAK, RAD1, NPCUS, NPSR, PCUS,
PSR, when the actual distributions are F0 = F1 = N�0� 1� and F2 = Unif�a� b�.

Observations with the subscript �− 1 are the last observations before the change.
The significance level of the tests is fixed to be � = 0�05

n a b �− 1 RDD RAK RAD1 NPCUS NPSR PCUS PSR

20 0.0 2.0 17 0.131 0.108 0.134 0.123 0.123 0.113 0.133
15 0.310 0.307 0.333 0.276 0.263 0.212 0.271
10 0.552 0.617 0.542 0.512 0.538 0.338 0.439
5 0.450 0.385 0.413 0.352 0.367 0.228 0.246
3 0.251 0.111 0.246 0.232 0.238 0.134 0.100

0.0 1.0 17 0.063 0.074 0.070 0.100 0.100 0.034 0.033
15 0.103 0.134 0.122 0.287 0.267 0.036 0.041
10 0.210 0.278 0.247 0.402 0.465 0.049 0.062
5 0.259 0.185 0.238 0.236 0.257 0.040 0.031
3 0.197 0.081 0.197 0.196 0.202 0.030 0.010

40 0.0 2.0 35 0.235 0.161 0.318 0.181 0.165 0.214 0.231
30 0.633 0.687 0.727 0.645 0.632 0.529 0.607
20 0.847 0.908 0.865 0.928 0.938 0.706 0.812
10 0.773 0.657 0.721 0.702 0.753 0.500 0.552
5 0.526 0.179 0.444 0.340 0.348 0.251 0.184

0.0 1.0 35 0.069 0.086 0.093 0.252 0.226 0.039 0.053
30 0.151 0.242 0.235 0.855 0.835 0.057 0.098
20 0.318 0.455 0.407 0.970 0.979 0.104 0.173
10 0.367 0.282 0.365 0.539 0.673 0.077 0.078
5 0.310 0.103 0.267 0.243 0.263 0.045 0.015

70 0.0 2.0 60 0.668 0.509 0.783 0.537 0.468 0.590 0.539
50 0.946 0.976 0.971 0.993 0.991 0.910 0.934
35 0.979 0.993 0.986 1.000 1.000 0.949 0.976
20 0.959 0.944 0.942 0.986 0.990 0.860 0.897
10 0.861 0.520 0.752 0.673 0.720 0.555 0.479

0.0 1.0 60 0.113 0.166 0.200 0.861 0.781 0.057 0.095
50 0.310 0.544 0.479 1.000 1.000 0.128 0.232
35 0.469 0.698 0.614 1.000 1.000 0.215 0.353
20 0.528 0.520 0.549 0.990 0.996 0.179 0.218
10 0.484 0.216 0.399 0.527 0.659 0.091 0.049
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Table 5
The Monte Carlo powers (at � = 0�05) of the tests RDD, RAK, RAD1, NPCUS,
NPSR, PCUS, PSR, PCUS∗, PSR∗ when the actual distributions are F0 = N�0� 1�,
F1 = N�0� 0�52�, F2 = N�0� 1�52� (design (a)); and F0 = N�0�7� 1/12�, F1 = Exp�1�,
F2 = Unif�0� 1� (design (b)). Observations with the subscript �− 1 are the last

observations before the change

n �− 1 RDD RAK RAD1 NPCUS NPSR PCUS PSR PCUS∗ PSR∗

Design (a)
20 17 0.100 0.058 0.100 0.098 0.103 0.108 0.047 0.301 0.336

15 0.118 0.074 0.112 0.121 0.131 0.139 0.071 0.378 0.436
10 0.085 0.079 0.087 0.206 0.252 0.185 0.095 0.341 0.414
5 0.056 0.059 0.057 0.203 0.196 0.237 0.135 0.138 0.159
3 0.051 0.053 0.047 0.086 0.087 0.270 0.169 0.093 0.099

40 35 0.138 0.057 0.128 0.111 0.121 0.131 0.039 0.581 0.630
30 0.132 0.073 0.132 0.221 0.314 0.172 0.070 0.796 0.850
20 0.082 0.081 0.100 0.723 0.789 0.222 0.100 0.846 0.905
10 0.054 0.061 0.062 0.590 0.585 0.272 0.145 0.467 0.561
5 0.048 0.058 0.050 0.181 0.168 0.313 0.196 0.152 0.176

70 60 0.199 0.062 0.148 0.215 0.279 0.164 0.045 0.911 0.917
50 0.162 0.078 0.143 0.762 0.848 0.205 0.077 0.985 0.991
35 0.094 0.085 0.105 0.988 0.990 0.244 0.100 0.994 0.997
20 0.058 0.068 0.067 0.962 0.957 0.284 0.134 0.954 0.977
10 0.045 0.052 0.049 0.541 0.479 0.320 0.177 0.505 0.576

Design (b)
20 17 0.059 0.066 0.061 0.069 0.069 0.063 0.052 0.952 0.968

15 0.076 0.090 0.082 0.113 0.111 0.070 0.066 0.961 0.975
10 0.147 0.152 0.135 0.171 0.191 0.089 0.086 0.955 0.968
5 0.144 0.109 0.140 0.127 0.136 0.083 0.055 0.892 0.917
3 0.114 0.064 0.111 0.104 0.108 0.065 0.032 0.815 0.851

40 35 0.065 0.065 0.070 0.104 0.100 0.066 0.066 0.999 1.000
30 0.124 0.138 0.128 0.299 0.297 0.090 0.114 0.992 1.000
20 0.242 0.257 0.222 0.556 0.621 0.136 0.181 0.999 0.999
10 0.260 0.160 0.209 0.244 0.314 0.123 0.099 0.995 0.997
5 0.188 0.073 0.155 0.131 0.143 0.084 0.033 0.985 0.989

70 60 0.105 0.110 0.117 0.237 0.204 0.083 0.099 1.000 1.000
50 0.240 0.287 0.246 0.817 0.789 0.149 0.228 1.000 1.000
35 0.372 0.432 0.354 0.951 0.959 0.226 0.337 1.000 1.000
20 0.433 0.309 0.329 0.691 0.787 0.195 0.212 1.000 1.000
10 0.385 0.131 0.228 0.241 0.298 0.126 0.063 1.000 1.000

(The test RDD was created pretending the alternative distributions have forms
that belong to exponential families. Moreover, the test statistic of RDD contains
parameters with optimal values obtained assuming F1 and F2 are expected to be
close to N�0� 1� and N��� 1�.) Thus, in this case, the power property of RDD is
demonstrated to be more robust than that of the parametric tests PCUS and PSR,
when the assumptions regarding distributions F1 and F2 are incorrect.
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Table 5 depicts the Monte Carlo comparison between the powers of the T5

nonparametric and parametric decision rules corresponding to the designs F0 =
N�0� 1�, F1 = N�0� 0�52�, F2 = N�0� 1�52� (the design (a) of the table) and F0 =
N�0�7� 1/12�, F1 = Exp�1�, F2 = Unif�0� 1� (the design (b) of the table). Taking
into account the designs of Table 5 and utilizing the methods of Sec. 2, we
constructed the correct parametric tests PCUS∗ and PSR∗ based on the test statistics
max1<k≤n 	̃

∗n
k and

∑n
k=2 	̃

∗n
k , respectively, with

	̃∗n
k = sup�1∈�

∏k−1
i=1 f1�Xi
 �1� sup�2∈�

∏n
i=k f2�Xi
 �2�

sup�0∈�
∏n

i=1 f0�Xi
 �0�
�

where

	̃∗n
k =

{
Sn
0

(
Sk−1
1 Sn−k+1

2

)−1
if 2 < k < n

0 if k = 2� n
� S0 =

√
1
n

n∑
i=1

(
Xi −�Xn

)2
� �Xn =

1
n

n∑
i=1

Xi�

S1 =
√√√√ 1

k− 1

k−1∑
i=1

(
Xi −�Xk−1

)2
� �Xk−1 =

1
k− 1

k−1∑
i=1

Xi�

S2 =
√

1
n− k+ 1

n∑
i=k

(
Xi −�X∗

n−k+1

)2
�

�X∗
n−k+1 = 1

n−k+1

∑n
i=k Xi� for the design (a);

	̃∗n
k =

(�Xk−1e
)−�k−1�

�maxk≤i≤n Xi −mink≤i≤n Xi�
−�n−k+1�Imin1≤i<k Xi>0�(

2�eS2
0

)−n/2 �

for the design (b). Here the correct information regarding parametric forms of the
distributions F0, F1, and F2 are applied.

Table 5 demonstrates the parametric tests to be very efficient, provided that
correct parametric forms of the null and alternative distributions F0, F1, and F2

are known. In these examples, the proposed test PSR∗ is superior to the classical
test PCUS∗ based on the CUSUM-type statistic. The parametric tests PCUS and
PSR have weak powers even for n = 40� 70. That is to say, the parametric tests
for the change point problem do not have robust power properties. Note that,
perhaps, the problem of developing goodness-of-fit tests under the regime of (1)
does not have simple solutions. The nonparametric tests RDD, RAK, and RAD1

are shown to be inefficient (these tests are close to being biased, in certain cases).
This is partly because the tests RDD, RAK, RAD1 were proposed assuming the
stochastically ordered alternatives. The proposed NPCUS and NPSR procedures are
superior to the rest of the considered nonparametric tests in terms of their powers, in
almost all Monte Carlo experiments conducted to present Table 5. The simulations
related to design (b) of Table 5 confirm that the proposed nonparametric test RDD
is significantly more robust to the assumptions on distributions F0, F1, and F2 than
the parametric tests PCUS and PSR.

To investigate a sensitivity of the parametric change point policies with respect
to assumptions required for correct executions of the procedures, we conducted
Monte Carlo experiments. The outputs of these experiments are shown in Table 6. T6
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Generally speaking, we must note that these parametric tests are not robust,
in the context of the Type I error control. When the degree of freedom of a
t-distribution is greater than 25, the actual type I error is comparable with the
expected 0.05. However, it is clear: testers should be very accurate when choosing
parametric forms of the null distribution of (1). This issue has not been well
addressed in the literature. In this context, the proposed decision rule PSR is also
shown to be more preferable than the classical retrospective detection scheme PCUS.

Table 6
The actual Monte Carlo type I errors of the parametric tests
PCUS and PSR with the critical values that correspond to the

conjecture f0�x� = fN�0�1��x� for the different null distributions and
sample sizes n

Null
distribution n

Type I error
of the PCUS

Type I error
of the PSR

T�2��0� 20 0.626 0.529
40 0.744 0.636
70 0.820 0.689

T�3��0� 20 0.402 0.316
40 0.472 0.360
70 0.534 0.373

T�10��0� 20 0.119 0.093
40 0.126 0.095
70 0.135 0.096

T�15��0� 20 0.088 0.072
40 0.096 0.077
70 0.102 0.080

T�25��0� 20 0.072 0.064
40 0.075 0.068
70 0.075 0.069

LogNorm�1� 1� 20 0.970 0.951
40 0.995 0.988
70 1.000 1.000

Unif�0� 1� 20 < 0�005 < 0�005
40 < 0�005 < 0�005
70 < 0�005 < 0�005

Exp�1� 20 0.098 0.067
40 0.101 0.062
70 0.105 0.056

Norm�0� 0�52� 20 < 0�005 < 0�005
40 < 0�005 < 0�005
70 < 0�005 < 0�005

Norm�0� 1�52� 20 0.393 0.281
40 0.446 0.312
70 0.473 0.298
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Table 7
The Monte Carlo levels of significance of the test RDD with the threshold

CDD = 2/� = 40

Sample size n = 10 n = 20 n = 30 n = 40 n = 70 n = 100 n = 150

Level of
significance

0.000 0.005 0.021 0.032 0.043 0.042 0.037

The biases between the actual and expected the type I errors depend on the sample
sizes n, but these dependencies are not strong.

Proposition 2 provides asymptotically �n → 
� the distribution free upper
bound for the Type I error of the test RDD. To examine the accuracy of this
result, we determine a critical value for the test RDD, taking into account the
inequality (20), in the form of 2/�, for finite sample sizes. We present in Table 7 the T7

Monte Carlo Type I errors of the test RDD with the test threshold CDD = 2/� = 40,
expecting to obtain the nominal significance level that is close to � = 0�05.

In this case, we do not recommend to utilize Proposition 2 for obtaining the
critical values of the test RDD, when n ≤ 20; however, when n ≥ 30 the asymptotic
result (20) can be used in practice.

Remark. This article focuses on testing the hypothesis of (1). Gurevich and Vexler
(2005, 2006) showed that, in general, a process of estimation of the change point

Table 8
The Monte Carlo means and standard deviations of the estimator �̂, when
F1 = Exp�1�, F2 = Unif�0� 1�, for different sample sizes n and values of �

n = 40
� 
 (No change) 21 36
Mean 21.048 20�835 25�617
STD 10.534 4�770 10�411

n = 70
� 
 (No change) 21 36
Mean 35.779 24�176 35�309
STD 16.681 8�154 4�059

n = 100
� 
 (No change) 21 36 51
Mean 51.337 28�296 36�126 49�955
STD 21.963 14�027 5�127 3�531

n = 120
� 
 (No change) 21 36 51 61
Mean 60.856 30�869 36�440 50�180 59�846
STD 25.213 17�459 6�046 3�639 3�389

n = 150
� 
 (No change) 21 36 51 61 76
Mean 76.416 35�941 37�449 50�453 60�004 74�772
STD 29.391 23�726 8�472 4�126 3�376 3�079
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� should be started if needed, provided that just the null hypothesis is rejected.
When H0 is rejected, the issue to estimate the unknown parameter � can be stated.
Borovkov (1999) as well as Gurevich and Vexler (2005) investigated different
parametric estimators of the change point � based on the likelihood ratios 	n

k

or 	∗n
k . Section 3 introduces the nonparametric tests NPCUS and NPSR based

on the approximations 	̃n
k from (22) to the parametric likelihood ratio 	n

k . Thus,
combining the material of Sec. 3 and the techniques of Borovkov (1999) and
Gurevich and Vexler (2005), we can propose, e.g., the maximum nonparametric
likelihood estimator

�̂ = arg max
2≤k≤n

	̃n
k

of �. Theoretical evaluations of �̂ need substantial mathematical details that
are beyond the scope of this article. To illustrate briefly the behavior of the
estimator, we conducted the following experiments. Table 8 presents the Monte T8

Carlo estimators of means and standard deviations of the estimator �̂, when samples
of Xs were drawn from F1 = Exp�1�, F2 = Unif�0� 1�, for different sample sizes n
and values of �.

It seems from Table 8 that the estimator �̂ is consistent when � → 
� n− � → 

and can be recommended to be applied in practice.

5. A Data Example

In this section, we exemplify the proposed methods to evaluate a biomarker
related to atherosclerotic coronary heart disease in the context of having potential
discriminatory abilities for myocardial infarction (MI). We consider the biomarker
called Cholesterol that measures sub-products of lipid peroxidation and has been
proposed as a discriminating measurement between individuals with cardiovascular
disease and healthy populations (for details see, e.g., Vexler et al., 2008a,b). A cohort
of 799 men and women without myocardial infarction (say, MI = 0) and 143
individuals who recently survived an MI (say, MI = 1) were selected for the analyses
to present data that contain measurements of cholesterol. Participants provided a
12-h fasting food specimen for biochemical analysis at baseline, and a number of
parameters were examined from fresh blood samples.

5.1. Type I Error Evaluation

To evaluate the type I error of the proposed tests we apply a bootstrap-type
procedure. The strategy was that a Bernoulli random variable ��Pr� = 0� =
Pr�= 1� = 1/2� was generated and then a sample of cholesterol measurements
with size n = 70 was randomly selected from individuals with MI = �. We repeated
this strategy 10,000 times calculating the frequencies of the event Test statistic >
Theoretical 95% Critical value� based on measurements related to the status MI= �.
In this evaluation we present situations when investigators do not know whether
data correspond to healthy or diseased populations (i.e., F0 of (1) is an unknown
mixture distribution), and the biomarker has no discriminatory ability. The derived
results are presented in Table 9. The parametric tests PCUS∗ and PSR∗ were defined
in Sec. 4 to present outputs of Table 5: design (a). (In many epidemiological studies,
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Table 9
The bootstrap-type evaluation of the ability of cholesterol to discriminate groups

of populations for myocardial infarction (MI)

NPCUS NPSR RDD RAK RAD1 PCUS∗ PSR∗

Type I error evaluation 0.058 0.055 0.051 0.056 0.054 0.151 0.163
�− 1 = 30 0.703 0.742 0.541 0.598 0.515 0.339 0.464
�− 1 = 50 0.489 0.475 0.366 0.448 0.404 0.239 0.318

cholesterol measurements are shown to be normally distributed; e.g., Vexler et al.,
2008a,b.) It is clear; Table 9 does not recommend applying the parametric tests T9

to the study that evaluates the cholesterol biomarker related to atherosclerotic
coronary heart disease.

5.2. Power Evaluation

In certain situations, to analyze objectively the discriminatory ability of a
biomarker, investigators observe groups of individuals with MI = 0 and MI = 1
when groups sizes are unknown (i.e., we do not know when we finish observing
measurements from population with MI = 0 and start to survey measurements
from individuals with MI = 1). Note that, corresponding to the paragraph above,
we consider the problem (1), when F0 �= F1. We sampled first �− 1 observations
from the population with the status MI = 0 and 70− �+ 1 observations from
the population with MI = 1. We repeated this sampling 10,000 times, obtaining
decisions of the tests, for �− 1 = 30 and 50. Thus, we evaluated the powers of the
tests. In accordance with Table 9, the cholesterol biomarker can clearly discriminate
the populations. The proposed nonparametric tests NPCUS and NPSR can be highly
recommended to be applied to different epidemiological studies that evaluate the
cholesterol biomarker related to atherosclerotic coronary heart disease.

6. Conclusion

The main aims of this article were to review, develop, and compare various
techniques applied to create decision rules for the retrospective change point
detection issue. We concentrated on presenting general ideas regarding the change
point tests’ constructions. Thus, although we concern ourselves the relatively simple
statement of the problem (1) with independent observations, in a similar manner
to considerations mentioned in this article, complex models (including regressions,
autoregressions, etc., see, e.g., Vexler, 2008) can be tested for different change points’
occurrences in data distributions.

Commonly, the theoretical change point literature has introduced retrospective
change point detection problems based on statements that are typical of modified
sequential quality control issues. In this context, while considering (1), investigators
have declared that F1 = F0. In this article, we pointed out that the retrospective
statement of the change point problem cannot require assuming that F1 = F0,
in a general context. This leads to extend forms of the known parametric and
distribution free change point detection policies.
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We examined various parametric and nonparametric tests for the change point
problem (1), attending to different contexts of optimality and robustness of the
procedures.

We showed that the recently developed (in the retrospective context) parametric
Shiryayev–Roberts policy is appropriate to replace the classical CUSUM scheme in
many practical applications, because the SR rule demonstrates the optimal property,
efficiency, and robustness, compared with the CUSUM test. However, future studies
are needed to investigate theoretically different sorts of SR-type tests.

We indicate that the parametric change point detection policies are very
sensitive to the null distribution assumptions, in the context of a type I error control.
Generally speaking, the parametric policies examined in Sec. 4 have constructions
that are based on sums of independent random variables. (Section 4 evaluated
the normally distributed data-based CUSUM procedure that is well addressed
in the theoretical change point literature.) Thus, one would expect that, at least,
these policies are robust when instead of assumed baseline normal distributions,
t-distributed observations are in effect. We cannot confirm this property. This issue
has not been well addressed in the literature, and hence future studies are required.
Perhaps the problem of developing goodness-of-fit tests under the regime of (1)
does not have simple solutions. We introduced the nonparametric procedure (19)
that possesses robustness of validity, because it is based on ranks. A near-optimal
property of (19) can be obtained for specific alternatives. However, in contrast to the
parametric tests, because (19) utilizes rank statistics, the proposed nonparametric
procedure has been shown to be a powerful change point detection policy when
a guess related to the alternatives is incorrect. It is interesting to note that we
observed that a small change in expected and assumed distribution forms can lead
the parametric tests being helpless in the context of the type I error control, whereas
in the same conditions the test (19) demonstrated powerful characteristics.

The proposed nonparametric tests are shown to be very efficient under various
alternative hypotheses.

Section 3 of this article introduced the nonparametric methodology for
approximating the likelihood ratios. This method can be applied to construct
nonparametric estimators of the unknown change point parameter, provided
that the null hypothesis of (1) is rejected. Toward this end, relevant parametric
techniques (e.g., Borovkov, 1999; Gurevich and Vexler, 2005) can be approximated
in the nonparametric manner. Our limited simulation results have shown that this
approach is reasonable to investigate intensively and applied in practice.

Thus, we believe that the outputs of this manuscript have great potential to be
applied in practice and induce investigators to study the retrospective change point
issues.
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