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Retrospective evaluation of whole exome and
genome mutation calls in 746 cancer samples
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Guanlan Dong 2, Wen-Wei Liang1,2, Amila Weerasinghe 1,2, Shantao Li 5, Sean Kelso2, MC3 Working

Group*, PCAWG novel somatic mutation calling methods working group*, Gordon Saksena 8, Kyle Ellrott 9,
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The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC)

curated consensus somatic mutation calls using whole exome sequencing (WES) and whole

genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer

Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome

sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS

side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered

exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal het-

erogeneity contribute up to 68% of private WGS mutations and 71% of private WES

mutations. We observe that ~30% of private WGS mutations trace to mutations identified by

a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in

exonic regions and un-observed mutations in loci with variable GC-content. Together, our

analysis highlights technological divergences between two reproducible somatic variant

detection efforts.
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C
omplementary efforts of The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Con-
sortium (ICGC) have recently produced two of the highest

quality and most elaborate and reproducible somatic variant call
sets from exome and whole genome-level data in cancer geno-
mics, respectively. The motivation for these efforts stems from the
notion that “scientific crowd sourcing” and combining mutation
callers can provide very strong results.

These two efforts produced variant calls from 10 different
callers, namely Radia1, Varscan2, MuSE3, MuTect4, Pindel5,6,
Indelocator7, SomaticSniper8 for WES and MuSE, Broad-
Pipeline (anchored by MuTect), Sanger-pipeline, German
Cancer Research Center pipeline (DKFZ), and SMuFin9, for
WGS. Briefly, the PCAWG Consortium aggregated whole
genome sequencing data from 2658 cancers across 38 tumor
types generated by the ICGC and TCGA projects. These
sequencing data were re-analyzed with standardized, high-
accuracy pipelines to align to the human genome (reference
build hs37d5) and identify germline variants and somatically
acquired mutations10. Of the 885 TCGA samples in ICGC, 746
were included in the latest exome call set produced by both the
Multi-Center Mutation Calling in Multiple Cancers (MC3)
effort and the Pan-Cancer Analysis of Whole Genomes
(PCAWG) Consortium set. These 746 samples represent a
critical benchmark for high-level analysis of similarities and
differences between exome and genome somatic variant
detection methods.

Reproducibility of mutations identified by both whole exome
capture sequencing and whole genome sequencing (WGS)
techniques remains an important issue, not only for the scien-
tific use of large, established data sets, but for data designs of
future research projects. Previous work analyzing exome capture
effects on sequence read quality has shown that GC-content bias
is the major source of variation in coverage11. A performance
comparison across exome-captured platforms demonstrated
that for most technologies, both high and low GC-content result
in reduced coverage in read depth12. Belkadi et al. compared
mutation calls between WGS and WES, observing that ~3% of
coding variants with high quality were only detected in WGS,
and WGS also had a more uniform distribution of coverage
depth, genotype quality, and minor read ratio13. Furthermore,
due to the relatively high error rate per read in next-generation
sequencing14, the detectability of mutations with low variant
allele fractions (VAFs) is limited by background noise. Despite
these studies’ nuanced preference towards WGS, others contend
that WES will remain a better choice until costs of WGS fall15.
The decision to sequence exomes or whole genomes is further
confounded as more recent publications in oncology select
either WGS16–20 or WES21–24. Recognizing the unresolved
nature of this issue, Schwarze et al. have called for more com-
prehensive studies comparing the WES and WGS studies,
especially as this issue has important ramifications for the
clinic25.

Our analysis provides confidence that mutation calls within
the captured exonic regions of these two data sets are
largely consistent. We highlight common sample, cohort, and
caller-specific challenges in cancer variant detection from the
TCGA and ICGC efforts. We show that variants that are
most confidently called in one database i.e., called by multiple
callers, are very likely to be called in the other. We assess
how reproducibility impacts higher-level mutation signature
analysis and illustrate the need for caution in assessing perfor-
mance that can only be identified by the overlap of these two
data sets. Finally, we explore the capacity of WGS to detect
recurrent non-coding mutations captured by whole exome
sequencing.

Results
Data and workflow. We used publicly available data from the
MC3 and PCAWG repositories, consisting of ~3.6 M and ~47M
variants, respectively (Fig. 1a). 746 samples were sequenced by
both WES and WGS, comprising various aliquots and portions of
the same tumor (Supplementary Data 1, Fig. 1b). Effects of these
differences are discussed below for preliminary results, but we
ultimately used the entire set of 746 samples in the variant
overlap analysis, since the effects of tumor partitioning did not
play a significant role (Supplementary Fig. 1). By restricting the
public data sets to overlapping samples, we reduced the total
corpus to ~220 K (6.1%) and ~23M (49.6%) mutations for exome
and whole genome, respectively. It is notable that there is an
enrichment of variants in hypermutated samples from COAD,
HNSC, LUAD, and STAD in the PCAWG set used in this study
(Supplementary Fig. 2). To begin building a comparable set of
mutations between these two studies, we further restricted the
whole genome data set to exon regions provided by the MC3
analysis working group. This reduced the WGS data set to 1.6% of
its original size, within range of total exome material estima-
tions26 (Fig. 1a). The next step involved removing poorly-covered
variants potentially caused by technical anomalies by limiting
mutations to those captured in coverage files (distributed as.wig
files). A reciprocal coverage strategy was used, meaning PCAWG
mutations were restricted to covered genomic regions in MC3
and vice versa, thereby maintaining a complementary set of
callable genomic regions. Removal of mutations in uncovered
regions reduced the remaining PCAWG data set by approxi-
mately one-half, from 387,166 to 183,424 mutations. We also
identified 4241 MC3 and 2219 PCAWG mutations that were
present in the respective MAF but were not marked as covered in
the coverage files provided by a single group. This suggests that
different tools consider different minimum coverage strategies.
These mutations reflect 2.0% and 1.2%, respectively, of the total
mutation discrepancy and were removed because some callers
had limited capacity to identify mutations in poorly-covered
regions (see “Methods” section). Finally, filter flags provided by
MC3 were used to assess somatic mutation filtering strategies. At
this stage, we performed filter optimization to comprehensively
evaluate all possible combinations of MC3 filters (Supplementary
Fig. 3a). Ultimately, we decided to only remove OxoG labeled
artifacts and duplicated events produced by these filters (see
“Methods” section, Supplementary Data 2). Since each stage of
this filtering workflow resulted in many alternative decisions and
outcomes, we built MAFit, a web-based graphical user interface
that allows users to easily customize comparisons of merged
mutations (https://mbailey.shinyapps.io/MAFit/). A MC3 filter
assessment also shows that many variants with filter flags in MC3
are present in the PCAWG variant call set, suggesting a need for
improved filtering strategies (Supplementary Fig. 3b).

TCGA samples comprise a sizable fraction of the PCAWG
sample pool (~30%, Supplementary Data 1) Additional WGS
sequencing from TCGA allowed for mutation validation27 and
insights into non-coding mutations, such as in TET2. However,
this selection process could have potentially influenced our basic
comparison of exome-sequenced samples and genome-sequenced
samples in two fundamental ways. First, vagaries of tumor
extraction and tissue storage protocols may have resulted in many
different portions of a tumor being stored, introducing the
possibility that different subclones of the same tumor could be
present. These could have very different genetic makeups. This
information was captured in different substrings of the TCGA
identification barcode (see “Methods” section). From the 746
TCGA barcodes, we found that 64% (477) could be traced to the
same well of a microtiter plate (Fig. 1b). After correcting for
cancer type, we modeled both the impact of matching barcode
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identifiers between MC3 and PCAWG and variant concordance,
finding that differing barcodes did not have an appreciable
impact. This result was seen for all samples, even when excluding
the hypermutator (Fig. 1). Second, each AWG was able to
independently select samples for WGS, which, while not affecting
mutation calling, does raise potential biases when comparing
PCAWG results to TCGA exome cohort data. An enrichment
analysis was performed to identify which tumor subtypes may
have been preferentially selected for different cancer types. We
found that four tumor subtypes were enriched in the PCAWG
effort from TCGA samples: infiltrating ductal breast cancer,
endometrial serous adenocarcinoma, differentiated liposarcoma,
and low grade oligodendroglioma (FDR < 0.05, Fig. 1c,

Supplementary Data 3, and see “Methods” section). Final tumor
sample counts for each cancer type are shown in Fig. 1d.

Landscape of mutational overlap between WGS and WES calls.
Limiting our analysis to coding regions with sufficient coverage
yielded a total of 202,459 variants (155,859 matched, 21,627
unique MC3 variants, and 24,973 unique PCAWG mutations),
with 76.7% in concordance between MC3 and PCAWG and
10.7% and 12.3% being unique in MC3 and PCAWG, respectively
(Fig. 2a). Concordance can be further separated into SNPs and
indels, with 79% and 57% overlapping, respectively (Supple-
mentary Fig. 4). Variant overlap was further investigated to reveal
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Fig. 1 Workflow and sample inclusion statistics. a A workflow diagram illustrates the number of mutations present during each step (gradient) of the
filtering processes for MC3 (left, blue) and PCAWG (right, red). A brief description of each step of the intersection process is shown in between. b TCGA
barcodes and aliquot IDs were used to match somatic sequencing. The exact match of these IDs is shown for various collection aliquots from tissue to
plate. c A volcano plot highlights cancer subtype discrepancy between each PCAWG and MC3 with −log10(p-value) on the y-axis and log2(odds ratio) on
the x-axis (Fisher’s exact test). The horizontal red bar indicates a significant threshold after multiple testing correction. Positive values indicate an over-
representation of a cancer subtype in PCAWG, while negative values indicate an under-representation of a cancer subtype in PCAWG compared to MC3-
separated by a vertical red bar. d Sample counts for each cancer type are shown in a bar chart. The colors coordinate with panel c.
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its association with mutation caller, sample, and cancer type
(Fig. 2a–c). Consensus variant calling showed 91,705 (45.3%)
concordant variants were captured in the intersection of Sanger,
MuSE, DKFZ, and Broad callers from PCAWG, as well as
Varscan, SomaticSniper, Radia, MuTect, and MuSE callers from
MC3. Notably, an additional 7.7% were identified by all SNV
mutation detection algorithms, except SomaticSniper. The
reduced sensitivity of SomaticSniper is related to its algorithmic
consideration of tumor contamination in the matched normal
(e.g., skin) for liquid tumors8. After optimizing for filtering
strategies, we performed a sample level comparison and found
that 70% of samples had greater than 80% mutation concordance
across the two cohorts. An additional 20% of samples had greater
than 80% mutation recoverability in one or the other technique
(Fig. 2b). Skin Cutaneous Melanoma performed the best among
all cancer types and had the highest variant-matching rates for
both MC3 and PCAWG (Fig. 2c). Generally, when considering all
MC3 and all PCAWG mutations separately, we observed that

PCAWG variant matching rates were generally higher, especially
for Kidney Chromophobe (KICH), Brain Lower Grade Glioma
(LGG), Ovarian Serous Cystadenocarcinoma (OV), Rectum
Adenocarcinoma (READ), and Thyroid Carcinoma (THCA). The
differences in OV are likely driven by whole genome amplified
library preparation. Generally, the median fractions for matching
MC3 variants were lower than those of matching PCAWG var-
iants. This result was unexpected because MC3 provided fewer
unique variants overall, suggesting that a large fraction of
PCAWG unique variants reside in a few samples. Furthermore,
after accounting for hypermutators, we identified a correlation
between non-silent mutations per megabase and mean consensus
percentages at the cancer level in both PCAWG consensus per-
centages (Mann–Whitney p-value= 1.97 × 10−3) and MC3 con-
sensus percentages (Mann–Whitney p-value= 6.59 × 10−4, see
“Methods” section, Supplementary Fig. 1c, d). Despite strong
rank statistics, neither set exhibited strong correlation values for
MC3 variants or PCAWG variants, R2 statistics= 0.31 and 0.17
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Fig. 2 Landscape of mutations overlap by caller, sample and cancer type. a UpSetR41 plot shows the variant calling set intersection by caller. The y-axis
indicates set intersection size and the x-axis uses a connected dot plot to indicate which sets are considered. Only the largest 27 intersecting sets are
shown. Two insets of the UpSetR plot highlight a classic Euler diagram (left), which indicates the total number of overlapping mutations. A set-size bar
chart (right) illustrates the total number of mutations considered from each caller. The concordance set indicates the agreement between WES and WGS.
Indel callers are indicated with an asterisk. b A scatter plot shows the amount of concordance by sample by calculating the fraction of matched variants
divided by the total number of mutations made by MC3 exome sequencing and PCAWG whole genome sequencing (x and y-axis, respectively) below the
total fraction of samples within each quadrant. Each point within the plot is related to tumor portion data collected from the TCGA barcode ID. c As shown
above, this box plot separates panel b by cancer types (blue considers all MC3 variants, and red boxes indicate all PCAWG variants). Sample sizes are
displayed for each cancer; points indicate samples that extend past 1.5 times the interquartile range; and horizontal bars within each box and whisker
indicates median matched mutation fraction.
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respectively with the majority of cancer types exceeding 80%
mean concordance. Thus, one may expect to observe slightly
higher variant fidelity in samples with more mutations.

Variant allele fraction affects call-rates. After achieving a
comparable data set and merging MC3 and PCAWG variants, we
found that low VAF is the prevailing attribute of unique muta-
tions. VAF is a fundamental factor in somatic variant detection,
as well as sub-clonal structure prediction, and is used to predict
subclonal tumor growth rates and metastatic potential. To explore
the contribution of VAF, we sought to distinguish the contribu-
tion of subclonal structure and statistical chance when exploring
private mutations in a single call set. We articulate our findings in
six broad categories: modeling sequence noise, departure from
idealized behavior, sub-clonal modeling, annotation differences,
variant-caller effects, and analysis correlations.

Association of variant allele fraction with recoverability. We
have observed that variants with low VAF are less likely to be
reported in both call-sets. This finding relates to the lower sen-
sitivity of somatic variant callers for variants with low VAF. To
illustrate this principle, we estimated the expected overlap rate
between MC3 and PCAWG at different VAFs. The sensitivity of
MuSE across a range of VAFs and read depths in synthetic data
was reported in Fan et al., 20163. We used these reported
benchmarking characteristics of MuSE to estimate the expected
overlap rate between the MuSE call-sets of MC3 and PCAWG
across a range of VAFs (see “Methods” section). These expecta-
tions, which involve lower overlap rates at lower VAFs, generally
tracked observed data but tended to overestimate observed
overlap rates, especially for predicting the recovery fraction of
MC3 variants in PCAWG. (Fig. 3a) The discrepancies between
expectations and observations may relate to simplifying
assumptions that made this modeling possible (see “Methods”
section).

More generally, we observed that VAF had a greater
association with variant recovery rates than predicted by the
binomial model (Fig. 3b). A random forest regression model
trained on five statistics characteristics of VAF distribution per
PCAWG sample and another five for that of the corresponding
MC3 call-set predicted the fraction of variants per sample unique
to PCAWG with 0.85 (0.86—when restricting to variants called
by MuSE) Spearman correlation of test-set observations and a
0.68 (0.78) coefficient of determination (R2).

The strong association of VAF with recovery rates by call-set,
despite modest explanatory power of the binomial, indicates
important departures from idealized behavior. These departures
could include explanations such as: PCR amplification violates
the assumption of independence of reads, imputed read depths
are systematically inflated, or some low-VAF variants represent
sequencing artifacts. We conclude that non-ideal effects of VAF
predict the majority of sample-level variance in fraction of co-
called variants.

Exploring subclonality. One possible explanation for some var-
iants being private to one call-set is that the sequencing aliquots
for the two sequencing projects came from subclonally-distinct
microregions of the same tumor. To investigate this possibility,
we tested whether the MC3 and PCAWG call-sets differed from
each other systematically at the subclonal level (Fig. 3c, d). We
hypothesized that tumors with a more complex subclonal struc-
ture (i.e., greater number of subclones) would have larger sys-
tematic differences in the VAF of shared variants between the
MC3 and PCAWG call-sets. We found a small but highly sig-
nificant effect: each additional subclone increased the average

absolute difference in VAF of the shared variants between MC3
and PCAWG by 0.003, with a p-value of 1.3 × 10−11 (linear
regression); this effect reversed after controlling for tumor purity,
indicating that the observed trend does not provide evidence of
this interesting concept in re-sequencing (see “Methods” section
for details). We do not have evidence that systematic VAF dif-
ferences between call-sets of the same underlying sample
associate with tumor heterogeneity. Real time effects of VAF
differences between these two data sets can be observed using the
online MAFit tool (Fig. 4).

Annotation differs by call-set. Genome annotation is critical for
biological interpretation and downstream analysis of sequencing
data. In order to avoid issues that arise from annotation differ-
ences, we only considered genomic locations in our intersection
strategy. In doing so, we observed 2153 annotation differences
where MC3 and PCAWG had different genes annotated for the
same mutation. After restricting the mutation type to missense
mutations and indels, 789 annotations differences remained.
Most of these had the same mutation types annotated by both
call-sets (690 SNPs, 15 insertions, 50 deletions), but some dis-
crepancies remained. Notably, 413 out of 789 mismatch variants
are labeled coding in MC3 but non-coding in PCAWG (Sup-
plementary Data 4). We also observed four mutations that were
annotated as cancer gene mutations by MC3, but as non-cancer
gene mutations by PCAWG, and another four mutations that
were annotated as cancer gene mutations by PCAWG, but as
non-cancer gene mutations by MC3. One such example sub-
sumed two mutations on chromosomal location 3p21.1 (genomic
locations chr3:52442525 and chr3:52442604) that were annotated
as missense mutations of BAP1 by MC3, but as 5’Flank SNPs of
PHF7 by PCAWG. While identical pipelines resolve such differ-
ences, we stress the potential for misinterpretations when com-
bining these publicly-available datasets.

Effects of software. Another important issue we assess is the
degree to which differences in bioinformatics pipelines impact
concordance. We extracted calls from MuSE and MuTect, both of
which were executed on each dataset, and examined 6 subsets of
results: MuSE-only-calls and all calls save MuSE-calls (the com-
plement), MuTect-only-calls and their complement, and MuSE
+MuTect calls and their complement. MuSE and Mutect each
generate around 95% of the total calls, of which each respective
subset shows close to 80% concordance between WES and WGS
(Supplementary Fig. 5). These call sets themselves overlap almost
completely, with their combination (MuSE+MuTect) giving a
marginally higher concordance. Conversely, the data-specific
caller combinations (referred to above as the complements) each
furnish small call sets which vary considerably between WES and
WGS (concordance as low as 15%). Because of the vast difference
in the sizes of the MuSE/MuTect and the complementary call sets,
there is little difference in the original analysis versus analyses
restricted to variant callers common to both platforms. Differ-
ences in software pipelines do not appear to be significant con-
founding factors in concordance here.

Effects on higher-level analysis. We also sought to assess how
higher-level analyses might be impacted using mutation signature
analysis as a representative. We ran SignatureAnalyzer28 to
ascertain signatures between matched WGS and WES samples for
each case. A total of 563 of 739 cases (76%) showed the same
dominant signature between WES and WGS and the multi-
element signature vectors for each case are very highly correlated
with one another, the average Pearson coefficient being almost
90%, with a cohort significance of <2 × 10−6 (Fisher’s Test,
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“Methods” section, Supplementary Fig. 6). These observations
suggest that signature analysis is relatively insensitive to data type
when concordance is high, as it is here.

Landscape of private WES and WGS mutations. After identi-
fying many possible sources of variation among private variants,
we sought to characterize the fraction of variation explained by
previously identified factors (Supplementary Fig. 7, see “Meth-
ods” section). As displayed, subclonal and low VAF variants make
up the largest fractions of explained variants for private MC3 and
PCAWG variants. Notably, for private MC3 calls, indels (not
called by MuSE or MuTect) are the next highest source of var-
iation explained. GC-content and poor performing cancers such
as THCA, KICH, and PRAD make up a smaller portion of the
total number of private mutations.

Variants present in only one public call-set. We sought to
classify cancer driver mutations uniquely identified by MC3.
After removing two outlier samples having excesses of unique
mutations (TCGA-CA-6717-01A-11D-1835-10, TCGA-BR-6452-

01A-12D-1800-08), we observed 424 mutations in cancer genes28

(median read depth = 97, median alternative allele count= 9)
The four most frequently mutated genes were: KMT2C (22-
mutations), PIK3CA (12), SPTA1 (9), and NCOR1 (9). Interest-
ingly, the majority of unique PIK3CA mutations not identified by
PCAWG were at 2 locations: E542K/G (5), and E545K (4).
Whether this phenomenon reflects technical bias of WGS or is a
product of subclonality warrants further investigation.

The MC3 effort produced two mutation files: one controlled
access somatic mutation file that represents nearly all mutations
found by all callers, and a second was modified by the scientific
community for public use. There are two critical differences in
these files involving the reporting of mutations in exonic regions
and mutations reported by a single variant caller. Since we limited
our analysis strictly to exonic regions, we observed that 92% of
the 9138 PCAWG private mutations found in the MC3 controlled
access file were only identified by a single variant caller
(Supplementary Fig. 8). As expected, the highest unique variant
caller overlap was observed in MuTect and MuSE, two tools that
were used by both MC3 and PCAWG. This observation accounts
for 30% of PCAWG private variants.

M
C

3
 m

u
ta

ti
o
n
s
:

M
a
tc

h
e
d

U
n

iq
u

e

67.1%

32.9%

94.1%

5.9%
0%

25%

50%

75%

100%

Clonal
N=87,433

Sub−clonal
Sub−clonal N=26,406

MC3 subclonal designation

P
e
rc

e
n
t 
o
f 
m

u
ta

ti
o
n
s

VAF in consortium X

R
e
c
o
v
e
ry

 f
ra

c
ti
o
n
 i
n
 c

o
n
s
o
rt

iu
m

 Y

0%

25%

50%

75%

100%

0
.0

5
 N

=
3

2
3

6
0

.1
 N

=
2

5
,4

9
4

0
.1

5
 N

=
2

6
,7

0
0

0
.2

 N
=

2
5

,8
0

4
0

.2
5

 N
=

2
6

,1
4

3
0

.3
 N

=
2

1
,8

5
3

0
.3

5
 N

=
1

9
,9

3
2

0
.4

 N
=

1
8

,6
1

1
0

.4
5

 N
=

1
3

,0
7

9
0

.5
 N

=
7

7
1

7
0

.5
5

 N
=

3
8

7
7

0
.6

 N
=

2
8

0
5

0
.6

5
 N

=
1

9
0

1
0

.7
 N

=
1

4
0

9
0

.7
5

 N
=

1
0

6
8

0
.8

 N
=

8
9

6
0

.8
5

 N
=

7
2

9
0

.9
 N

=
5

4
8

0
.9

5
 N

=
3

5
5

1
 N

=
1

1
5

Binned VAF 

P
e
rc

e
n
t 
o
f 
m

u
ta

ti
o
n
s

M
a

tc
h

M
C

3
 u

n
iq

u
e

P
C

A
W

G
 u

n
iq

u
e

94.5%

5.5%

69.7%

30.3%

62.8%

37.2%

70.3%

29.7%

0%

25%

50%

75%

100%

Clonal
N=120,530 N=37,532 N=7903 N=5518

PCAWG subclonal designation

P
e
rc

e
n
t 
o
f 
m

u
ta

ti
o
n

s

P
C

A
W

G
 m

u
ta

ti
o
n
s
:

M
a
tc

h
e
d

U
n

iq
u

e

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0

0.2

0.4

0.6

0.8

1.0

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0

0.2

0.4

0.6

0.8

1.0

Simulated, PCAWG = Y
Simulated, MC3 = Y
Observed, PCAWG = Y
Observed, MC3 = Y

a

c d

b
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matched and unique variants (y-axis) for different VAF bins (x-axis). 180 variants did not provide read count information and were removed from this
figure. c Stacked proportional histogram shows the fractions of PCAWG matched mutations (purple) and PCAWG-unique mutations (red). Mutations
were restricted to SNVs, and subclonality predictions are indicated as either ‘Clonal’ or ‘Sub-clonal’. Columns 2–4 reflect sub-clonal assignment provided
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We investigated how many variants unique to the
MC3 somatic public access call-set could be found in the
PCAWG germline call-set for the same patients. We identified a
total of six such variants (each in a different sample), five of
which were flagged in the MC3 public call-set with one filter or
another. Overall, this indicates that variants that have been
incorrectly designated as germline or somatic are an extremely
uncommon source of variation between the two projects.

Variants in GC-extreme intervals. Since it is well-known that the
efficiency of exome capture is adversely affected by very high or
very low GC-content29,30, we sought to test whether GC-content
was associated with call rates in MC3 and PCAWG. We used a
plug-in for VEP31 to annotate all matched and private SNVs with
CADD32 in order to annotate each variant with the percentage of
the neighboring 100 bases that are a G or C. First, we assessed
how the distribution of read depth across GC-content changes
between MC3 and PCAWG (Fig. 5b). PCAWG was found to have
a fairly uniform read depth across GC-content bins, while MC3
read depth was concentrated in regions of moderate GC-content
(Fig. 5c). The low read depth in MC3 at regions of extreme GC-
content was in turn associated with lower variant recovery rates
in these regions but did not grossly affect the number of variants

recovered by MC3 because regions of extreme GC-content are
relatively rare in the genome overall and in exome-capture
regions in particular.

An in-depth analysis of these regions revealed that 76
mutations in known driver genes, identified in the combined
TCGA data by Bailey et al. 2018, were missed in GC poor (GC
fraction < 0.3) or GC rich (GC > 0.7) regions28. Three such
instances revealed VHL mutations in KIRC that were overlooked
in GC rich regions of this gene (two of these three recur). In
addition, these 3 samples are not reported to carry a VHL
mutation in the MC3 public data set. Other such instances
include 7 SOX17mutations, LATS2 (6), and CACNA1A (6). These
findings emphasize the advantages of uniform coverage
using WGS.

The bases flanking a mutation (tri-nucleotide context) affect
mutation rate, which should be approximately equal between
MC3 and PCAWG, and also the rate of introduction of
sequencing artifacts. Large differences in the call-rates of MC3
and PCAWG and particular nucleotide sequences could indicate
a sequencing artifact unique to one or the other call-set, which
might arise from different procedures for computationally
filtering or biochemically preventing sequencing oxidation
products. Therefore, we sought to test whether the trinucleotide
context of variants correlated with relative call-rates in MC3 and

M
C

3
 f
ilt

e
r 

s
e

le
c
ti
o

n

S
e

t 
V

A
F

 r
a

n
g

e

Download 
after filtering

Type/select a sample Type/select a gene

Low VAF Observe discrepancies

Sample overlap

Pop-up

MAFit

a b

c

ICGC MC3 overlap
ICGC VAF Cut-off

0

0 1

0 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

MC3 VAF Cut-off

PASS

100%

75%

50%

25%

0%

0%

PIK3CA 0.135 0.064 p.E9G

AllAllAllAllAllAllAllAll

1 TCGA-BR-8381-01A-11D-2394-08

TCGA-BS-A0TC-01A-11D-A10B-09

TCGA-06-0210-02A-01D-2280-08

TCGA-AP-A052-01A-11W-A027-09

TCGA-A2-A04P-01A-31D-A128-09

TCGA-CA-6717-01A-11D-1835-10

TCGA-AA-3977-01A-01W-0995-10

TCGA-CA-6718-01A-11D-1835-10

TCGA-AX-A06B-01A-11W-A027-09

TCGA-41-5651-01A-01D-1696-08

2

3

4

5

6

7

8

9

10

Showing 1 to 10 of 134 entries

Show entries

TCGA Barcode

TCGA Barcode

All

MC3 gene PCAWG gene PCAWG VAF MC3 var. Class PCAWG var. classMC3 HGVS shortMC3 VAF

PIK3CA

HugoSymbol

10

p.R38C

p.R38H

p.E81K

p.E88Q

p.R88Q

p.R88Q

p.R88Q

p.R88Q

p.C90G

Previous 1 2 3 4 5 ... 14 Next

Missense_Mutation Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

Missense_Mutation

0.372

0.512

0.983

0.383

0.348

0.589

0.5

0.21

0.391

0.065

0.522

0.982

0.203

0.455

0.648

0.355

0.28

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

PIK3CA

25% 50%

Sample ID: TCGA-DJ-A2Q2

Match: 6

MC3: 7

PCAWG: 11

perc_PCAWG_in_MC3: 0.46153846

perc_MC3_in_PCAWG: 0.3529412

Matched/(Matched+MC3) variants

M
a
tc

h
e
d
/(

M
a
tc

h
e
d
+

IC
G

C
) 

va
ri

a
n
ts

75% 100%

oxog

common_in_exac

StrandBias

nonpreferredpair

native_wga_mix

wga

gapfiller

Download

MC3 Variant-Level Filters:

MC3 Sample-Level Filters:

Fig. 4 Screenshots of online tool MAFit. Here we display screenshots from the MAFit on-line interface. Currently there are three main components to
the interface: a A side panel shows sliders and radio buttons to filter data set to remain inclusive. In addition, a download button is available that will
download the underlying data table. b MAFit rebuilds Fig. 2b in the first tab of the on-line interface. Each alteration to the radio buttons or VAF sliders will
result in an updated figure. In addition, if one’s hovers over a point on the scatter plot, a pop-up window will automatically display, providing the user with
basic statistics used to calculate that point, i.e., total number of mutations, number of unique and matched mutations. c A table is also presented based on
the selection criteria in panel a.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18151-y ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4748 | https://doi.org/10.1038/s41467-020-18151-y | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


PCAWG. Before applying the MC3 OxoG filters, we found a huge
predominance of CA variants unique to MC3, with the
trinucleotide contexts most specific to one database or another
being 7-9 times more specific than the least specific trinucleotide
contexts. After applying the MC3 OxoG filters, nucleotide
contexts differed by less than four-fold in their specificities. The
residual differential specificity by trinucleotide context after
filtering can either indicate differences in sequencing artifact

abundance and filtration by project, or could merely be a
consequence of the fact that nucleotide context is also correlated
with VAF and the distance from transcription start sites, which
may independently affect MC3 and PCAWG relative call-rates.

We extended the nucleotide context and performed mutation
spectrum analysis, comparing all MC3 and all PCAWG
mutations found after restricting the two data sets to exonic
regions as described above (Step 3 of Fig. 1a). We then calculated
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Fig. 5 WGS mutations in exonic regions not captured by WES. a A sunburst diagram provides a breakdown of variants that are removed during the
coverage step of the tool. The innermost circle represents the total number of variants identified upon filtering for exome beds used by MC3. Then, we
restrict PCAWG variants to well-covered MC3 regions for each sample. The majority of gencode.v19 annotated and the BROAD target bed file of exonic
regions are sufficiently covered by PCAWG in flanking regions: 3’UTRs, 5’UTR, and 5’Flanking. The outermost ring illustrates the number mutations
identified by PCAWG that were poorly covered by MC3. b A density plot illustrates the density of percent GC-content from a 100 bp window surrounding a
variant. Four variant-sets are displayed: matched, private to MC3, private to PCAWG, and we extend our dataset to include exonic variants not covered by
WES but sufficiently covered in WGS (Covered by PCAWG only). c A scatter plot displays mean sequence depth (y-axis) by increasing GC-content bins
(x-axis). Points are colored according to variant set (same as panel b). d–f Total annotated mutations counts from 3 different annotated regions are shown
for 5UTR, 3UTR, and missense mutations, respectively. g Expression Z−Scores for 3’UTR using all TCGA-UCEC samples. Cis-RNAseq expression violin
plots are displayed for 13 genes. On top of the gene-level distribution violin plot, box and whisker plots display sample expression based on mutation
classification (box include 25th quantile to 75th quantiles, and whiskers extend to 1.5 times the interquartile range).
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transition and transversion frequencies in each cancer type. After
removing hypermutated samples and OxoG artifacts, we used a
chi-squared test to determine the similarities and differences
between cancer types in the full exome space compared versus the
captured exome space. Strikingly, we did not identify significant
differences in mutation spectrum in the majority of cancers. We
did observe significant differences (FDR < 0.05) in the mutation
spectrum for COAD, KICH, LUAD, and OV (Supplementary
Data 5). These observations included strong discrepancies for AG
and CG transition differences in KICH and OV, respectively. AT
and CA transversions contributed mostly to COAD and LUAD
differences (Supplementary Fig. 9). While these differences may
reflect sequencing artifacts, such as whole genome amplified DNA
in OV or low sample size, we believe the data can still provide
more information pertaining to additional cancer genes and
oncogenic mechanisms.

Non-Coding/Flanking intersections with low coverage. With
the growing use of WGS in many labs, we sought to identify
which mutations are gained by extending to this form of data.
One major observation from our pipeline highlighted that some
variants in exome regions were not well covered by WES (Fig. 1a
Step 3). Using this mutation set we investigated the most recur-
rent members as derived by WGS but not by MC3 in exonic
regions as defined by gencode.v19 (Fig. 5a). We observed 697
mutations in cancer genes28 uniquely called by WGS (Supple-
mentary Data 6). We defined flanking mutations as all non-
translated mutations near exons, i.e., 5’UTR, 3’UTR, 5’Flanking,
and 3’Flanking regions, as they make up the majority of muta-
tions not present in the MC3 public MAF. Recurrent mutation
analysis identified the most frequently mutated genes in 5’UTR
(Fig. 5d), 3’UTR (Fig. 5e), and missense mutations (Fig. 5f). We
found the most frequently mutated 3’UTR in cancer genes was
PGR (91 mutations allowing for multiple mutations per sample),
followed by ERBB4 (72), EPHA3 (42), CYLD (41), and PTPRD
(34). To extend this analysis, we used RNAseq data collected by
TCGA to determine mutation type specific cis-expression pat-
terns, which clearly shows correlation of UTR mutations on RNA
abundance (Fig. 5g).

Finally, similar to previous studies33,34, we investigated the
potential effect of non-coding mutations when determining
significantly mutated genes (SMG). Using MuSiC35 with the
no-skip-non-coding option, we rescued non-coding mutations
annotated by PCAWG and included them in the significantly
mutated gene (SMG) analysis. We only performed SMG analysis
on cancer types having greater than 35 samples (BRCA-Breast-
AdenoCa, HNSC-Head-SCC, KICH-Kidney-ChRCC, LIHC-
Liver-HCC, LUAD-Lung-AdenoCA, LUSC-Lung-SCC, SKCM-
Skin-Melanoma, STAD-Stomach-AdenoCA, THCA-Thy-Ade-
noCA, and UCEC-Uterus-AdenoCA). We initially identified
potential driver-gene candidates (FUT9, MMP16, SNHG14, and
SFTPB, Fig. 6) not previously reported in Pan-Cancer whole
genome analysis, but further investigation did not support these
candidates with the exception of SFTPB.

SFTPB (FDR 1.56e−07) in LUAD was recently reported to be
significantly mutated using a larger set of these same data34. As
reported, this gene is involved in a lineage-defining surfactant
protein. While six mutations contributed to its SMG status, only 1
3’UTR mutation was reported for LUAD in the MC3 controlled
data set. Furthermore, this single indel was only found by one
variant caller (Varscan). We confirmed the impact of SFTPB UTR
mutations by performing a genome-wide association analysis of
expression differences and found that samples with SFTPB
mutations showed lower RNA abundance in PCDHA7, a gene

known to be involved in cells’ self-recognition and non-self-
discrimination (chi-squared p-value 3.6 × 10-8). While other
promising candidates exist, such as FUT9, a fucosyltransferase
involved in organ bud progression during embryogenesis and has
been implicated in cancer initiation36, we found no additional
evidence for supporting its driver status.

Discussion
The research community is increasingly leveraging technology
advances to integrate data at larger scales. We performed a
comparative evaluation of ~750 samples with joint exome and
whole genome sequencing mutation calls provided by two con-
sensus mutation calling efforts, MC3 and PCAWG. This joint
data set is encouraging, suggesting that ~80% of the predicted
somatic mutations were captured by both efforts. Furthermore, a
combined 90% of samples have greater than 80% variant con-
cordance when considering covered exonic mutations from
individual cohorts separately. Analysis of this data set also
revealed three major contributors to variant discrepancies: (1) low
variant allele fraction, (2) variant filtering decisions, and (3)
technological limitations. Software differences were not an
appreciable confounder.

Distinct advantages and disadvantages accompany somatic
mutation calling when utilizing captured WES or WGS. We
found that ~70% of the discrepancies between whole genome and
whole exome sequencing are influenced by low variant allele
fraction. This information holds many implications in identifying
subclonal heterogeneity in the tumor of interest. Other discrepant
calls originate from the decisions made on how to filter and
distribute publicly available mutation calls. Higher-order muta-
tion signature analysis does not appear to be inordinately affected
by these differences. We show that reported germline variants
were negligible, but nearly 30% of the private PCAWG mutations
were not reported by MC3 because only a single variant detection
algorithm identified them. We want to emphasize that, while
somatic variant detection in cancer is commonplace, there are still
many issues to reconcile.

Finally, we found additional mutations only observable in
exonic regions using either WES or WGS. For example, WES
uniquely identified 424 mutations in cancer genes with median
VAF of ~10%. We also highlight ~700 WGS mutations from
cancer genes, of which ~10% are attributable to regions of high
and low CG-content; thus, highlighting the advantages of more
uniform coverage from WGS.

Only about 2% of the genome is protein coding. For the last
dozen years, cancer genomics has provided a comprehensive
molecular characterization of many different tumor types, thanks
in large part to The Cancer Genome Atlas and other publicly
funded efforts. The community is just starting to explore how
exomics, transcriptomics, proteomics, and methylomics can be
woven together across this 2% of the genome. We anticipate a
general transition from WES to WGS, but this analysis is
meanwhile reassuring that few clerical mutations were overlooked
in WES and that WGS is capable of recapitulating previous
genomic findings.

Methods
Human research participants. The Cancer Genome Atlas (TCGA) collected both
tumor and non-tumor biospecimens from human samples with informed consent
under authorization of local institutional review boards (https://cancergenome.nih.
gov/abouttcga/policies/informedconsent).

Sample overlap. TCGA barcodes carry metadata that reflect tumor portions and
different aliquots. As noted in Fig. 1b, TCGA barcode differ slightly in the com-
parison between MC3 and WGS aliquots. A brief description of the breakdown of
the TCGA barcode is outlined below.
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Example: TCGA-DD-0001-01B-01D-A152

- TCGA-Project
- DD-Tissue source site: the tissue location of tumor that matches clinical
metadata.

- 0001-Participant code
- 01-Sample type: i.e., solid tumor (01), primary blood derived tumor (03), solid

tissue normal (11), blood derived normal (10)
- B-Vial: the order in a sequence of samples, i.e., A= first in sequence, B=
second in sequence

- 01-Portion: sequential order of the 100–120 mg of samples
- D-Analyte: molecular analyte type for analysis, i.e., D for DNA and W
for WGA.

- A152-Plate: sequential location of a 96-well plate
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Fig. 6 Significantly mutated gene analysis with the inclusion of UTR mutations. OncoPrint plots were generated using the R package ComplexHeatmap42

for four cancer types: LUAD (a), LIHC (b), LUSC (c), and SKCM (d). We report all SMGs identified by Bailey et al. 201828, as well as top significantly
mutated gene hits from MuSiC that include non-coding mutations. While many non-coding mutations look promising, further investigation yielded little
support for driver identification status.
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A lookup table outlining these fields is located at the GDC: https://gdc.cancer.
gov/resources-tcga-users/tcga-code-tables. In order to determine the role of aliquot
differences in assessing mutation concordance, we re-analyzed the clonality and
overall mutation overlap after stratifying for exact barcode differences. We
observed that the effect of matching barcodes on match variant frequency has little
effect.

Assessing cancer subtype selection preference. Analysis working groups for
TCGA projects were primarily subdivided according to cancer types. Scientific
experts gathered in consortia from around the country to participate in char-
acterizing many tumors using high throughput data generated on many substrates,
e.g., WES, RNAseq, etc. At the conclusion of these projects, groups were asked to
hand-select a subset of samples to perform validation sequencing (WGS, the
samples used in this analysis). The selection criteria differed from group-to-group
and sometimes resulted in an overabundance of one subtype over another. To
determine cancer subtype selection bias, we performed an enrichment analysis.
Using clinical data we calculated (for each cancer type) the subtype fraction in the
WES cancer cohort and measured whether the fraction was similar to WGS set of
samples using a Fisher’s exact test.

Defining exonic regions. We used the same definition as Ellrott et al. to reduce
whole genome and exome calls to define genomic coordinates27.

Coverage calculations. Fixed-step (step= 1) Wiggle coverage files (.wig) for both
MC3 and PCAWG were provided by the Broad Institute. The wig format is a
binary readout of sufficient sequencing coverage for genomic data. Here, sufficient
coverage is defined as bases with 8 or more reads at a given location. These wig files
were processed and reduced to exonic regions using the wig2bed function from
BEDOPTS37.

After the preliminary screen of coverage-reduced MAF files, we observed that
matching mutations (identified by PCAWG and MC3) were removed from one
technology and not the other after the coverage reduction step. To account for this
issue, we performed a self-coverage reduction step to that identified 6460
mutations. We describe some properties of those mutations here. The median
tumor depth reported by MC3 from these variants is 12 reads (+/− 3 median
absolute difference). The median tumor depth reported by PCAWG in this region
is 39 reads (+/− 35.6 median absolute difference), suggesting wide variance of
tumor read depths that were removed. However, the mode tumor depth of the
PCAWG variants was 13, justifying this removal of variants with low read support.
Finally, we determined how many of these poorly-covered variants originated from
cancer driver genes. We observed 126 mutations from the MC3 file, and 156 cancer
mutations were eliminated at this stage in the comparison.

Overlapping mutations. After reducing the variants to be within exome sequen-
cing target region, within same exon definitions, and having enough sequencing
depth, the remaining variants from ICGC and PCAWG were stored in a SQLite
database to enable fast lookup. We then executed a full join between the two
sources of variants by matching the donor ID, sample ID, and the genomic range of
each variant. The full join output was further cleaned up to remove duplicated
filters due to naming variations and duplicated variants due to DNPs.

- Matching IDs
- Matching chromosomes
- End position greater than or equal to start position
- Start position is less than or equal to end position.

Deduplication of variants. After merging the PCAWG and MC3 data, we
observed different strategies were taken by MC3 and PCAWG to capture neigh-
boring variants, i.e., complex indels, di-nucleotide (DNP) and tri-nucleotide (TNP)
polymorphisms. To address complex indel events (SNVs in indel regions), the
MC3 working group absorbed the variants made by SNV callers into the assign-
ment made by Pindel. Conversely, PCAWG merged DNP and TNP events into a
single event. These strategies resulted in many duplication events from MC3 and
PCAWG: 1731 and 62, respectively. These events encompassed 3457 and 119
events, respectively. To address these differences, we merged PCAWG variants into
MC3s complex indel events, and MC3 variants into single DNP or TNP events.

Filtering optimization. After reducing the starting pool of possible mutations from
746 samples to covered exons, we sought to identify the optimal set of MC3 filters
that provide the largest number of samples with greater than 80% concordance
from the two technologies with the simplest schema. This was performed com-
prehensively using all possible combinations of filters, often with more than one
filter per variant, with the MC3 cohort (131,071 filter combinations). Filter flags
include: “common_in_exac”, “gapfiller”, “native_wga_mix”, “nonpreferredpair”,
“oxog”, “StrandBias”, and “wga”. We pre-defined the exclusion of variants in MC3
flagged as OxoG along with the inclusion of all PASS variants. The comprehensive
filter analysis resulted in two major clusters of variant recoverability (Supple-
mentary Fig. 3). Here, we observed the computational trade-off of identifying more

matched variants at the cost of more unique MC3 calls. Below, we highlight five
strategies considered for analysis (Supplementary Data 2).

1. Only consider variants labeled PASS by the MC3 filter column.
2. Only remove variants labeled OxoG by MC3.
3. Prioritize G1 (samples in the most recoverable quadrant, MC3 and PCAWG

samples with greater than or equal to 80% from both efforts.)
4. Prioritize total number of matched variants.
5. Maximize total number of samples in the most recoverable quadrant

(Fig. 2b) while maximizing the difference between unique MC3 variants and
matched variants thus generating fewer unique calls.

After considering complexity, we chose to move forward with strategy 2 for the
entirety of this study due to its simplicity and relative similarity to other filtering
schemes. We recognize that by selecting a single filtering strategy, we are limiting
the data slightly and likely introducing some false positive variant calls. However,
this strategy allowed us to maintain larger sample sizes and to capture ~15,000
more matched variants than the PASS only strategy at the cost of ~3500 unique
mutations calls for MC3.

Assessing mutations per megabase and cancer type concordance. Mutations
per megabase data were collected from the broader TCGA dataset and reduced
following the same methods outlined previously28. Briefly, this systematically
removed hypermutators from the dataset. This resulted in a set of 625 samples
from the MC3/PCAWG dataset studied here and 8852 TCGA samples. Both
Pearson and Mann-Whitney correlations statistics were performed to assess the
association of non-silent mutations per megabase and concordance statistics.

Simulation of sequencing noise and recoverability. Fan et al. benchmarked the
sensitivity of MuSE at recovering somatic variants across 24 combinations of VAF
and read depth3. When simulating the recovery of PCAWG variants in MC3 we
assumed that the VAF observed in PCAWG was the true VAF. We matched the
observed VAF of each variant to the closest VAF reported in Fan et al.

For our analysis, the best value to use as the read depth when predicting the
MC3 recovery rate of PCAWG variants would be the MC3 read depth at the same
site and sample as the PCAWG variant. However, it was not practical to obtain
MC3 read depths at sites without MC3 variants, so instead we simulated an MC3
read depth for each PCAWG variant by randomly sampling from the read depths
of observed MC3 variants from the same sample as the PCAWG sample. We then
matched these simulated read depths for each variant to the closest read depths
reported in Fan et al.

For the binned VAFs and read depths for each PCAWG variant obtained as
above, we pulled the corresponding sensitivities of MuSE from the Fan et al. paper
and simulated MC3 variants with probability equal to these sensitivities.

Integrating clonality. Both consortia considered clonality in their comprehensive
characterization of the somatic mutations. Locations of these files are provided in
the data availability section. Here, we provide a brief summary of the strategies
used to compile these resources. First, the PanCancer Atlas working-groups used
MC3 mutations to predict subclonal structures using ABSOLUTE38. This tool uses
copy number, recurrent karyotype, and mutation data to calculate copy number
purity and cluster identification. Furthermore, the PanCancer Atlas working group
only made the distinction of clonal and subclonal mutations and did not attempt to
further assign sub-clonal mutations to other likely heterogeneous clusters.
PCAWG, on the other hand, used a consensus calling approach incorporating 11
different clustering tools. Here, we evaluated cluster-ID which represents those
mutations that are clonal (ID= 1), with other clusters representing mutations that
are subclonal (ID= 2 through 4). For this analysis, we restricted our data to SNVs
to be consistent with calls made by the PanCancer Atlas calls of MC3 mutations.

Fraction of private variation explained. In Supplementary Fig. 7 we provide a
breakdown of different sources of variant described in our analysis using publicly
available data. For MC3 all private variants were classified as into 3 variant types
(Indel, MissensePlus, and Other). Specifically, indels are comprised of: “Frame_-
Shift_Del”, “In_Frame_Ins”, “Frame_Shift_Ins”, and “In_Frame_Del”. MissensePlus
variants are comprised of: “Missense_Mutation”, “Nonsense_Mutation”, “Non-
stop_Mutation”, “Splice_Site”. And Other variants are comprised of: “RNA”,
“3’UTR”, “5’UTR”, “5’Flank”, “Silent”, “3’Flank”, “Intron”, “Translation_Start_Site”.

On the other hand, PCAWG variants were also categorized into Indels,
MissensePlus, and Other. Specifically, indels are comprised of: “Frame_Shift_Del”,
“Frame_Shift_Ins”, “De_novo_Start_InFrame”, “Start_Codon_Ins”,
“Stop_Codon_Ins”, “In_Frame_Del”, “In_Frame_Ins”, “Stop_Codon_Del”, and
“Start_Codon_Del”. MissensePlus variants are comprised of: “Missense_Mutation”,
“Nonsense_Mutation”, “Nonstop_Mutation”, “Splice_Site”. And other variants are
comprised of: “5’UTR”, “RNA”, “5’Flank”, “Silent”, “3’UTR”, “Intron”, “IGR”,
“lincRNA”, “De_novo_Start_OutOfFrame”, and “Start_Codon_SNP”.

In addition to the three variant type categories, six additional sources of
variation were added to private variants: Subclonal, VAF5, VAF10,
MMcomplement, THCA KICH or PRAD, and GCcontents. As mentioned,
subclonal variants are tagged if labeled as identified by the TCGA or ICGC

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18151-y ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4748 | https://doi.org/10.1038/s41467-020-18151-y | www.nature.com/naturecommunications 11

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables
www.nature.com/naturecommunications
www.nature.com/naturecommunications


consortia. VAF5 tags all variants with less that 5% VAF. VAF10 tags all variants
with VAF greater than or equal to 5% and less that 10%. MMcompelement tags all
variants not detected by MuSE or MuTect. And finally, GCcontent was calculated
as the fraction of G or C nucleotides in a 100 bp window surround a variant. This
was calculated using a CADD plug-in to VEP. The GCcontent flag was assigned to
a variant if GC fraction was less and 0.3 or greater than 0.7.

MAFit: online comparison and visualization tool. MAFit (maf Interaction Tool)
is a shinyapp39 tool to visualize and extract mutations from the intersection of
PCAWG and MC3 call sets. It is an interactive and graphical web-based interface
built using R Shiny. The interface consists of three panels: a main scatter plot
display, a side box of control widgets, and a mutation table in the bottom pane.
Any alteration of a control widget will update the scatter plot and the mutation
table, enabling very rapid browsing. There is also a button to download the current
data set displayed in the scatter plot.

The main panel displays a scatter plot with marginal histograms of mutations
grouped by sample. The axes are percentage of matched mutations versus matched
plus call-set-unique mutations. Mouse-hovering on a data point initiates a pop-up
window showing specific information for this sample, such as TCGA barcode,
number of matched mutations, and numbers of mutations unique to each call-set.

The side panel contains two sets of control widgets which can be used to select
data based on different criteria. The top control set consists of two sliders to set the
VAF cut-offs for each call-set. Both ends of the slider can be adjusted so that users
can obtain a desired interval of the VAF. The bottom control set consists of check-
boxes of both variant-level and sample-level MC3 filters. If only variant-level filters
are checked, all PCAWG-only mutations will be retained; if at least one sample-
level filter is checked, mutations from samples that do not have any checked filters
flagged (variant-level or sample-level) will be filtered out. Both variant-level and
sample-level filters result in the union of mutations with any checked filter will
be shown.

The bottom panel displays a table of mutations based on the selection criteria
from the side panel. Columns include information on each mutation, such as
TCGA barcode, gene name, VAF, variant class, Human Genome Variant Society
(HGVS) nomenclature, etc. Users can sort the table by each column. There are two
drop-down selection boxes where users can view mutations from a specific TCGA
barcode or Hugo symbol. There is also a search bar, which results in mutations that
contain the input in any columns.

Controlled access files. Having worked with both the TCGA and ICGC consortia,
we were privy to the controlled access data (all MC3 somatic variant calls and
PCAWG germline calls). These data sets allowed for the further interrogation of
unique variants called by both groups.

We performed a mutation variant intersection of MC3 controlled access
mutations with unique PCAWG variants in the captured exonic regions. These
data can be downloaded using necessary credentials from https://gdc.cancer.gov/
about-data/publications/mc3-2017.

We intersected the MC3 public MAF with the PCAWG germline call-set,
donor-by-donor. Six MC3 somatic variants were identified as germline variants in
PCAWG for the same donor. Of these, five were flagged in MC3 as OxoG or non-
preferred-pair artifacts, and only one was marked PASS in MC3. This PASS variant
had a depth in the matched MC3 normal of well over 100 with no alternate reads.
The minimal intersection between the MC3 somatic call-set and the donor-
matched PCAWG germline call-set is evidence that germline contamination in
MC3 calls is low.

Assessment of impact on mutation signature analysis. We ran Signature-
Analyzer40 on the corpus of WES and WGS samples from our TCGA cases. This
tool reports a vector of J= 7 normalized weights corresponding to mutational
signatures. Once weights were computed, we used COSMIC signatures as a
reference in order to synchronize labels of the fractional weights between WES and
WGS data for each case to enable proper comparison. We excluded 5 cases in
which signatures were not computed for WGS data. Using the synchronized
results, we then assessed both the number of cases for which the tool identified the
same dominant signature between WES and WGS data and also evaluated the
correlation between WES and WGS vectors for each case using least-squares
regression. Statistical significance of each correlation was calculated using a 2-tailed
t-test. Statistical power of each correlation was limited by the paucity of signature
weights because the underlying t-statistic is proportional to the square root of J – 2.
However, because these cases, and therefore their hypothesis tests, are independent,
the cohort constitutes multiple tests of the same hypothesis regarding signatures
derived from WES and WGS data. Therefore, we combined individual P-values
into an overall cohort P-value using Fisher’s log-transform. Namely, the transform
of negative 2 times the natural log of the product of the K= 739 individual P-values
is, itself, chi-square distributed with 2 K degrees of freedom. Using this transform,
we found an overall cohort P-value of <2 × 10−6.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Somatic and germline variant calls, mutational signatures, subclonal reconstructions,

transcript abundance, splice calls and other core data generated by the ICGC/TCGA Pan-

cancer Analysis of Whole Genomes Consortium are described in another publication10

and available for download at https://dcc.icgc.org/releases/PCAWG. Additional

information on accessing the data, including raw read files, can be found at https://docs.

icgc.org/pcawg/data/. In accordance with the data access policies of the ICGC and TCGA

projects, most molecular, clinical and specimen data are in an open tier which does not

require access approval. To access potentially identification information, such as

germline alleles and underlying sequencing data, researchers will need to apply to the

TCGA Data Access Committee (DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.gov/aa/

wga.cgi?page=login) for access to the TCGA portion of the dataset, and to the ICGC

Data Access Compliance Office (DACO; http://icgc.org/daco) for the ICGC portion. In

addition, to access somatic single nucleotide variants derived from TCGA donors,

researchers will also need to obtain dbGaP authorization. Additional links to data

resources used for this project can be found using the following urls: MC3 public MAF

file (https://api.gdc.cancer.gov/data/1c8cfe5f-e52d-41ba-94da-f15ea1337efc), PCAWG

Public MAF file (https://www.synapse.org/#!Synapse:syn7364923), bed files used for

exome restrictions (MC3) (https://api.gdc.cancer.gov/data/7f0d3ab9-8bef-4e3b-928a-

6090caae885b), bed files used for exome restrictions (THE BROAD) (https://api.gdc.

cancer.gov/data/b1e303a5-a542-4389-8ddb-1d151218be75), wiggle files MC3 (https://

www.synapse.org/#!Synapse:syn21785741), wiggle files PCAWG (https://www.synapse.

org/#!Synapse:syn8492850), clonality files MC3 (https://www.synapse.org/#!Synapse:

syn7870168), clonality files PCAWG (https://www.synapse.org/#!Synapse:syn8532460),

cancer subtypes and histological data (https://www.synapse.org/#!Synapse:syn4983466),

MAFit online comparison tool (https://mbailey.shinyapps.io/MAFit/), GitHub Repo

(https://github.com/ding-lab/mc3_icgc_variant_pipeline), side-by-side MC3-PCAWG

comparison (MAF-like) (https://www.synapse.org/#!Synapse:syn21041380). The

remaining data is available within the Article, Supplementary Information or available

from the authors upon reasonable request.

Code availability
A public GitHub repository (under an MIT opensource license) at https://github.com/

ding-lab/mc3_icgc_variant_pipeline furnishes work-flows, scripts, figures, and

computational tools used to assess mutation concordance between maf files. For this

project we refrained from accessing alignment files, i.e., BAM files or fastq files.

Furthermore, due to the memory footprint of mutation and coverage files we have not

included them in the repository. Thus, by removing core data files from the repository

the software provided supplies the user with processes and decisions, not a fully

automated tool for deployment on additional datasets. In addition to our analysis, the

core computational pipelines used by the PCAWG Consortium for alignment, quality

control and variant calling are available to the public at https://dockstore.org/search?

search=pcawg under the GNU General Public License v3.0, which allows for reuse and

distribution.
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