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Introduction 

High-level language computers (HLLC) have attracted interest in 

the architectural and programming community during the last 15 years; 

proposals have been made for machines directed towards the execution 

of various languages such as A L G O L ,  1,2 APL, 3,4,5 BASIC, 6.7 

COBOL,8, 9 FORTRAN,lO. ll LISp,12, t3 PASCAL,I 4 PL/I,15.16.17 

SNOBOL,18,19 and a host of specialized languages. Though numerous 

designs have been proposed, only a handful of high-level language 

computers have actually been implemented.4,7,9,2 °,21 In examining the 

goals and successes of high-level language computers, the authors have 

found that most designs suffer from fundamental problems stemming 

from a misunderstanding of the issues involved in the design, use, and 

implementation of cost-effective computer systems. It is the intent of 

this paper to identify and discuss several issues applicable to high-level 

language computer architecture, to provide a more concrete definition 

of high-level language computers, and to suggest a direction for high- 

level language computer architectures of the future. 

Review of Architectural Justifications 

All too often the raison d'&re for high-level language computer 

architecture is taken to be obvious, as shown by numerous proposals 

without justifications. We feel that the justifications are in no way 

obvious, and that a review of existing justifications reveals many 

shortcomings. An analysis of proposed HLLCs found that the most 

commonly cited justifications were as follows: 

• Reduce the difficulty of writing compilers. 

• Reduce the total system costs. 

• Reduce software development costs. 

• Eliminate or drastically reduce system software. 

• Reduce the semantic gap between programming and 

machine languages. 

• Make programs written in a HLL run more efficiently. 

• Improve code compaction. 

• Ease debugging. 

• Investigate new architectures. 

• Esoteric: Aesthetics or no stated advantages. 

An almost universal justification for high-level language comput- 

ers is the view that 

"the prime motivation for developing such a machine is to reduce 

system costs, for while hardware logic is becoming much 

cheaper, software is consuming a greater proportion of total sys- 

tem costs. A tremendous savings can be obtained by designing 

computer hardware that is oriented to aiding the programmer 

rather than to simplifying the computer designer's job..._*2 

The solution to the software problem has appeared to be an increased 

use of "inexpensive" hardware. According to this viewpoint, the way 

to use this extra hardware is to raise the level of the machine language, 

so that in most cases there exists a one-to-one mapping between the 

source language and the internal machine language. One high-level 

instruction is intended to perform the task of several lower level 

instructions, potentially allowing faster execution. Higher-level instruc- 

tions are believed to imply that a compiler should be smaller, simpler 

to implement, and should run faster than a compiler for a lower-level 

language machine. In many cases, mapping from the source to the 

internal form is a simple enough task to be done by software or 

hardware with the complexity of a preprocessor. High-level instruc- 

tions are predicted to lower overall system development costs due to 

simpler compiler development and an improvement in debugging time, 

since the machine instructions reflect the operations in the user's 

source program. 

Though not always stated as such, the above arguments for 

HLLCs are properly focused on the goal of achieving a more cost- 

effective computing system than is available from existing architec- 

tures. The primary means used to achieve a more cost-effective system 

are: (1) Faster computing through a new architecture and (2) Lower 

cost computing through reduced software costs. The desirability of 

these goals is not disputed, but many claims as to how these goals 

might be reached appear questionable. 
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Examination of Some "Axioms" 

If paper designs of new computers are to be seriously discussed as 

advances, then the justifications must be valid. Implementations lend 

evidence for judging the success of the justifications, but often fall 

short of being able to prove them. There exists a number of "axioms" 

used to justify high-level language computers which we feel are either 

misdirected or not cost effective; several of these are now discussed. 

Axiom !: High-level language computers are needed because efficient 

compilers are too complex and difficult to implement on conventional 

machines. 

Response: Part of the initial impetus for high-level language machines 

was the poor state of the art of compiler technology. Implementing 

compilers on conventional register oriented machines was often a brute 

force task. In 1967, McKeeman observed that "...compilers and operat- 

ing systems are getting less reliable, consuming more memory, taking 

more time and systems programmers to develop..." and that attempts 

to use high-level languages for implementing systems programs had 

often failed because too much memory was required. 23 Because there 

often exists a one-to-one translation between the tokens of a HLL and 

a HLLC, and the algorithm for generating postfix instructions from an 

infix expression is simple, HLLCs are aesthetically appealing to those 

not familiar with modern compiler writing technology. It is ack- 

nowledged that code generation may be simpler for a high-level 

language computer. What needs to be made more fully understood is 

that a high-level language instruction set does not eliminate the need 

for compilers, nor does it greatly simplify them. The need and com- 

plexity of compilers extends far beyond code generation. The amount 

of code necessary for preprocessing, lexical analysis, syntax analysis, 

assembly, optimization, loading, error detection, error recovery and 

diagnostics often dwarfs the part of the compiler concerned with code 

generation. The level of the target computer does not seem to have 

enough of an effect on the size of a compiler to warrant a totally new 

architecture. 

When we look at the state of the art of computers today, we find 

that the architectures have not changed substantially since 1967; there 

are no commercial direct or indirect execution high-level language 

machines. Yet in spite of this, the situation described by McKeeman 

has noticeably improved. The technology for writing compilers has 

improved to the point where compilers are typically written in high- 

level languages and use tools such as compiler-compilers, 24 automatic 

lexical analyzer generators 25 and parser generators 26 which greatly sim- 

plify the programmer's job. Techniques for efficient code generation 

are available in the literature. 27,28 What is not clear, however, is the 

optimality of code producible for HLLCs. Machines which have 

catered to high-level language instruction sets have had problems in 

generating and optimizing code for languages for which the machine 

was not specifically designed. For example, machines designed for 

ALGOL such as the Burroughs B670029 and the Manchester Univer- 

sity MU5 30 are good for ALGOL but have difficulty achieving 

comparable performance for FORTRAN programs. 

Axiom 2: A high-level language machine reduces s~oCtware costs because 

programming is easier. 

Response: This would appear to be true only if programming were not 

done in a high-level language. There are no intrinsic reasons why 

compiling a program on a low-level computer should appear differently 

to the user than on a high-level language computer. There may, how- 

ever, be implications resulting from the level of sophistication of the 

implementations on the respective computers. For example, the syntax 

diagnostics from the SYMBOL hardwired translator 31.32 were 

extremely crude compared to those of common compilers for lower 

level computers. On the other hand, the execution time diagnos- 

tics 33,34 provided through software on SYMBOL were far superior to 

those found on most computer systems. The differences which exist 

are due more to the efforts (or lack of efforts) to solve specific prob- 

lems on a particular system than to the level of the hardware itself. 

There is nothing inherent in implementing a compiler in hardware 

which would prohibit excellent compile time diagnostics, nor anything 

in a low-level language machine which prohibits excellent execution 

time diagnostics. 

Differences in ease of programming are explained by the effi- 

ciency and cost to implement a given language and given level of 

debugging tools. To the designer of a computer system, software costs 

may be less with a high-level language computer, but this does not 

necessarily lower total system costs. The goal should be to provide 

machines that allow the creation of efficient systems with excellent 

diagnostics. As the current issue is the difficulty of programming seen 

by the user of a system, not the implementation of the system, the 

conclusion is that there is no difference inherent in the machine organ- 

ization itself. 

Axiom 3: High-level language computers are justified by the rising cost 

of software and falling cost of hardware which mandates the use of 

hardware in previous software domains. 

Response: There is no disagreement that over the past decade software 

costs have risen tremendously, while at the same time advances in 

VLSI technology have made the fabrication of large numbers of gates 

on a substrate very inexpensive. There are, however, several subtle 

inferences from this rather common axiom. The first inference is that 

HLLCs require more logic for their implementation than their contem- 

porary counterparts. Since the primary goal is a cost-effective system, 

it is necessary to somehow justify this extra hardware; the cliche of the 

falling cost of hardware is most often used. A second inference is that 

by moving the implementation of algorithms from software into 

hardware that costs will be reduced. Assumptions are also made that 

the complexity of software algorithms are suitable for implementation 

in hardware. 

The problem is that these inferences do not strike effectively 

against the problems which exist. While hardware fabrication costs are 
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smaller with integrated circuit technology, the development costs are 

still very large. There seems to be some confusion with regard to 

replication versus development costs. Development costs are not 

reduced by implementing traditional software functions in hardware; 

replication costs for software are inevitably less than those for 

hardware. The mere fact that the fabrication cost of gates is inexpen- 

sive has to be weighed very carefully against the technological barriers 

of implementing complex systems in hardware. There is an important 

distinction to be made between the J~asibility vs. reasonability of 

implementing complex algorithms in hardware. Complex systems are 

rarely implemented without bugs in their initial implementation; this 

means that any performance gains of a technology have to be weighed 

very carefully against implementation flexibility. The hardware imple- 

mented language and operating system of the SYMBOL system took 

several years to debug, illustrating some of the dangers of implement- 

ing complex algorithms in hardware. Though better documentation 

and hardware debugging tools might have lessened debugging time, we 

feel that one of the lessons learned from SYMBOL is that the arbitrary 

migration of software to hardware will simply result in the exchange of 

software releases for engineering change orders. 

Axiom 4: A computer system shouM be oriented towards executing 

high-level languages more effectively. 

Response: There is very little argument with the basic tenet of this 

axiom. There is concern, however, that many proposed architectural 

directions do not serve to create a more efficacious computer system. 

Support for high-level languages is too often attacked by designing a 

computer to execute a particular language, with a tailored instruction 

set which has a high-level one-to-one mapping between the external 

source language and the internal machine language, This practice is 

seen as dangerous for two reasons. First, it imposes a global view 

which must conform to one particular language, and second, it 

emphasizes language support more than the efficiency of the entire sys- 

tem. 

For most programming environments, a system must be able to 

effectively support multiple languages, if the primary language for the 

machine is not a good systems programming language, then the imple- 

mentation of the systems language may turn out to be inefficient. 

Even if not seen by the end user, a systems language is required for 

implementing the operating system, compilers and other machine 

dependent software. It is not uncommon for an operating system to 

consume a third of the processing resources of a machine. Severe per- 

formance degradation is likely if the tailored instructions for the user 

language do not lend themselves to the efficient implementation of the 

systems language. A single instruction set tailored to one particular 

language is constrictive, as it can make implementation of other 

languages difficult and inefficient. 

While the implementation of programming languages is impor- 

tant, this is only a partial step to achieving an efficient system. The 

architecture must make provisions for efficiently supporting operating 

systems issues such as process handling, memory management, file 

storage, peripheral interfacing, text processing and program compila- 

tion. Paying attention to the execution of the task at hand is more 

important than the implementation of the language in which the task 

will be programmed. 

Axiom 5: High-level language machines are desirable because they have 

very compact code. 

Response: Code compactness is often used as a measure of the quality 

of a computer; this seems a reasonable measure from an information 

theoretic point of view. Yet it is highly questionable whether code 

compaction actually achieves cost or speed goals. Also in question is 

whether code compaction is due primarily to the highqevel nature of 

the instruction set. 

Code compaction is said to help achieve a lower cost computer 

because less memory is required to run the same algorithm and thus 

less memory will have to be purchased. There are several weaknesses 

to this argument. To be significant, memory savings need to be sub- 

stantial, particularly where a large hardware investment is needed to 

achieve code compaction. Secondly, very few systems are purchased 

with the knowledge that only one particular algorithm of a fixed size 

will be run. Memory savings are directly related to the amount of 

interpretation inherent in the instruction set. The memory savings on 

an APL machine is likely to be much greater than on an ALGOL 

machine, if we take the principle that a HLLC should be able to 

implement a variety of languages, then it is unlikely that one instruc- 

tion set could achieve such a large savings. Finally, considering the 

rapidly falling cost of memory, program size reduction will become less 

important in total system cost. 

Compact programs are also assumed to be desirable because they 

enhance execution. A common argument is that if a machine has to 

fetch fewer total bits, then it can fetch them faster, causing an 

improvement in execution times. This has two fundamental fallacies. 

The speed of the machine is not entirely limited by the data transfer 

rate, and the total number of bits fetched is not as important as the 

number of words fetched. A vivid example of the effect of code com- 

paction was discovered in an informal experiment where the size of 

programs was reduced 20-30% on an Interdata 8/32 by using a loader 

which substituted short addresses for long addresses. Though the size 

of the programs was noticeably different, the execution speed when 

both versions were run differed by less than one per cent. 35 The para- 

dox is explained by the fact that the computer uses an instruction pre- 

fetch which negates any difference in program fetch times. Again, in 

order to be effective, memory savings must be significant. 

It should be noted that many comparisons of code density were 

made with respect to machines which are known to have inefficient 

encodings. A serious question which must be confronted is whether a 

similar or better improvement can be obtained by improving the 

instruction set of a low-level language machine. Recent studies would 

appear to make this very likely. 36,37,38 For machines not proposing 
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significant run time interpretation, the degree of code compaction 

appears to be comparable to what can be achieved in a traditional 

architecture• 

Axiom 6: Direct execution machines offer a cost-effective architecture 

for executing high-level languages. 

Response: Direct execution machines are defined to execute a source 

program without any form of translation to an intermediate language. 

Perhaps proposals for such machines stem from the feeling by users 

that 

"the compilation run of the machine, during which the 

language translation is accomplished, is a waste of time and 

money to the user since he must pay for this time, though he 

gets no problem answers for it. ''1° 

It is our feeling that direct execution machines, though perhaps techni- 

cally feasible, will not become viable architectures for executing high- 

level languages. One of the principle reasons for this is the realization 

that it is not reasonable to begin executing programs without first 

checking for syntax or detectable semantic errors. In order to perform 

syntax analysis the program must be run through a preprocessor, lexi- 

cal analyzer, parser, and error detection routines; these steps account 

for most of the phases of a compiler. Once a program has been 

parsed, it would seem foolish to not generate a more efficiently inter- 

preted internal form for the machine to execute. In generating an 

internal instruction form, many decisions about how the program can 

be most efficiently executed can be "bound". With direct execution, 

every time a source statement is executed, this binding must be done 

again, causing a loss of execution time. 

Though several aspects of direct execution have been examined 

in existing proposals, many problems still exist which even very com- 

plex hardware does not seem to be able to solve. For example, how 

would a direct execution machine know where to jump for a procedure 

call? Solutions to such problems are attacked by retaining intermediate 

information to lessen scanning and retranslation. Retaining intermedi- 

ate information, however, is tantamount to compiling, thereby 

transforming an optimized direct execution machine'into a more con- 

ventional architecture which uses a compiler. There appear to be no 

convincing reasons for using direct execution as an implementation 

technique which can not be solved cheaper and faster using indirect 

execution machines. If anything, direct execution machines are likely 

to have an exorbitant cost and very poor performance. 

A New Look at High-Level Language Architecture 

Though many justifications for HLLCs seem to have been mis- 

directed, we do not mean to imply that there are not good reasons for 

additional research, merely that the motivations must be credible. In 

fact, we feel that there exists great promise for more cost-effective 

computer systems by taking a new look at the actual issues. '~he pri- 

mary focus however must be on the word system. The architecture of 

the future would appear to be the High-Level Language Computer 

System (HLLCS). There is no doubt that there exists the need for sys- 

tems directed exclusively for high-level language use. The research 

issue is to define and build the most cost-effective architecture for this 

task. 

Definition of a High-Level Language Computer System 

One of the difficulties with this subject is the lack of a useful 

definition of a HLLCS. A definition proposed by Chu is: 39 

"A high-level language computer system is one that can accept 

and execute a high-level language program." 

This definition is almost useless in distinguishing which computers are 

and which are not HLLCs, as every computer that has a HLL com- 

piler is considered to be a high-level language computer system. We 

cannot think of a single commercial computer or microcomputer that 

does not satisfy this definition. One could even build the software that 

would classify a Turing Machine as a HLLCS. This definition does, 

however, serve the useful purpose of focusing on the function rather 

than the implementation of a HLLCS. 

The following description of a High-Level Language Computer 

System, as it appears to a user of that system, is proposed as a more 

discriminatory definition. 

A High-Level Language Computer System is one that: 

(1) Uses high-level languages for all programming, debugging and 

other user~system interactions. 

(2) Discovers and reports syntax and execution time errors in terms of 

the high-level language source program. 

(3) Does not have any outward appearance of transformations from 

the user programming language to any internal languages. 

Any system that claims it is a HLLCS must meet these three require- 

ments. The first simply requires that all programming be done in a 

high-level language. The second requirement can not be met by omis- 

sion. Debugging tools for a HLLCS 'must exist which allow the user to 

query the system about the status of his program with the same degree 

of detail which might be expected using a machine language 

debugger, t In order to meet the third requirement, the transformation 

between the high-level programming language and any internal 

machine language must be transparently reversible. Errors will occur 

at the machine level, not at the user program level, but error diagnos- 

tics must be mapped back to the user's high-level source program. 

This definition does not restrict the implementation to hardware 

or software. It does, however, require that any HLLCS be able to 

detect errors and report these errors in terms that do not rely upon an 

understanding of the implementation. A user of the system who is 

' f  Such a debugger exists on a commercial computer. The NCR Criterion 85004o has a 
symbolic debugger for COBOL. The COBOL programmer is able to trace or dump any 
COBOL variables or statements by setting flags which tell the microcode to invoke the 
debugger when appropriate events o c c u r .  9 
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ignorant of the implementation is therefore at no disadvantage. 

A Measure of Architectures for High-Level Language Computer Sys- 

tems 

Given our definition of a HLLCS, we could define a high-level 

language computer architecture as one which allows an efficient imple- 

mentation of a HLLCS. Perhaps it would be more useful to define 

some measures of evaluation of architectures in terms of HLLCS. 

Three architectural measures that indicate efficiency of a HLLCS 

implementation are proposed. Briefly, for a given machine, a set of 

programs are compiled and executed under two cases; the first case 

meets all the requirements of a HLLCS and the second ignores the 

requirements in an attempt to gain efficiency. The three measures are 

simply the ratios of the execution time, program sizes and compile 

times for the two cases. The range of all measures should then be 

between 0 and 1, with the larger numbers indicating greater efficiency. 

The next two paragraphs describe the terms more precisely. 

Let P be a representative set of syntactically and semantically 

valid programs for some high-level language. For a given HLLCS, H, 

on a machine M, let T H be the total execution time for this set of pro- 

grams. Let L be a fast execution time system on M that is not con- 

strained to meet the HLLCS requirements of checking and reporting 

errors; and T L be the execution time for this same set of programs P. 

Then the High-Level Language Execution Support Faetor(HLLESF) is 

defined as the ratio of T L to T H. The HLLESF is then an indication 

of how well the architecture supports a HLLCS. If a system has a 

HLLESF close to one, it clearly has an architecture that lends itself to 

efficient implementation of HLLCSs. SYMBOL is an example of a 

machine with a HLLESF of one and if the B6700 meets our definition 

of HLLCS, it also does not gain performance by turning off error 

checking. C?nversely, a machine whose HLLESF is close to zero 

clearly does not have an architecture amenable to a HLLCS. Since the 

classic execution ratio of interpreters to compilers is an order of magni- 

tude, we would expect these machines to have a HLLESF of about 

0.1. 

The HLLESF may alsO. be an indirect measure of the quality of 

the software that is developed on a computer. A very small HLLESF 

would encourage programmers to remove all error checking once the 

program is "debugged". As there is some doubt whether a large pro- 

gram is ever debugged, disregarding error checking during production 

runs is certainly an undesirable practice. 

Conversely, one would expect systems with a HLLESF close to 

one to encourage programmers to leave the error checking in their pro- 

grams, thereby enhancing reliability. Given the same caliber of pro- 

grammers and computers of the same performance, one would expect 

that the higher the HLLESF, the greater the reliability of the software 

produced. 

This approach to a measure of execution support can also be gen- 

eralized to measures for program size and preparation time. The HLL 

Size Support Factor (HLLSSF) is defined to be the ratio of the size of 

the complete set of programs required to write and execute (i.e., 

source, object) P using L to the size of the programs of P using H. 

The HLL Preparation time Support Factor (HLLPSF) is defined to be 

the ratio of the preparation time (i.e.,compilation, linking, loading) 

for the of the complete set of programs P using L to the program 

prepartion time of P using H. HLLSSF and HLLPSF are less impor- 

tant than HLLESF, but they are interesting measures. 

Designing High-Level Language Computer Systems 

High-level language computer systems will be built; it is just a 

matter of when and how cost effective they will be. In an attempt to 

push designs along a successful path, we would like to speculate on 

several attributes which we feel will be part of a high-performance 

cost-effective HLLCS of the mid 1980's. 

Attribute 1. The system will efficiently support a systems program- 

ming languages such as BCPL, 41 BLISS, 42 or C, 43 for writing the 

operating system, compilers, debuggers, editors, and other software 

which must deal with the low level details of the machine and its peri- 

pherals. 

Attribute 2. The architecture will be oriented towards the support of 

operating systems. For example, process handling and context switch- 

ing must be extremely efficient. It is not uncommon for a third of the 

CPU resources of current computing systems to be used for the operat- 

ing system and other utilities not directly concerned with the execution 

of a user's application program. 

Attribute 3. There will be one or more instruction sets which will be 

output from high-level language compilers. The number of specifically 

tailored instructions sets will be related to the differences in the level 

of interpretation inherent in the languages supported by the system. 

For example, BCPL, BLISS, and C compilers are likely to generate 

code using the same instruction set, though different instruction sets 

will be used for highly interpretive languages such as LISP and SNO- 

BOL. 

Attribute 4. The instruction set(s) will be optimized for the way pro- 

gramming languages are used. Special purpose hardware will be dedi- 

cated only for those functions which are known to occur frequently. 

There will generally not exist a one-to-one correspondence between the 

source and object code. The "level" of the instruction set will be raised 

only when there are specific advantages to be gained. 

Attribute 5. The instruction set will be designed to be generated by a 

compiler. This requires attention to details of orthogonality, and the 

elimination of complex instructions which compilers are not reasonably 

able to generate. One of the reasons why high-level languages have 

been considered inefficient, compared to hand generated code, is that 

the compilers could not efficiently cope with awkward instruction 

sets. 44 

Attribute 6. The instruction set will not inhibit well known 



implementation techniques such as pipelining and instruction prefetch- 

ing. Complex instructions will be avoided if they tend to block a pipe- 

line or create difficulties with interrupting and restarting instructions. 

Besides the instruction set architecture, attention will be paid to optim- 

izing the underlying hardware architecture which will execute the 

instruction set. 

Attribute 7. Details of how the transparent re-mapping of object code 

back into source will be dealt with from the beginning. This, of neces- 

sity, impacts the instruction set and the details of compiler code gen- 

eration. The architecture may be affected; for example, descriptor- 

based and tagged architectures 45'46'34 are effective in retaining type 

information needed for full source level debugging. 

Attribute 8. A HLLCS is independent from its implementation; 

whether the implementation is achieved mainly by hardware or mainly 

by software has no bearing on meeting the definition of a HLLCS. 

The relative amounts of hardware and software will not be an issue 

except in regard to how it relates to execution speed and cost. Experi- 

ence with the SYMBOL system showed that there is no reason to think 

that merely increasing the amount of hardware in a system will make it 

run proportionally faster. 47 A large computer with a great variety of 

"high-level" instructions and hardware is no more desirable than a very 

simple but fast computer which can interpret the same higher-level 

instruction set with the same performance. 

Attribute 9. Good compiler technology will have an important role in 

the overall efficiency of the system. Code generation will not be done 

in the easiest fashion possible, but rather in the manner that produces 

the most efficient code. The compilers will use traditional code gen- 

eration optimization techniques such as constant folding, expression 

re-ordering, and moving invariant computations out of loops. 48,49 

Very high performance machines may use advanced compiler tech- 

niques such as common subexpression elimination, replacement of pro- 

cedure calls by in-line code, removal of statements whose outcome can 

be determined at compile time by global data-flow analysis, and gen- 

erating instructions with execution hints to the hardware (such as 

which way a conditional branch is most likely to jump), provided that 

these advanced techniques do not impair the achievement of a 

HLLCS. 

Attribute 10, The system will be a refinement of several previous, less 

ambitious systems. It is not reasonable to expect that a complex sys- 

tem can be designed successfully without actual use and iterative 

improvement. As the specification of a programming language or 

operating system is often a moving target, the system will avoid 

obsolescence by being flexible, allowing for incremental change without 

total system redesign. 

A Scheme for the Transparent Reversibility of the Compilation Pro- 

cess 

The one major obstacle preventing the realization of HLLCSs 

seems to be the difficulty of relating execution errors and debugging 

information to the source program. Current debugging tools often fail 

to inform the user of anything more than the line number of the state- 

ment in execution. Execution time penalties discourage providing 

even this crude piece of information; Shustek reports that for a particu- 

lar PL/I program on an IBM 370/168, 16% of the instructions exe- 

cuted, representing 23% of the execution time, were moves used to 

record the current statement number from the source program. 5° Such 

execution time penalties are not required to provide sophisticated 

debugging. Indeed, to achieve a HLLESF of 1, there should be no 

execution time penalties. A method is now suggested to allow the 

implementation.of efficient high-level language diagnostics and debug- 

ging tools which meet the criteria of a HLLCS. 

First, it must be possible to identify the statement containing the 

execution error. Giving the line number is sufficient only if the source 

statement can also be printed. This presents many problems in itself, 

for example, with separate compilation there may more than one set of 

line numbers to consider, and there is generally no restriction that the 

user cannot modify the source program after compiling it (in this case 

obtaining the line number from the object program would not neces- 

sarily lead to the correct source statement). The ideal approach would 

be to "decompile" the object program to reproduce the offending 

source statement. This approach has been studied 51 and was used sac- 

cessfully on the SYMBOL system. 34 This approach is not recom- 

mended for many reasons, the most important of which is that it is not 

possible to recreate the original source line exactly. 

Three data structures are used to obtain the original source state- 

ments from the object code. The first is an address map which 

uniquely identifies a range of addresses in a load module with the 

corresponding source statement number. The second is a copy of the 

source program which created the object module. A pointer to the 

user's source is sufficient until this original source is somehow modi- 

fied, at which time a separate copy of the source which created the 

load module must be saved. A third data structure, the symbol table, 

is needed to print the name and values of operands with each load 

module. The symbol table contains the external ASCII name and all 

type information for operands. All of these data structures are per- 

manently stored with every load module and as they are needed infre- 

quently, they can be stored on high latency devices. 

More detailed information is required to meet the definition of a 

HLLCS. It is necessary to identify the particular operator or operand 

in the source statement which caused the error to occur. To achieve 

this granularity, pattern matching is used -- a decompiled version of 

the statement is compared with the original source statement. The 

decompiled version obtains the operator or operand in question from 

the state of the machine, which in turn is matched to the original- 
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source statement. An undesirable consequence is that no compile time 

optimizations, such as the elimination of common subexpressions or 

program restructuring, can be done if they interfere with the decompi- 

lation process. The" equivalent of the "imprecise interrupt '62 at the 

source program level can not be allowed to happen. The instruction 

set can affect the ease and success of decompilation, it is felt that stack 

machines offer instruction sets which are easiest to decompile. Though 

certainly not the only solution, the above scenario is one approach 

which can be used to relate machine errors to the high-level source 

program. 

Conclusion 

Much of the prior work has not carefully examined the reasons 

for proposing new architectures. Possibly as a result, few of these pro- 

posals went beyond paper designs. One of the faults of HLL Comput- 

ers is that they ignored the view of the total system; a bare architecture 

without the surrounding system can no longer be considered as a viable 

solution to software problems. Hopefully, the realization that almost 

any computer can be transformed into a HLLCS through the appropri- 

ate software will allow incremental growth of present systems into 

HLLCSs. Adherence to the more demanding definition and architec- 

tural evaluation in terms of the given measures should lead to more 

cost-effective systems for high-level languages. Achieving total high- 

level language support while increasing performance and lowering costs 

is the job for designers of High-Level Language Computer Systems. 
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