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Many papers have appeared in the recent biological literature encouraging us to 

incorporate statistical power analysis into our hypothesis testing protocol (Peterman 
1990; Fairweather 1991; Muller & Benignus 1992; Taylor & Gerrodette 1993; Searcy-
Bernal 1994; Thomas & Juanes 1996).   The importance of doing a power analysis before 
beginning a study (prospective power analysis) is universally accepted: such analyses 
help us to decide how many samples are required to have a good chance of getting 
unambiguous results.   In contrast, the role of power analysis after the data are collected 
and analyzed (retrospective power analysis) is controversial, as is evidenced by the 
papers of Reed and Blaustein (1995) and Hayes and Steidl (1997).   The controversy is 
over the use of information from the sample data in retrospective power calculations.   As 
I will show, the type of information used has fundamental implications for the value of 
such analyses.   I compare the approaches to calculating retrospective power, noting the 
strengths and weaknesses of each, and make general recommendations as to how and 
when retrospective power analyses should be conducted. 

 INFORMATION REQUIRED FOR POWER ANALYSIS 
The power of a statistical hypothesis test is the probability of rejecting the null 

hypothesis, given that the null is false and some alternative hypothesis is true.   To 
calculate power we must specify the sample size, α-level, sampling variance and effect 
size (difference between the null and alternative hypothesis).   Many measures of effect 
size are available (Cohen 1990).  These can be divided into two major classes: 
standardized, dimensionless measures such as correlation coefficients or d-values, and 
raw measures such as the slope in a regression analysis or difference between means.   
Standardized measures incorporate the sampling variance implicitly and thus remove the 
need to specify variance when calculating power.   Raw effect size measures are 
generally easier to visualize and interpret. 

Before a study begins values for these parameters must be assumed.   Prospective 
power analyses are therefore exploratory in nature, investigating the relationship between 
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the range of sample sizes that are deemed feasible, effect sizes thought to be biologically 
important, levels of variance that could exist in the population (usually taken from the 
literature or from pilot data), and desired levels of α and statistical power.   The result is 
a decision about the sample size and α-level that will be used and the target effect size 
that will be “detectable” with a given level of statistical power. 

After the study is completed and the data analyzed, the perspective changes.   The 
outcome of the statistical test is known: either the null hypothesis was rejected or it was 
not.   If not we may be concerned that the statistical power of the test was low, i.e., that 
the test had a low probability of rejecting the null hypothesis even if it is false.   At this 
point more information is available with which to calculate power.   We know the α-level 
and sample size used, and the effect size and variance observed in the sample provide an 
estimate of the effect size and variance in the population.   The question arises: should 
this additional information (particularly the observed effect size and variance) be used to 
retrospectively calculate the power of the test? 

APPROACHES TO RETROSPECTIVE POWER ANALYSIS 
Retrospective power analyses can be conducted using both the observed effect 

size and variance (Reed & Blaustein 1995), only the observed variance (Hayes & Steidl 
1997), neither the observed effect size nor variance (Rotenberry & Weins 1985), or 
avoided completely by computing confidence intervals about the observed effect size 
(Hayes & Steidl 1997).   To illustrate the differences between these approaches I use the 
example of two hypothetical population monitoring studies (Fig. 1).   In both studies we 
cannot reject the null hypothesis that there is no systematic change in abundance over 
time, using linear regressions on log-transformed data and an α-level of 0.05 (details of 
the analysis methods are given in the appendix and SAS programs are available from the 
author on request1).   Nevertheless, from the data it appears that population 1 is relatively 
stable with little annual variation in abundance, whereas population 2 may be declining at 
a precipitous rate although there is considerable annual variability.   What do the 
different approaches to retrospective power analysis tell us about these results? 

(1) Calculate power using the observed effect size and variance. 
In the example studies raw effect size and variance can be measured as the size of 

the trend (slope in the regression) and the residual mean square.  Power calculated using 

                                                 
1  The program, REGPOW.SAS, is available on the word-wide web at http://www.interchg.ubc.ca/cacb/people/lthomas/ 
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these values is 0.11 for population 1 and 0.31 for population 2, well below the level of 
0.8 that is often considered adequate (e.g., Cohen 1988).   We conclude that both studies 
had insufficient power to detect the observed effect sizes.   One problem with this 
approach is that such a conclusion is almost inevitable.   Both the p-value and power are 
dependent upon the observed effect size and so are inversely related such that tests with 
high p-values tend to have low power and visa-versa.   Therefore calculating power using 
the observed effect size and variance is simply a way of re-stating the statistical 
significance of the test. 

Two further problems arise because the calculated power is often regarded as an 
estimate of the “true” power of the test, i.e., the actual probability of rejecting the null 
hypothesis in the study population.   Firstly, it is an over-estimate of the true power and 
calculating an unbiased estimate is problematic (Wright & O’Brien 1986; Taylor and 
Muller 1996).   For example, in population 1 the mean unbiased estimate of power is 
< 0.05, which is not admissible because power cannot be lower than the α-level.   
Secondly, the estimate is often imprecise: the 95% confidence intervals for power are 
0.05 - 0.74 for population 1 and 0.05 - 0.90 for population 2.   Clearly, calculating power 
using the observed effect size and variance is uninformative. 

(2) Calculate power using a pre-specified effect size and the observed variance. 
Here an a priori value of effect size is used, such as the minimum effect size 

considered biologically significant.   For example, suppose a population trend of 0.05 on 
the log scale (~ 5% per year) would be considered biologically significant in the two 
study populations.   Power to detect a trend of this magnitude is 0.99 in population 1 and 
0.07 in population 2.   Because the variance is estimated from sample data, it is important 
to report the precision of the resulting estimate of power.   In our example, the 95% 
confidence intervals for power are 0.81 - 1.00 and 0.06 - 0.10 respectively.   (Note these 
intervals are narrower than in the previous approach because one less parameter is being 
estimated.)   We conclude that the power of the test to detect a biologically significant 
trend was satisfactory for population 1 (lower confidence limit > 0.8) but not for 
population 2 (entire confidence interval << 0.8) due to the high variance. 

Researchers often find it difficult to specify which effect size should be 
considered the minimum for biological significance.   One alternative is to report power 
over a range of effect sizes (e.g., Thomas & Juanes 1996).   Another is to pre-specify the 
minimum acceptable level of power and determine the effect size that is “detectable” 
with that power (“reverse power analysis”, Fairweather 1991).   In our example the 
smallest population trend detectable with a power of 0.8 is 0.03 for population 1 (95% 
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confidence interval 0.02 - 0.05) and 0.32 for population 2 (0.22 - 0.61).   In summary, 
using observed variances but not observed effect sizes is helpful because it allows one to 
evaluate whether the sample size and α-level were sufficient to have a good chance of 
detecting a biologically significant effect given the observed level of variation. 

(3) Calculate power using a pre-specified standardized effect size. 
Using standardized effect size measures avoids the need to specify the sampling 

variance, so the only information needed from the study is the sample size and α-level.   
For example, the coefficient of determination (r2) is a standardized measure of effect size 
in regression analysis that implicitly incorporates both the trend (raw effect size) and 
residual mean square (sampling variance).   Suppose a population trend that explains 
25% or more of the variation in abundance of the example populations is considered 
biologically significant.    The power at this standardized effect size (r2 = 0.25), given 10 
years of data and an α-level of 0.05, is 0.34.   When the researcher cannot pre-specify a 
standardized effect size, Cohen (1988) suggested that power be calculated at three levels 
as implied by the adjectives “small,” “medium,” and “large”.   These conventions are 
widely used in psychology and other disciplines, where a medium standardized effect 
size may correspond with the median effect size found in psychological research 
(Sedlmeier & Gigerenzer 1989).   For regression analysis, Cohen’s standardized effect 
sizes (f2-values) translate into r2-values of 0.02, 0.13, and 0.26, giving powers of 0.07, 
0.18, and 0.36 respectively.   Reverse power analysis is also possible: the r2 that would be 
detectable with a power of 0.8 is 0.53.   As with the previous approach, using 
standardized effect sizes allows one to evaluate the study design.   The major 
disadvantage is that it is much harder to assess the biological significance of a 
standardized measurement. 

(4) Calculate a confidence interval about the observed effect size. 
In this viewpoint statistical power, like the α-level, is only relevant before the 

results of the hypothesis test are known (Greenland 1988; Goodman 1994).   After the 
study uncertainty in the results is quantified by calculating a confidence interval around 
the observed effect size.   In the example populations the observed trend on the log scale 
was -0.01 for population 1 (~ 1% per year decline) with 95% confidence interval -0.03 - 
+0.01 (~ 3% per year decline - 1% per year increase) and -0.17 for population 2 (~ 15% 
per year decline) with 95% confidence interval -0.40 - +0.06 (~ 33% per year decline - 
7% per year increase).   The confidence interval for population 1 does not contain values 
considered biologically significant (0.05 or greater), so we can be confident there is no 



THOMAS  RETROSPECTIVE POWER ANALYSIS 5 

 

important population trend, whereas for population 2 the confidence interval includes 
both zero trend and very large declines, indicating the results are inconclusive.   
Confidence intervals focus on estimation, rather than hypothesis testing, and so provide a 
useful summary of what the results tell us about the underlying population parameters.   
Despite their superficial similarity to detectable effect sizes, confidence intervals about 
observed effect sizes cannot be used to directly evaluate the study design because they do 
not take the desired level of statistical power into account (Peterman 1990).   
Nevertheless, the conclusions are often similar (compare the conclusions for the example 
studies in this section with those in section 2).   If confidence intervals are used in 
presenting the results, then expected confidence interval lengths can usefully be 
calculated in the planning stages of the study (Greenland 1988; Goodman 1994). 

CONCLUSIONS 
Different retrospective analyses can yield substantially different information.   

The appropriate approach, therefore, depends upon the goal of the analysis.   Often the 
goal is simply to quantify our uncertainty in the findings of a study, in which case 
calculating a confidence interval about the observed effect size is the most 
straightforward approach.   Sometimes the goal is to evaluate the ability of the study to 
detect a biologically meaningful pattern, for example to determine whether the study 
meets a pre-specified target or to make comparisons between a number of different 
studies.   In these cases calculating retrospective power (or detectable effect size) can be 
useful, depending upon how the analysis is done. 

Calculating power using observed effect sizes is not helpful because such values 
are very poor estimates of the actual power of the test given the population effect size, 
and do not take into account the biological significance of the effect size value used.   It 
is unfortunate that this kind of power analysis is readily available in a number of 
statistical software packages (e.g., SAS JMP, Sigmastat, SPSS), whereas more 
informative power analyses are generally harder to perform (Thomas & Krebs 1997).   
Calculating power using pre-specified effect sizes (or calculating detectable effect size 
using pre-specified power) is helpful, especially if easily interpreted raw effect size 
measures are used.   Standardized measures may be useful in more complex tests (such as 
tests for interaction in multi-way ANOVA) where it is hard to specify an intuitive raw 
measure of effect size.   In these cases power analysis may be performed using 
conventional levels of effect size, such as those proposed by Cohen (1988). 

All power calculations should be accompanied by a sensitivity analysis.   For 
power calculations that use assumed values for the effect size or variance, this means 
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trying a range of plausible values for each variable.   Graphs showing how two or more 
variables interact with one another are particularly valuable  (e.g., Peterman 1990; Muller 
& Benignus 1992; Taylor & Gerrodette 1993; Thomas & Juanes 1996).   For power 
calculations that use values estimated from sample data (such as sampling variance), a 
confidence interval about the power estimate should be given (Taylor & Muller 1995). 

It is important to note that retrospective analyses are no substitute for the proper 
planning of research (Cohen 1990).   Only in the planning stages is it reasonable to 
change the sampling design, the α-level, or even to completely re-think the goals of the 
study.   Conservation studies are, by their nature, often characterized by small sample 
sizes and high sampling variation.   The appropriate use of power analysis and 
confidence interval estimation allows us to obtain the most information from our limited 
resources and to make an honest assessment of what our results do and do not tell us. 
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APPENDIX - POWER ANALYSIS FOR SIMPLE LINEAR REGRESSION2 
 The following is a brief statement of the equations used to calculate power and 
confidence intervals for the example studies.   For further details, including a more 
general formulation in the context of generalized linear modeling, see Wright and 
O’Brien (1988) and Taylor and Muller (1995, 1996). 
 The statistical model for simple linear regression is 

                                                 
2 Note - there is a typesetting error in this appendix: the symbol ∃ should be ^ throughout. 
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  Y Xi i= +ι κ  (A1) 

where ι  and κ  are population parameters for the intercept and slope, and Yi is the 
observed value of the dependent variable measured at level Xi of the explanatory variable 
(i = 1 .. n).   In the example studies Y = ln (abundance) and X = year. 
 Let $κ  represent the estimated value of the slope parameter and $σ 2  represent the 
residual mean square from the regression.   Using analysis of variance the null hypothesis 
H0: κ  = 0 is tested against the alternative hypothesis  HA: κ  ≠ 0 with the test statistic 

  F SSH
obs

obs= ν
σ

1
2$

 (A2)  

where SSH xobs = ∑$κ 2 2  ( x 2∑ is an abbreviation for ( )X Xi
i

n

−
=
∑ 2

1

) and Υ1 = 1.   If the 

assumptions of linear regression are met (errors in Y are independent and normally 
distributed with equal variance; no errors in X) then the test statistic follows a noncentral 
F distribution with ν 1  numerator degrees of freedom, ν 2  denominator degrees of 
freedom (ν 2  = n - 2) and noncentrality parameter 
  λ σ= SSH pop

2  (A3) 

where SSHpop is the (unknown) population sum of squares. 
 Let ( )FF ⋅| , ,ν ν λ1 2  represent the cumulative distribution function of the 

noncentral F distribution.   The power of the test is 
  ( )power | , ,= −1 1 2F FF crit ν ν λ  (A4) 
where Fcrit is the 100·(1-α) percentile from a central F distribution with ν 1  and ν 2  

degrees of freedom and α is the size of the test (i.e., the α-level).   In SAS power for a 
given value of λ  can be computed with the statements (Wright & O’Brien 1988) 
  Fcrit = FINV(1-alpha,df1,df2); 

  power = 1-PROBF(Fcrit,df1,df2,lambda);. (A5) 

(1) Calculating power using the observed effect size and variance 
 Power can be estimated by substituting  
  $ $λ σ= SSHobs

2  (A6) 

for λ  in A4 or A5.   This estimate is positively biased because the expected value of $λ  is 
(Wright & O’Brien 1988) 
  ( ) ( )[ ] [ ]E $λ ν ν ν λ= − ⋅ +2 2 12 . (A7) 

Therefore, the mean unbiased estimate of power is calculated by substituting 
  ( )[ ]$ $λ λ ν ν νadj = ⋅ − −2 2 12  (A8) 

 for λ  in A4 or A5. 
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 Confidence intervals for power are found by solving (Taylor & Muller 1996) 
  ( )F FF obs U U| , , $ν ν λ α1 2 =  

and 
  ( )F FF obs L L| , , $ν ν λ α1 2 1= −  (A9) 

for $λU and $λ L , where αU and αL are the upper and lower tail probabilities that define the 

100·(1 - αU - αL) percent confidence interval.   If $λ C  (C = U or L) is not defined (i.e., 

where ( )F Fobs F c< −−1
1 21 0α ν ν| , , ), set $λ C to 0.   In SAS $λU and $λ L  can be calculated 

with the statements 
 lambdaU = max(0,FNONCT(Fsamp,df1,df2,alphaU)); 

 lambdaL = max(0,FNONCT(Fsamp,df1,df2,1-alphaL));. (A10) 

(2) Calculating power using a pre-specified effect size and the observed variance 
 Given a specified slope parameter, κ hyp , calculate SSH xhyp hyp= ∑κ 2 2 .   Power is 

estimated by substituting 
   $ $λ σhyp hypSSH= 2  (A11) 

for λ  in A4 or A5.   Confidence intervals about this estimate are calculated by 
substituting (Taylor and Muller 1995) 
  ( )$ $ |,λ λ α ν νhyp U hyp crit Uc= ⋅ −1 2 2  

and 
  ( )$ $ |,λ λ α ν νhyp L hyp crit Lc= ⋅ 2 2  (A12) 

for λ  in A4 or A5, where ( )c pcrit |ν is the 100.(p) percentile from a central χ 2  

distribution with ν  degrees of freedom.   In SAS $ ,λ hyp U  and $ ,λ hyp L  can be calculated with 

the statements 
  lambdaU = lambdah*CINV(1-alphaU,df2)/df2; 
  lambdaL = lambdah*CINV(alphaL,df2)/df2;. (A13) 
 Detectable effect size is calculated iteratively, starting with κ hyp  = 0 and 
increasing κ hyp  in small increments until the calculated power meets the desired level. 

(3) Calculating power using a pre-specified standardized effect size 
 Given some specified r2 value, rhyp

2 , calculate 

   ( )[ ]λ νhyp hyp hypr r= − ⋅2 2
21  (A14) 

and substitute for λ  in A4 or A5.   Cohen’s standardized effect sizes measure, f2, can be 
converted to r2 values using the relationship ( )[ ]f r r2 2 21= −  (Cohen 1988, Chap. 9). 
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 Detectable effect size is calculated iteratively, starting with rhyp
2 0=  and 

increasing rhyp
2  in small increments until the calculated power meets or just exceeds the 

desired level. 

(4) Calculating a confidence interval about the observed effect size 
Confidence intervals for the estimated slope, $κ ,  are calculated as 
   $ $ $

$κ κ σ κU critF= + ⋅  

and 
   $ $ $

$κ κ σ κL critF= − ⋅ , (A15) 

where $ $
$σ σκ = ∑2 2x . 

 

FIGURE 1.   Survey data for two hypothetical wildlife populations.   Trend lines were 
fitted using linear regression on log-transformed data.   For population 1 ln(abundance) = 
-0.01 year + 4.67, RMS (residual mean square) = 0.01, F1,8 = 0.97, p = 0.35, and for 
population 2 ln(abundance) = -0.17 year + 5.41, RMS = 0.82, F1,8 = 2.75, p = 0.14. 
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