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Retrospective Revaluation in Sequential Decision Making:
A Tale of Two Systems

Samuel J. Gershman
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Arthur B. Markman and A. Ross Otto
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Recent computational theories of decision making in humans and animals have portrayed 2 systems
locked in a battle for control of behavior. One system—variously termed model-free or habitual—favors
actions that have previously led to reward, whereas a second—called the model-based or goal-directed
system—favors actions that causally lead to reward according to the agent’s internal model of the
environment. Some evidence suggests that control can be shifted between these systems using neural or
behavioral manipulations, but other evidence suggests that the systems are more intertwined than a
competitive account would imply. In 4 behavioral experiments, using a retrospective revaluation design
and a cognitive load manipulation, we show that human decisions are more consistent with a cooperative
architecture in which the model-free system controls behavior, whereas the model-based system trains the
model-free system by replaying and simulating experience.
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Humans and animals routinely face the problem of selecting a
sequence of actions in order to maximize future pleasure and
minimize future pain. This problem is challenging, because the
number of possible sequences grows exponentially with the plan-
ning horizon (the number of steps into the future an agent is
willing to consider); thus, the naive strategy of exhaustively eval-
uating all possible future sequences is not generally tractable for a
resource-limited computational device like the brain (or indeed
modern computers!). This intractability forces consideration of
alternative algorithms the brain might use to solve sequential
decision problems.

Two candidate algorithms for action selection have figured
prominently in contemporary theories of decision making and have
firm grounding in the animal literature. One is a descendant of
Thorndike’s “law of effect,” according to which animals habitually
repeat actions that have been reinforced in the past (Thorndike,
1911). The second is a descendant of Tolman’s notion of a “cog-
nitive map,” an internal model of the environment that animals use
to plan goal-directed sequences of actions (Tolman, 1948). Behav-
ioral studies have established that animals use forms of both
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algorithms under different training regimes (Dickinson, 1985).
Moreover, the control of behavior can be shifted from one algo-
rithm to another through focal brain lesions, suggesting the coex-
istence of neurally distinct decision-making systems—a habit
learning system that implements the law of effect and a goal-
directed system that implements the cognitive map (Balleine &
O’Doherty, 2010; Dickinson & Balleine, 2002).

For example, Adams (1982) showed that rats trained to press a
lever for sucrose would subsequently cease lever pressing in an
extinction test after the sucrose was separately paired with illness
(thereby devaluing the sucrose reinforcer), demonstrating outcome
sensitivity consistent with a cognitive map or goal-directed view of
instrumental behavior. It is important to note that the law of effect
predicts no reduction of responding under these circumstances,
because the instrumental action (lever pressing) was never directly
paired with illness. However, when the rats were overtrained with
the sucrose reinforcer, they continued to press the lever after the
devaluation treatment, demonstrating outcome insensitivity more
consistent with a habit learning system governed purely by the law
of effect (Dickinson, 1985). Similar overtraining effects have
recently been demonstrated in humans (Tricomi, Balleine, &
O’Doherty, 2009; Valentin, Dickinson, & O’Doherty, 2007).

Our approach follows influential theoretical work (Daw, Niv, &
Dayan, 2005; Keramati, Dezfouli, & Piray, 2011; Simon & Daw,
2011) that formalizes the goal-directed and habit systems in the
algorithmic framework of reinforcement learning (RL; Sutton &
Barto, 1998). In this framework, the decision maker is faced with
a set of states (e.g., training cues) and actions (e.g., lever pressing),
and the problem is to choose the action in a given state that will
maximize cumulative future rewards (also known as ‘“value”).
Thorndike’s (1911) law of effect is instantiated as a “model-free”
RL system that maintains a look-up table containing predictions
about future reward for each state—action pair (“cached” values).
Learning and prediction is computationally efficient in this system,
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because it is only necessary to examine the contents of the look-up
table and adjust these predictions incrementally. However, the
model-free system is statistically wasteful in its use of experience,
because it ignores the transition and reward structure of the envi-
ronment (i.e., the probability distributions governing transitions
between states and the rewards they generate). The practical con-
sequence of this wastefulness is that the model-free system re-
quires a large amount of experience to learn reliable predictions.

In contrast, the “model-based system” learns the transition and
reward structure of the environment—akin to Tolman’s (1948)
cognitive map—and uses this model to generate predictions about
future reward. Although this approach is a statistically efficient use
of experience, generating predictions is computationally expen-
sive, requiring a form of dynamic programming or tree search. In
summary, the two systems have complementary strengths and
weaknesses, trading off statistical and computational efficiency
(Dayan, 2009). In the Appendix, we provide a more formal expo-
sition of these learning algorithms.

Although the two systems have been viewed as competing for
behavioral control (Daw et al., 2005), we argue in this article that
their interaction might instead be cooperative in some circum-
stances. We report the results of four human behavioral experi-
ments, all of which use a retrospective revaluation design in which
decision makers are given an opportunity to change their prefer-
ences for one set of choices in light of independent experience with
a different set of choices occurring later in the sequential decision
problem. Our design differs from earlier retrospective revaluation
experiments (e.g., Van Hamme & Wasserman, 1994) because it
exploits the sequential structure of the task. As we explain in more
detail below, the probability that a particular state—action pair will
yield a reward never changes. Instead, we change the information
available to participants about reward contingencies at states later
in the sequence. This has the consequence of devaluing actions
early in the sequence that were previously rewarding, while mak-
ing previously unrewarding actions more valuable. Model-free and
model-based RL algorithms make different predictions about how
a decision maker will respond to this change.

By asking some participants to perform a demanding secondary
task, we are able to diminish the use of model-based computations,
which in turn reduces retrospective revaluation (as we discuss
further below). To foreshadow our findings, the pattern of behav-
ior exhibited by human decision makers’ rules is inconsistent with
some competitive accounts (e.g., Daw et al., 2005; Keramati et al.,
2011; Simon & Daw, 2011). Although it is impossible to rule out
all varieties of competitive accounts, we suggest that our experi-
mental results have a natural explanation under a class of cooper-
ative architectures first proposed in the artificial intelligence liter-
ature (Sutton, 1990). As an illustrative proof of concept, we
explore the predictions of one popular version of this architecture.

In Sutton’s DYNA architecture (shown schematically in Figure
1), behavior is controlled exclusively by the model-free system
(allowing choices to be made online with minimal computational
expense), but the model-based system exerts an indirect influence
on behavior by training the model-free system offline (i.e., in
between episodes of real experience). Specifically, the model-
based system replays experienced state—action pairs and then sim-
ulates a transition and reward on the basis of its learned model of
the environment. The model-free system can then learn—using an
algorithm called Q-learning (Watkins, 1989)—from these simu-
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Figure 1. The DYNA architecture (from Sutton, 1990). The environment
furnishes the agent with real experience (transitions and rewards), whereas
the model-based system furnishes the agent with simulated experience by
replaying state—action pairs from memory and then using a learned model
of the environment to generate transitions and rewards. The model-free
system learns in the same way from both real and simulated experience,
and uses its learned values to control action selection.

lated trajectories as though they were real experiences (see the
Appendix for a more detailed description). The experiments re-
ported in this article provide evidence for such a cooperative
architecture in human choice. Using computer simulations, we
demonstrate that our experimental findings can be reproduced
qualitatively by a simple implementation of DYNA.

Overview of the Experiments

A key distinction between model-based and model-free RL is
that model-free algorithms like Q-learning can only update values
along experienced state—action trajectories, whereas model-based
RL propagates information across all states and actions by updat-
ing the state transition probabilities and reward functions and
performing dynamic programming. This means that model-free RL
will be unable to retrospectively revalue certain state—action pairs
in light of new experience with other states and actions, unless they
were directly experienced in the same trajectory. It is also possible
to create scenarios in which model-based RL predicts no retro-
spective revaluation, as we describe below. Our experiments in-
stantiate a simple multistep choice task in which neither model-
based RL nor model-free RL alone predict retrospective
revaluation, but a cooperative algorithm (such as DYNA) does
predict retrospective revaluation.

The experimental design used in all our experiments is shown
schematically in Figure 2, with numbered circles denoting states
(three distinct background colors in our experiment) and letters
denoting actions (button presses made to distinct visual stimuli).
Because each trajectory consists of two steps, we sometimes refer
to actions in State 1 as first-step actions and actions in States 2 or
3 as second-step actions. The transition structure is set up so that
Action A in State 1 leads deterministically to State 2, whereas
Action B leads to State 3, although (as we explain below) partic-
ipants do not always experience a full two-step trajectory.

The experiment is divided into four phases. In the first phase,
participants are trained on the transition structure without any
rewards. In the second phase, participants make a series of deci-
sions in the first step only and receive rewards as shown in Figure
2, establishing a baseline preference for the more valuable Action,
A. In the third phase, participants make a series of rewarded
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Phase 1:
Pre-training
(20 trials)
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Figure 2. Experimental design. The sequential decision problem consists
of three states (indicated by numbered circles) and two mutually exclusive
actions in each state (indicated by letters). Deterministic transitions be-
tween states conditional upon the chosen action are indicated by arrows.
Rewards for each state—action pair are indicated by amounts (in cents). In
Phase 4, reward feedback is delayed until the end of the phase. In the task
interface, states are signaled by background colors, and actions are signaled
by fractal images.

decisions in the second step only. The reward structure is designed
so that State 3 is associated with much larger rewards than States
1 and 2. As a result, the value (cumulative reward) of Action B in
State 1 over a two-step horizon is much higher than the value of
Action A, inducing a conflict between the value of B and its
immediate reward in State 1. In other words, an optimal agent,
planning over a two-step horizon, would change its preference
from A to B in State 1 after learning the second-step reward
contingencies in Phase 3 (i.e., the agent would retrospectively
revalue State 1 actions). In the fourth phase, participants played the
first step again without immediate feedback (i.e., their rewards
were only made known after that phase), providing them with an
opportunity to display a change to their preferences.

The primary dependent measure in this experiment is the “revalu-
ation magnitude,” which is the difference in preference for first-step
Action B between the fourth phase and the second phase, or more
formally, P,(action = Blstate = 1) — P,(action = Blstate = 1), where
P,(action = alstate = s) is the probability of choosing Action A in
State s during Phase i. Critically, pure model-free (Q-learning)
accounts and pure model-based (dynamic programming) ac-
counts both predict a revaluation magnitude of zero, but for
different reasons. Q-learning has no mechanism for propagating
information from second-step rewards to first-step values without
experiencing a full two-step trajectory, and hence first-step pref-
erences should remain unchanged after second-step training in
Phase 3. Dynamic programming is one mechanism by which
second-step rewards can influence first-step values. However, be-
cause the decision problem in Phase 4 is restricted to the first step,
the correct model-based values for Step 1 in fact do not use
second-step rewards at all: The values of first-step actions over a
one-step horizon are equal to their immediate rewards. Conse-
quently, reward information from the second step in Phase 3
should have no effect on choice probabilities in Phase 4 according
to a model-based account.

By contrast, a cooperative architecture such as DYNA predicts
a positive revaluation magnitude. During Phase 3, the model-based
system trains the model-free values; this has the effect of increas-
ing the value of taking Action B in State 1, because now it is highly
desirable to transition to State 3 (where large rewards await), even
though the immediate reward for taking Action B in State 1 is less
than for taking Action A. Because the model-free system cannot
alter its cached values on the basis of the planning horizon, the
updated first-step values will be used during Phase 4.

It is important to point out here that we are contrasting DYNA
with only the most obvious versions of model-based and model-
free algorithms that have been proposed in past research (Daw et
al., 2005; Keramati et al., 2011). There are probably versions of
these models that can reproduce our experimental findings. Our
goal in these experiments was not to provide decisive evidence for
a DYNA-like architecture per se, but rather to produce a set of
constraints governing RL accounts of human sequential decision
making.

The experiments reported in this article use a variety of manip-
ulations to increase or decrease the influence of model-based
computations in order to reveal the mechanisms underlying retro-
spective revaluation. In Experiment 1, we place a group of partic-
ipants under concurrent cognitive load by imposing a demanding
secondary task. As noted above, retrospective revaluation in our
task crucially depends on a model-based mechanism, because
model-free learning relies on unbroken trajectories through the
state space that are absent in our design. Previous work (Otto,
Gershman, Markman, & Daw, in press) found that concurrent
cognitive load causes participants to behave according to the law
of effect, repeating previously reinforced actions even when they
are unlikely to lead to reward. This suggests that load attenuates
the contributions of model-based computations, as would be pre-
dicted by the cognitively demanding nature of these computations
(Daw et al., 2005; Dayan, 2009; Keramati et al., 2011). Accord-
ingly, we expected that concurrent cognitive load during Phase 3
would reduce the retrospective revaluation effect.

Furthermore, the DYNA account predicts that providing addi-
tional idle time should counteract the deleterious effects of cogni-
tive load by providing additional opportunities for offline training
of the model-free values by the model-based system. Accordingly,
we explore the effects of increasing the number of Phase 3 trials
(Experiment 2) or interposing a long rest interval between Phase 3
and Phase 4 (Experiment 3) on retrospective revaluation magni-
tude. Experiments 2 and 3 highlight a distinctive property of
DYNA: transfer of model-based knowledge to the model-free
system is inherently time-consuming. In Experiment 4, we manip-
ulate cognitive load during Phase 4 to evaluate the possibility that
the revaluation effects observed in the preceding experiments stem
from pure model-based planning occurring during Phase 4 rather
than in an offline manner prescribed by the DYNA account.

Experiment 1

The aim of our first experiment was to establish the conditions
under which retrospective revaluation occurs in the sequential
decision paradigm described above. Our hypothesis was that a
positive revaluation magnitude would depend on resource-
demanding model-based computations during Phase 3, and would
therefore be attenuated when central executive resources were
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depleted. To test this hypothesis, we examined the magnitude of
retrospective revaluation between participants required to perform
a demanding concurrent task during Phase 3 (henceforth, the load
condition) and a control group of participants with no concurrent
cognitive demands (henceforth, the no-load condition).

In addition to the effects of the load manipulation, we expected
that individual differences in executive function would predict
individual differences in retrospective revaluation magnitudes.
More specifically, we reasoned that larger working memory (WM)
capacities—often discussed as the hallmark of executive function
(Conway, Kane, & Engle, 2003)—would lead to larger revaluation
effects. Accordingly, we investigated this relationship using a
common measure of WM and executive function capacity, the
operation span test (OSPAN; Engle, 2002; Turner & Engle, 1989).

Method

Participants. A total of 119 University of Texas undergrad-
uates participated in the experiment for course credit and a small
cash bonus tied to earnings in the choice task. All participants gave
informed consent, and the study was approved by the University of
Texas Office of Human Subjects Research. Participants were ran-
domly assigned to either the load condition or the no-load condi-
tion. To ensure that dual-task participants did not trade off perfor-
mance on the concurrent task in order to perform the primary task
(Zeithamova & Maddox, 2006), we excluded the data of four load
participants who exhibited a root-mean-square-error (RMSE) of 4
or more on the secondary task (described below).

Materials and procedure. To assess individual participants’
WM capacity, we administered an automated version of the OS-
PAN procedure (Unsworth, Heitz, Schrock, & Engle, 2005) prior
to the choice task, which required participants to remember a series
of letters while performing a concurrent task. The choice task was
administered on a computer and was programmed using the Py-
Game library for the Python programming language (Shinners,
2011). State 1 was represented by a black background, and Stimuli
A and B were represented by fractal images. States 2 and 3 were
represented with green and blue backgrounds, respectively, and
Stimuli C, D, E, and F were represented by unique fractal images.
Assignment of fractal images to stimuli as well as the positions
(left vs. right) of these stimuli were randomized across partici-
pants.

Choices in all stages of the experiment followed the same
general procedure: Two fractal images appeared on a background
indicating the initial state, and there was a 2-s response window in
which participants could choose the left- or right-hand response
using the Z or ? keys, respectively. After a choice was made, the
selected action was highlighted for the remainder of the response
window followed by presentation of the monetary outcomes. To
avoid potential verbal interference from reading numerical rewards
values, images of common denominations of U.S. coins were
presented. Before performing the task, participants were instructed
about the general structure of the choice task—namely, that an
initial choice on a black screen was made between two images that
would result in a monetary reward and would transition them to
either a green or a blue screen, depending on their choice, where
a subsequent choice would be made between two images again for
a monetary reward. Participants were instructed that because of the
multistep structure of the task, their choices made on the black

screen should take into account not only the immediate rewards
but also the rewards available on the screen (blue or green) that
their initial choice takes them to.

The initial instructions were followed by Phase 1 of the choice
task, in which participants learned about the deterministic transi-
tion structure of the task (see Figure 2A) by making 20 choices
starting in State 1 and observing which state (State 2 or State 3)
their choice transitioned to. Critically, selections made to Stimulus
A always transitioned to State 2, whereas selections made to
Stimulus B always transitioned to State 3. In lieu of reward
feedback, the background and stimuli of the resultant state was
displayed for 2 s. Next, in Phase 2, participants made 20 rewarded
choices in State 1. Choices made to Stimuli A and B were re-
warded with 2¢ and 1¢, respectively, depicted as American pen-
nies on the screen during the feedback period.

Participants subsequently began Phase 3 in which they made 30
rewarded choices starting from either State 2 or State 3 (see Figure
2A). At the beginning of each trial, one of the two states was
randomly selected with equal probability, and its associated color
and stimuli were shown. In State 2, selections made to Stimuli C
and D resulted in rewards of 1¢ and 2¢, respectively, whereas in
State 3, selections made to Stimuli E and F resulted in rewards of
10¢ and 25¢, respectively. These rewards were represented by
images of American pennies, dimes, or quarters.

Finally, in Phase 4, participants made 10 unrewarded choices in
State 1 to either Stimulus A or B. Before this phase, participants
were informed they were making choices between the same stimuli
as in Phases 1 and 2, but they were to make these choices on the
basis of what they had learned over the course of the experiment.
To avoid biasing choice in critical test trials, no rewards were
presented during the feedback period. The precise instructions for
Phase 4 were as follows:

Lastly, we want you to make some first-stage choices based on what
you have learned over the course of the experiment. The boxes you
will choose between are the same ones you saw before when you
learned which second-stage choices the first-stage choices take
you. You will receive money today for making these choices, but you
will not be able to immediately see how much each first-stage choice
has earned you. We want you to use your previous knowledge to make
these first stage choices.

The procedure was identical for participants in the no-load and
load conditions except for a concurrent WM task imposed on load
participants during Phase 3, following the general tone-counting
procedure of Foerde, Knowlton, and Poldrack (2006) modified to
ensure that WM demands persisted over all stages of the choice
task (Otto et al., in press; Otto, Taylor, & Markman, 2011). Two
types of tones, high pitched (1000 Hz) and low pitched (500 Hz),
were played during each trial, and participants were instructed to
maintain a running count of the number of high tones while
ignoring the low-pitched tones. Each trial was divided into 16
intervals of 250 ms, with tones occurring in intervals of 2—15 (500
ms—3,750 ms after trial onset). The number of tones presented in
each trial varied uniformly between 1 and 6. The base rate of high
tones was determined every 10 trials, varying uniformly between
0.3 and 0.7. At the end of each 10-trial block, load participants
reported their count and were instructed to restart their count at
zero, whereas no-load participants were instructed to take a break.
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The timing of these trials was equated across no-load and load
conditions according to the procedure described above.

Results and Discussion

Across both conditions, participants in Phase 2 overwhelmingly
preferred Action A to Action B (see Table 1), confirming that they
learned to choose the higher value action. In Phase 4, participants
in both groups revealed a net retrospective revaluation effect,
showing increased preference for Action B relative to Phase 2 (see
Figure 3).

To test the hypothesis that decision makers in the load condition
would exhibit less retrospective revaluation than participants in the
no-load condition, we performed a two-sample ¢ test on the reval-
uation magnitude across the two groups. Consistent with our
hypothesis, we found that revaluation magnitude was significantly
smaller in the load condition than in the no-load condition,
1(117) = 2.00, p < .05.

An alternative explanation for the revaluation results is that
participants in the no-load condition were using a model-based
strategy (i.e., some form of dynamic programming; see the Ap-
pendix) during Phase 4, rather than choosing on the basis of
model-free values. Note that for this explanation to be tenable, we
would have to assume that participants are incorrectly computing
values under a two-step (rather than one-step) horizon. The dif-
ference between load and no-load conditions could then be attrib-
uted to impaired model-based learning of rewards in States 2 and
3 during Phase 3. Consistent with this proposal, participants in
the load condition showed a weaker preference for the higher
value action in Phase 3 (collapsing across both second-step
states) than participants in the no-load condition, #78) = 3.57,
p < .001. We shall pursue this alternative explanation in
Experiments 4A and 4B.

To further pursue modulators of this effect, we looked for a
relationship between OSPAN performance and revaluation mag-
nitude. OSPAN scores were calculated by summing the number of
letters selected for all correctly selected sets (Unsworth et al.,
2005). Scores ranged from 2 to 72 (M = 45.18, SE = 1.51). In the
no-load condition, we found a significant correlation between
OSPAN and revaluation magnitude, 7(65) = .33, p < .01. In
contrast, there was no significant correlation between OSPAN and
revaluation magnitude for participants in the load condition,
r(50) = —.20, p = .16. We interpret this finding to mean that
under no-load conditions, individual differences in WM capacity
influenced the extent to which participants update their State 1
values using model-based information during Phase 3, whereas

Table 1
Choice Probabilities in Each Condition and Phase for
Experiment 1, Reported as Mean * Standard Error

Phase Load No load
Phase 2 0.11 = 0.01 0.12 = 0.01
Phase 3 0.70 = 0.03 0.84 £ 0.02
Phase 4 0.41 = 0.05 0.56 = 0.05

Note. Mean * standard error is the probability of choosing Action B in
State 1 for Phases 2 and 4. For Phase 3, mean * standard error is the
average probability of choosing Action D in State 2 or Action F in State 3
(i.e., the higher value action).

o
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Revaluation magnitude
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T T
No load Load

Figure 3. Experiment 1 results. Revaluation magnitude is measured as
P,(action = Blstate = 1) — P,(action = Blstate = 1), where P;(action =
alstate = s) is the probability of choosing action g in State s during Phase
i. Error bars indicate standard error of the mean.

under load conditions these individual differences were possibly
overwhelmed by the secondary task demands.

To make sure that the correlation between OSPAN and revalu-
ation magnitude is not due to impaired Phase 3 learning, we
examined the relationship between OSPAN and preferences for the
higher value option in the second-step states during Phase 3.
Correlations were not significant, both for load (p = .52) and
no-load (p = .29) conditions.

Under a model-based account, we would expect participants
who show greater revaluation to also show longer response times,
due to the greater processing demands involved in producing
model-based revaluation (Keramati et al., 2011). Using multiple
regression, the relationship between response times and revalua-
tion magnitude was not significant when controlling for load (p =
.54). Furthermore, second-step preferences during Phase 3 were
not correlated with subsequent revaluation magnitude (p = .17), as
one would expect if impaired model-based learning was the cause
of a diminished revaluation effect under load.

Another possibility is that in Phase 4, participants initially
(despite instructions to the contrary) believed they were accumu-
lating reward over the full two-step horizon, and therefore per-
formed model-based planning, but over the course of the 10 trials
realized that they were only accumulating rewards over a one-step
horizon. To evaluate this possibility, we recalculated the revalua-
tion magnitude separately for the first half and second half of the
Phase 4 trials. Confirming our previous analyses, a two-way anal-
ysis of variance (ANOVA) revealed a main effect of load,
F(238) = 7.35, p < .007, but no main effect of half (p = .73) and
no interaction between load and half (p = .9). Thus, it does not
appear to be the case that participants are changing their behavior
over the course of Phase 4. Taken together, these analyses argue
against a purely model-based interpretation of our findings.

Experiment 2

In Experiment 1, we found that depleting decision makers’ WM
resources via concurrent cognitive demand during Phase 3 reduced
their magnitude of retrospective revaluation. We also found that
individual differences in retrospective revaluation were, among
participants in the no-load condition, systematically related to a
measure of executive function. In Experiment 2, we sought to
establish some boundary conditions on this experimental effect by
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manipulating the number of Phase 3 trials. In Experiment 2, we
used a 2 X 2 factorial design, crossing load versus no load and 30
versus 50 Phase 3 trials.

According to DYNA, increasing the number of trials should
provide further opportunities for offline training of the model-free
values by the model-based system. If WM load impairs, but does
not eliminate entirely, the process of updating first-step values on
the basis of information about second-step rewards (e.g., through
DYNA-style replay), then increasing the number of Phase 3 trials
should ameliorate this impairment.

Method

Participants. A total of 172 University of Texas undergrad-
uates participated in the experiment for course credit. All partici-
pants gave informed consent, and the study was approved by the
University of Texas Office of Human Subjects Research. Partici-
pants were divided into conditions that factorially manipulated
WM load (load vs. no load) and number of Phase 3 training trials
(30 vs. 50), yielding four groups: load-30, load-50, no-load-30, and
no-load-50. To ensure that load participants did not trade off
performance on the concurrent task in order to perform the primary
task, we excluded the data of four load participants who exhibited
an RMSE of 4 or more on the tone-counting task.

Materials and procedure. The procedure in Experiment 2
was identical to the procedure in Experiment 1 except for one
aspect: Participants in the load-50 and no-load-50 groups were
given 50 trials of Phase 3 choices—in which rewarded choices
were made from States 2 and 3—whereas participants in the
load-30 and no-load-30 groups were given 30 trials of Phase 3,
mirroring the two conditions in Experiment 1.

Results and Discussion

First-step choice probabilities are summarized in Table 2. The
retrospective revaluation data are shown in Figure 4. To assess the
joint effects of load and number of Phase 3 trials, we performed a
two-way ANOVA (load vs. no load X 30 trials vs. 50 trials). There
was a significant interaction between load and number of trials,
F(1, 168) = 6.06, p < .05, indicating that difference in retrospec-
tive revaluation magnitude between load and no-load conditions
was significant for 30 trials but not for 50 trials. As predicted,
increasing the number of Phase 3 trials allowed participants under
cognitive load to exhibit an equal degree of revaluation compared
with participants not under load. Although revaluation magnitude
appears to be paradoxically higher for no-load-30 compared with
no-load-50, this difference is nonsignificant (p = .34).

Table 2

o
»
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M No load
Load

Revaluation magnitude
o
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o
o

0.0

30 . 50
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Figure 4. Experiment 2 results. Revaluation magnitude as a function of
secondary task during Phase 3 (load/no load) and the number of Phase 3
trials (30/50). Error bars indicate standard error of the mean.

Consistent with the results of Experiment 1, participants in the
load-30 condition showed a weaker preference for the higher value
action in Phase 3 (collapsing across both second-step states) than
participants in the no-load-30 condition, #28) = 2.43, p < .05.
This pattern also holds with 50 Phase 3 trials, #(42) = 3.75, p <
.001. A two-way ANOVA (Load/No Load X 30/50 trials) revealed
a main effect of load, F(149) = 20.99, p < .0001, and number of
trials, F(149) = 8.84, p < .005. Note that revaluation is unaffected
by load in the 50-trial condition, despite impaired Phase 3 learning
in the same condition. This observation is consequential for our
theoretical interpretation of the revaluation results: Our revaluation
effects cannot be explained as simple functions of second-step
reward learning in Phase 3.

The data from this study suggest that model-based information
can still be propagated to first-step values under load given enough
time. It is not clear, however, whether this effect is due to in-
creased time or increased number of trials. If propagation occurs
via a time-consuming memory replay and simulation process (as
postulated by DYNA), then the critical variable is the amount of
time during which the participants are not being asked to do
anything—that is, periods of inactivity during which replay might
occur. We investigated this idea further in Experiment 3.

Experiment 3

The purpose of Experiment 3 was to examine a distinctive
prediction of DYNA: Simply increasing the amount of time during

Choice Probabilities in Each Condition and Phase for Experiment 2, Reported as Mean *

Standard Error

Phase Load/30 trials No load/30 trials Load/50 trials No load/50 trials
Phase 2 0.13 £0.02 0.12 £0.01 0.10 = 0.01 0.11 £0.01
Phase 3 0.77 £ 0.04 0.87 = 0.01 0.84 = 0.02 0.91 +0.01
Phase 4 0.33 = 0.07 0.53 £0.05 0.54 = 0.07 0.45 = 0.06

Note. Mean =* standard error is the probability of choosing Action B in State 1 for Phases 2 and 4. For Phase
3, mean * standard error is the average probability of choosing Action D in State 2 or Action F in State 3 (i.e.,

the higher value action).
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which participants are not performing the task between Phase 3
and Phase 4 (i.e., without adding new learning trials) should
increase retrospective revaluation. This prediction arises from DY-
NA’s use of quiescent periods to replay past experiences and
simulate from the learned model of the environment, providing
additional training for the model-free system. Indeed, electrophys-
iological recordings of rodent hippocampal place cells offer one
suggestive source of evidence for such offline replay and simula-
tion (Foster & Wilson, 2006; Johnson & Redish, 2007); we return
to this idea in the General Discussion.

In one group of participants, we interposed a rest period between
Phase 3 and Phase 4, during which participants listened quietly to
a recording of classical music. The other group proceeded imme-
diately to Phase 4 without a rest (as in Experiments 1 and 2).
Because we were mainly interested in whether a rest period would
counteract the deleterious effects of load during Phase 3, both
groups performed Phase 3 under load. We predicted that revalua-
tion magnitude would increase for participants with the rest inter-
val, because they would have more time for offline training, and
thereby update their first-step values on the basis of information
about second-step rewards acquired during Phase 3.

Method

Participants. A total of 106 University of Texas undergrad-
uates participated in the experiment for course credit. All partici-
pants gave informed consent, and the study was approved by the
University of Texas Office of Human Subjects Research. Partici-
pants were randomly assigned to two groups defined by the inter-
val between Phase 3 and Phase 4. All participants experienced
concurrent cognitive load.

Materials and procedure. Participants in the no-rest condi-
tion proceeded immediately to Phase 4 after completing training
on second-stage rewards. Procedurally, this condition is identical
to the load condition in Experiment 1. Participants in the rest
condition were shown a screen instructing them to sit quietly and
look at the fixation cross while listening to a piece of music (Sergei
Prokofiev’s Op. 12 No. 2 for piano; Prokofiev, 2008) for 3 min,
after which participants proceeded to Phase 4.

Results and Discussion

Choice probabilities are summarized in Table 3. As shown in
Figure 5, participants in the rest condition showed a significantly
higher revaluation magnitude than participants in the no-rest con-

Table 3
Choice Probabilities in Each Condition and Phase for
Experiment 3, Reported as Mean * Standard Error

Phase Rest No rest
Phase 2 0.11 = 0.01 0.12 £0.01
Phase 3 0.88 = 0.02 0.85 +0.02
Phase 4 0.54 = 0.05 0.40 £ 0.05

Note. Mean * standard error is the probability of choosing Action B in
State 1 for Phases 2 and 4. For Phase 3, mean * standard error is the
average probability of choosing Action D in State 2 or Action F in State 3
(i.e., the higher value action). Note that both the rest and no-rest conditions
were performed under load.
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Figure 5. Experiment 3 results. Revaluation magnitude in Phase 4 as a
function of rest condition. Both conditions were performed under working
memory load. Error bars indicate standard error of the mean.

dition, #(117) = 2.13, p < .05. Thus, adding a quiescent interval
between Phase 3 and Phase 4 increased the extent to which
participants retrospectively revalued first-step choices in light of
second-step rewards. This finding is consistent with the prediction
of DYNA that providing extra inactive time, without new learning
trials, allows the model-based system to update model-free values.

To examine whether there was any change in behavior over the
course of Phase 4, we recalculated the revaluation magnitude for
the first five trials and second five trials, and then performed a
two-way ANOVA (Rest/No Rest X First Half/Second Half). Con-
sistent with the results of Experiment 1, there was a main effect of
rest, F(212) = 8.06, p < .005, but not of half (p = .51). The
interaction between the factors was also not significant (p = .78).

Experiments 4A and 4B

Recent experiments have shown that cognitive load tends to
reduce the influence of the model-based system in favor of model-
free control of choice behavior (Otto et al., in press). We leveraged
this finding to ask: Are participants performing a pure version of
model-based planning during Phase 4? As we pointed out in the
introduction, planning over a two-step horizon is irrational given
that participants are only being rewarded for choices in State 1. A
pure model-based account in fact predicts no revaluation, given
that rewards in State 1 do not change over the course of the
experiment. Nonetheless, we can put this theoretical objection
aside and examine the question empirically: If we assume partic-
ipants are planning over a two-step horizon and this planning
occurs during Phase 4 choice, then applying cognitive load during
Phase 4 should impair planning and thereby reduce revaluation. In
contrast, if participants are using cached values derived from a
cooperative architecture-like DYNA, then cognitive load should
not affect revaluation.’

In Experiments 4A and 4B, we tested these predictions. The two
experiments are almost identical except for the instructions given
to participants at the beginning of Phase 4. In Experiment 4A, we
used the same instructions as in Experiments 1-3. One concern
with these instructions is that they may not make sufficiently clear
to participants that their rewards in Phase 4 do not depend on the
second-step reward contingencies. For example, participants may

! We are grateful to an anonymous reviewer for suggesting this exper-
iment.
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incorrectly believe that they should take actions that would lead to
the most profitable outcome on a complete two-step trajectory. To
rule out the possibility that participants are simply misinterpreting
the task structure, in Experiment 4B we modified the Phase 4
instructions, stating clearly that rewards do not depend on second-
step choices.

Method

Participants. A total of 132 University of Texas undergrad-
uates (40 in Experiment 4A and 92 in Experiment 4B) participated
in the experiments for course credit. All participants gave informed
consent, and the study was approved by the University of Texas
Office of Human Subjects Research. Participants were randomly
assigned to two groups (20 in load and 20 in no load).

Materials and procedure. The procedure is the same as in
Experiment 1, with the exception that participants in the load
condition were asked to perform the concurrent task during Phase
4 trials. No concurrent task was used during Phase 3. In Experi-
ment 4B, we modified the Phase 4 instructions to read as follows:

Lastly, we want you to make some first-stage choices. The boxes you
will choose between are the same ones you saw before when you
learned which second-stage choices the first-stage choices take
you. You will receive money today for making these choices, but you
will not be able to immediately see how much each first-stage choice
has earned you. Note that the rewards you earn in this phase do not
depend on second-stage choices.

Results and Discussion

As shown in Figure 6 and Table 4, we found no evidence in
Experiment 4A for a difference between revaluation in the load
and no-load conditions, #38) = 0.31, p = .76. There was no
change in revaluation between the first and second halves of the
Phase 4 trials (p = .98). We also compared the average preference
for B in the load and no-load conditions, again finding no signif-
icant difference, #(38) = 0.75, p = .46.

Of course, the t test merely indicates that we have failed to reject
the null hypothesis that revaluation magnitudes should be equal
across the two conditions; we would like to assert the null effect.
For this purpose, we turn to the Bayesian ¢ test proposed by
Rouder, Speckman, Dongchu, and Morey (2009) using the scaled

o o o
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Figure 6. Experiment 4A results. Revaluation magnitude in Phase 4 as a
function of working memory load during Phase 4. Phase 3 was performed
without load in both conditions. Error bars indicate standard error of the
mean.

Table 4
Choice Probabilities in Each Condition and Phase for
Experiment 4A, Reported as Mean = Standard Error

Phase Load (Phase 4) No load (Phase 4)
Phase 2 0.12 £0.02 0.17 £0.03
Phase 3 0.90 = 0.04 091 £ 0.04
Phase 4 0.46 = 0.09 0.55 =£0.08

Note. Mean * standard error is the probability of choosing Action B in
State 1 for Phases 2 and 4. For Phase 3, mean * standard error is the
average probability of choosing Action D in State 2 or Action F in State 3
(i.e., the higher value action).

Jeftrey-Zellner-Siow prior, which is based on a Cauchy distribu-
tion on the effect size. Using the default scale parameter of 1 for
the effect size, the Bayes factor in favor of the null was 4.12.
According to Jeffreys’ (1961) scale, this constitutes moderate
evidence for the null hypothesis.

Essentially, we found the same results in Experiment 4B, in
which the instructions were slightly modified to avoid misinter-
pretations of the Phase 4 reward structure. We failed to find a
difference between load and no-load conditions, #90) = 0.48, p =
.64. A Bayesian ¢ test reinforces this conclusion with a Bayes
factor of 5.12 in favor of the null hypothesis. In summary, the
results of Experiments 4A and 4B indicate no difference in reval-
uation behavior as a function of Phase 4 load, disfavoring a pure
model-based account of retrospective revaluation behavior.

Model Simulations

As proof of concept that a cooperative reinforcement learning
architecture can qualitatively capture our findings, in this section
we present simulations of the DYNA algorithm (Sutton, 1990).
According to DYNA (see Figure 1), model-based and model-free
systems learn value functions in parallel, whereas the model-free
system exclusively controls behavior. The role of the model-based
system is to train the model-free system in an offline manner by
replaying experienced state—action pairs and then simulating tran-
sitions and reward from the learned model. This provides sufficient
information for the model-free system to compute a prediction
error and update its value estimate.

In light of evidence that concurrent cognitive load can debilitate
rehearsal of WM contents (Baddeley, 1992), we assumed that our
load manipulation affects the learning algorithm by reducing re-
play. To emulate the effect of the load manipulation, we simulated

Table 5
Choice Probabilities in Each Condition and Phase for
Experiment 4B, Reported as Mean = Standard Error

Phase Load (Phase 4) No load (Phase 4)
Phase 2 0.08 = 0.01 0.10 = 0.01
Phase 3 0.94 = 0.01 0.94 = 0.01
Phase 4 0.48 = 0.05 0.46 = 0.04

Note. Mean * standard error is the probability of choosing Action B in
State 1 for Phases 2 and 4. For Phase 3, mean * standard error is the
average probability of choosing Action D in State 2 or Action F in State 3
(i.e., the higher value action).
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the DYNA algorithm in our experimental design with different
amounts of replay after each trial in Phase 3 (one replay per trial
in the load condition, two in the no-load condition). Similarly, we
emulated the effect of the rest period by examining revaluation
magnitude after varying amounts of replay between Phase 3 and
Phase 4. Simulation details are described in the Appendix.”

Figure 8 shows the simulated revaluation magnitude as a func-
tion of rest period replays for the four different conditions in
Experiment 2. Consistent with the results from that experiment, the
revaluation magnitude grows with the number of Phase 3 trials and
shrinks under load. This pattern reflects that having more trials
translates into more opportunities for replay, whereas load is
modeled as reducing opportunities for replay. As we found in
Experiment 2, the model simulations show no difference between
no-load-30 and no-load-50 conditions. Figure 8 also reproduces
the main result of Experiment 3: The revaluation magnitude grows
with increased numbers of replays during the rest period between
Phase 3 and Phase 4. In summary, the DYNA algorithm—Sutton’s
(1990) instantiation of a cooperative model-free/model-based ar-
chitecture—is one implemented framework for interactions be-
tween model-free RL and model-based RL systems that is consis-
tent with the pattern of data from these studies.

It is worth emphasizing here that, although we did not perform
formal model comparison, pure model-based and model-free al-
gorithms cannot in principle explain our data, regardless of their
parameter settings, under the assumption we made above. Of
course, it is entirely possible that these assumptions are wrong, but
they highlight the basic empirical commitments of the different
theories. More elaborate versions of these theories, making differ-
ent assumptions (e.g., participants erroneously perform model-
based planning over a two-step horizon), could explain some of
our results.

General Discussion

In four experiments, we explored the conditions under which
people exhibit retrospective revaluation in a sequential decision
problem. We measured revaluation to the degree to which partic-
ipants changed their choice preference in the first step of the task
after experiencing reward contingencies in the second step of the
task. In Experiment 1, participants asked to perform a demanding
secondary task during the second-step trials (in Phase 3) exhibited
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Figure 7. Experiment 4B results. Revaluation magnitude in Phase 4 as a
function of working memory load during Phase 4. Phase 3 was performed
without load in both conditions. Error bars indicate standard error of the
mean.
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Figure 8. Predictions of the DYNA algorithm for the two-step task.
Simulated revaluation magnitude increases as a function of the number of
replays between Phase 3 and Phase 4. The simulation was run for different
numbers of Phase 3 trials (30/50) and different numbers of replays per
Phase 3 trial (one in the load condition, two in the no-load condition).

less revaluation than participants who did not have to perform the
secondary task. In Experiment 2, the effect of cognitive load was
modulated by the number of second-step trials: When given more
second-step trials, participants under load exhibited the same
amount of revaluation as participants not under load. In Experi-
ment 3, interposing a rest period between Phase 3 and Phase 4
increased the revaluation effect for participants under load. Fi-
nally, in Experiments 4A and 4B, WM load during Phase 4 had no
effect on revaluation.

Our favored theoretical interpretation of these results is based on
the idea that model-free and model-based reinforcement learning
systems interact cooperatively (Sutton, 1990). In particular, we
propose, along the lines of Sutton’s (1990) DYNA algorithm, that
the model-based system trains the model-free system offline (e.g.,
during periods of quiescence). This proposal is motivated by
several observations about our experimental design and results.
First, Phase 4, in which participants made first-step choices after
experiencing the second-step rewards, was restricted to a one-step
planning horizon; that is, participants were never given the oppor-
tunity to make a full sequence of Step 1 and Step 2 choices. This
aspect of the design is important because if participants were using
a model-based planning algorithm (e.g., dynamic programming or
tree search) over a one-step horizon, they should show no reval-
uation: The values for this horizon are identical to the immediate
rewards, which did not change between Phase 1 and Phase 4.
Second, the fact that the revaluation magnitude was sensitive to the
rest interval in Experiment 3 is consistent with the idea that offline
training occurs during periods of quiescence. This interpretation is
bolstered by neural evidence that rats simulate future trajectories
while they are asleep or during waking periods of inactivity (see
below). Third, load during Phase 4 had no effect on revaluation
(Experiment 4), which seems to contradict a model-based account,
which would predict sensitivity to load (Otto et al., in press). We

2 Our intention in simulating rather than fitting the model to data was to
remain as agnostic as possible with respect to the particular algorithmic
details of the implementation. Our goal here was to provide a proof-of-
concept for a particular family of models.
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do not claim that this is the only cooperative architecture that can
capture our findings, or even that our findings rule out all possible
competitive architectures. At present, the available data do not
sufficiently constrain the space of viable models.

One alternative interpretation of our results is that participants
are actually performing model-based planning using an incorrect
model of the task. For example, if they erroneously believe that the
planning horizon during Phase 4 is two steps instead of one step,
then the basic effect of load versus no load in Experiment 1 can be
explained as a consequence of impaired model-based learning
during Phase 3. Although we cannot rule out this interpretation, it
does make an additional prediction for which we found no evi-
dence: Response times should correlate with revaluation magni-
tude, under the assumption that revaluation will occur to the extent
that participants plan over two steps and that planning over two
steps is more computationally expensive than planning over one
step. We found no correlation between response times and reval-
uation magnitude. Although this is a null result, and should there-
fore be interpreted cautiously, it fails to support the alternative
theoretical interpretation. A more compelling argument against the
model-based account is provided by the results of Experiment 4:
Load during Phase 4 does not appear to affect revaluation, which,
as we have argued above, is inconsistent with cognitively demand-
ing model-based planning (Otto et al., in press).

Previous Work

Our experiments were inspired by the seminal devaluation stud-
ies of Dickinson and his colleagues (Dickinson, 1985). These
studies showed that rats were able to reason about the causal
effects of their actions. Rats were first trained to press a lever for
food reinforcement, and then the reinforcer was separately paired
with illness (i.e., the reinforcer was devalued). After moderate
amounts of training, rats ceased pressing the lever following de-
valuation. After extensive training, however, rats continued to
press the lever in order to receive the devalued reinforcer. Dick-
inson interpreted this as a shift from goal-directed to habitual
control with extended training, or, in more modern parlance, a shift
from model-based to model-free control (Daw et al., 2005).

Another way to shift control from model based to model free is
to tax executive resources by asking participants to perform a
demanding secondary task. Fu and Anderson (2008) used a two-
stage sequential decision task and showed that under dual-task
conditions, participants learned actions proximal to feedback faster
than distal actions, whereas this pattern was reversed under single-
task conditions. They interpreted these results to indicate the
predominance of model-based control under single-task conditions
and model-free control under dual-task conditions. The model-free
system gradually propagates reward information to earlier states in
a trajectory, explaining why second-step values are learned about
faster than first-step values under dual-task conditions. In contrast,
reward information is propagated instantly by the model-based
system.

Using a similar two-step task, but with continuously drifting
rewards (which enabled a more fine-grained analysis of the learn-
ing process), Otto et al. (in press) found that choice behavior is
more consistent with model-free control when people are placed
under load—that is, choices were primarily influenced by whether
they were previously rewarded (cf. Thorndike’s, 1911, law of

effect). In contrast, when unfettered by concurrent demands, peo-
ple’s behavior registered sensitivity to the transition structure of
the environment, indicating the influence of model-based knowl-
edge (see also Daw, Gershman, Seymour, Dayan, & Dolan, 2011).

Also related to our work is the literature on retrospective reval-
uation (Larkin, Aitken, & Dickinson, 1998; Shanks, 1985; Van
Hamme & Wasserman, 1994). In a typical retrospective revalua-
tion experiment, two cues (A and B) are first trained in compound,
and then one of the cues (A) is trained individually. Retrospective
revaluation refers to changes in the response to B following
A-alone training. This phenomenon is important from a theoretical
perspective because it contradicts important models of associative
learning (e.g., Rescorla & Wagner, 1972) that assert that associa-
tions between cues and outcomes are only modified when a cue is
present. These findings have prompted the development of models
that allow modification to occur in the absence of cues (e.g.,
Dickinson & Burke, 1996; Markman, 1989; Van Hamme & Was-
serman, 1994). Of particular relevance are theories that postulate
“rehearsal” of previous experiences, conceptually similar to the
replay mechanism of DYNA (Chapman, 1991; Melchers, Lachnit,
& Shanks, 2004). However, these theories are “trial-level” models,
and hence do not accommodate sequential decision tasks such as
the one presented here. In particular, the models do not incorporate
a notion of value or cumulative reward, the crucial ingredient of
the retrospective revaluation effects described in this article.

Neural Mechanisms

Although there is no direct neural evidence for the cooperative
architecture outlined in this article, the brain possesses plausible
neural machinery for implementing such an architecture. One
candidate is a network centered on the hippocampus and basal
ganglia (Johnson & Redish, 2005; Johnson, van der Meer, &
Redish, 2007). The role of the basal ganglia in model-free RL is
well established (see Niv, 2009, for a review), with different
subregions thought to compute various components of the tempo-
ral difference learning equations described in the introduction,
although the precise nature of these computations is still in dispute.
In accordance with the DYNA architecture, we suggest that the
hippocampus contributes in two ways: (2) by learning a model of
the environment and (b) by replaying and simulating state—action-
reward trajectories to the basal ganglia (see Johnson & Redish,
2005, for an implementation of this idea).

The idea that the hippocampus is involved in learning a statis-
tical model of the environment has received considerable theoret-
ical attention (Fuhs & Touretzky, 2007; Gershman, Blei, & Niv,
2010; Gluck & Myers, 1993; Levy, Hocking, & Wu, 2005).
Experiments demonstrate that the hippocampus tracks the statistics
of transitions (Bornstein & Daw, 2012; Harrison, Duggins, &
Friston, 2006; Shohamy & Wagner, 2008; Strange et al., 2008) and
rewards (Holscher, Jacob, & Mallot, 2003), the necessary ingre-
dients for building a Markov decision process model. The hip-
pocampus uses this model to simulate forward trajectories, as
evidenced by the sequential firing of place-coding cells along
anticipated spatial paths, a phenomenon known as “preplay” (Diba
& Buzsdki, 2007; Dragoi & Tonegawa, 2011; Johnson & Redish,
2007). Forward trajectories can also originate from previously
experienced locations rather than the animal’s current location
(Gupta, van der Meer, Touretzky, & Redish, 2010), consistent with
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the memory retrieval mechanism posited by DYNA. Furthermore,
hippocampal replay appears to be temporally coordinated with
activity in the ventral striatum (a subregion of the basal ganglia)
during sleep (Lansink, Golstein, Lankelma, McNaughton, & Pen-
nartz, 2009). These physiological findings are complemented by
functional brain imaging evidence of hippocampal activation while
humans imagine future events (see Buckner, 2010, for a review).
Although we have focused on the hippocampus as the locus of
model-based computations, most research on goal-directed learn-
ing has focused on an extended network of regions including the
dorsomedial striatum and prefrontal cortex (Balleine & O’Doherty,
2010). Lesions to the hippocampus have deleterious effects on
goal-directed instrumental behavior in spatial tasks (McDonald &
White, 1993). Nonetheless, the role of the hippocampus within the
model-based RL system remains poorly understood.

Conclusions

Psychology and neuroscience are rich with variations of dual-
systems theories, some of which are closely linked to the distinc-
tion between model-based and model-free RL (Dayan, 2009). At
the heart of these theories is the idea that the brain can solve RL
problems in two different ways: either by performing costly de-
liberative computations to arrive at the optimal solution or by
using cheap habitual solutions that may be suboptimal. The brain,
according to dual-systems theories, has evolved separate systems
dedicated to these different computational strategies. This inevita-
bly invites the question of how behavioral control is arbitrated
between the systems. Recent theoretical work has framed this
arbitration as competitive (Daw et al., 2005; Keramati et al., 2011;
Simon & Daw, 2011). In contrast, we suggest, on the basis of
behavioral evidence, that the interactions between systems might
be more cooperative in nature. The cooperative scheme, which we
have simulated using Sutton’s (1990) DYNA algorithm, is able to
capture our behavioral data and has some neural plausibility
(Johson & Redish, 2005), though our data do not decisively rule
out all competitive schemes. Evidence for cooperation between the
two systems has been suggested by a recent brain imaging study
(Daw et al., 2011), which found that model-based and model-free
values overlap in their neural substrates. An important open chal-
lenge is now to find direct evidence of cooperation between
reinforcement learning systems in the brain.
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Appendix

Algorithms for Sequential Decision Making

In this Appendix, we briefly summarize the mathematical basis
of model-based (dynamic programming) and model-free (Q-
learning) algorithms (see Sutton & Barto, 1998, for a comprehen-
sive overview). The environment is formalized as a Markov deci-
sion process (MDP), which consists of a set of states (e.g., the
location of the agent), actions (what the agent can do in each state),
and rewards. State transitions and rewards depend only on the
current state and action (i.e., transitions and rewards are condi-
tionally independent of an agent’s history given its current state
and action; this is the Markov property). A common example of an
MDP is the game of chess, where moves only depend on the
current board configuration. The value of a state—action pair (s,a)
is defined as the expected future return® over a horizon of length
H conditional on taking action a in State s:

Q(s,a) = E[r, + et + ry |s, =, a = a],

(AD)

where r, denotes the reward received at time ¢, and E denotes an
average over future state and reward trajectories. The optimal
policy (a mapping from states to actions) is to choose the action
that maximizes the value function.

An important consequence of the Markov property is that the
value function can be written in a recursive form known as
Bellman’s equation (Bellman, 1957):

Q(s,a) = R(s, a) + max, 2, T(s’,a,s) Q(s’,a’),
(A2)

where R(s,a) is the expected reward for taking action a in State s,
and T(s’,a,s) is the probability of transitioning to State s’ after
taking action a in State s. The simplest form of dynamic program-
ming, known as value iteration, harnesses this recursion by itera-
tively updating its value estimate Q,(s, a) according to:

Qi+ 1(s,a) = R(s,a) + max, 2 T(s",a,s) Qs’,a’).
(A3)
It can be shown that Q,(s,a) will eventually converge to Q(s, ).
We refer to T and R as the agent’s model of the world; in practice,

this model is typically learned from experience, in which case
dynamic programming operates over estimates of T and R.

The classic example of model-free RL is Q-learning (Watkins,
1989), which updates an estimate of the value function according
to:

(O I(Sza ar) = Qt(st’ at) + o, (A4)

where « is a learning rate parameter, and

8, = r, + max, Qt(sz+ l’av) - Qt(sts at) (A5)

is the temporal difference error at time z.
For the DYNA simulations, we used a learning rate o = .01 and
a softmax policy:

_ exp{BQ(s,B)}
[exp{BQ(s, A)} + exp{BQ(s, B)}] ’
(A6)

P(a,= B|s;= )

with the inverse temperature parameter 3 set to 2. Transition and
reward functions were estimated by maximum likelihood; this
simply corresponds to setting the transition and reward functions
to their sample averages.* Because choices are stochastic, we
averaged the simulation results over 1,000 repetitions.

Offline training in DYNA proceeds as follows: (a) A previous
state—action pair (s, @) is retrieved with uniform probability; (b) a
new state (s’) is stochastically selected using the learned transition
function; (c) a reward (r’) for the new state is stochastically
generated using the learned reward function; (d) the value function
Q(s,a) is updated using Equation A4. Under load, this cycle of
computations is performed once between each experienced transi-
tion; under no load, it is repeated twice.

3 For simplicity, we have ignored temporal discounting here.

* The particular method for estimating the transition and reward func-
tions is not important here, as the ground truth in this case is deterministic,
and thus any reasonable algorithm (e.g., Bayesian, maximum likelihood)
will converge very quickly on the correct solution.
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