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Abstract

Background: Retroposed processed gene transcripts are an important source of material for new gene formation

on evolutionary timescales. Most prior work on gene retrocopy discovery compared copies in reference genome

assemblies to their source genes. Here, we explore gene retrocopy insertion polymorphisms (GRIPs) that are

present in the germlines of individual humans, mice, and chimpanzees, and we identify novel gene retrocopy

insertions in cancerous somatic tissues that are absent from patient-matched non-cancer genomes.

Results: Through analysis of whole-genome sequence data, we found evidence for 48 GRIPs in the genomes of

one or more humans sequenced as part of the 1,000 Genomes Project and The Cancer Genome Atlas, but which

were not in the human reference assembly. Similarly, we found evidence for 755 GRIPs at distinct locations in one

or more of 17 inbred mouse strains but which were not in the mouse reference assembly, and 19 GRIPs across a

cohort of 10 chimpanzee genomes, which were not in the chimpanzee reference genome assembly. Many of

these insertions are new members of existing gene families whose source genes are highly and widely expressed,

and the majority have detectable hallmarks of processed gene retrocopy formation. We estimate the rate of novel

gene retrocopy insertions in humans and chimps at roughly one new gene retrocopy insertion for every 6,000

individuals.

Conclusions: We find that gene retrocopy polymorphisms are a widespread phenomenon, present a multi-species

analysis of these events, and provide a method for their ascertainment.

Background

Mammalian genomes contain thousands of pseudogenes -

stretches of DNA sequence with homology to functional

genes. As an example, pseudogene.org documents 17,061

human pseudogenes in build 65, and 19,119 mouse pseu-

dogenes in build 60 [1-3]. A recent, more stringent survey

identified 14,112 pseudogenes in the human genome [4].

Pseudogenes originate through a variety of mechanisms

including retrotransposition of processed mRNAs (pro-

cessed pseudogenes), segmental duplication, and inactivat-

ing mutations. Processed pseudogenes are derived from

spliced transcripts and they lack the intron-exon structure

of their source gene [5].

Retrotransposition refers to the insertion of DNA

sequences mediated by an RNA intermediate [6]. In

humans, this process is carried out chiefly through the

reverse-transcriptase [7] and endonuclease [8] functions of

the LINE-1 ORF2 protein, with assistance from the ORF1

protein, which binds RNA [9] and functions as a chaper-

one [10]. In addition to mobilizing its own transcripts,

LINE-1 mobilizes other transcripts including, but probably

not limited to, Alu [11], SINE-VNTR-Alu [12] and pro-

cessed pseudogenes [13]. The specific reverse-transcriptase

responsible for processed pseudogene formation varies

among species depending on the retroelement content in

the genome. For example, in S. cerevisiae, processed pseu-

dogenes are mobilized by Ty1 elements [14]. In this study

we refer to retroposed gene transcripts as gene retrocopies
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to avoid confusion with the functional connotations of

terms such as ‘pseudogene’ and ‘retrogene’ [15]. When

used, ‘pseudogene’ (or retropseudogene) refers to a non-

functional gene retrocopy while ‘retrogene’ refers to a

gene retrocopy with intact activity.

A growing number of contemporary studies highlight

the extent to which individuals differ in terms of inserted

retrotransposon sequences [16], but there has not been

significant study of how mammalian genomes differ from

one another and from the reference assembly in a given

population due to gene retrocopy insertions, although

detection of the phenomenon has been discussed briefly

[17,18]. Retrogene insertion polymorphisms have been

described in a study of 37 Drosophila melanogaster

inbred lines [19] based on the detection of intron pre-

sence/absence polymorphisms.

Pseudogenes affect genome function in several impor-

tant ways. Although most gene retrocopies lack the 5’ pro-

moter and regulatory regions present at the site of origin

[5], mobilization to another genomic location can put the

retrocopy in a novel regulatory context that may allow it

to be transcribed [20-22]. Transcription of certain gene

retrocopies can be either widespread, specific to a tissue or

cell type, or specific to particular tumors [23]. Transcribed

gene retrocopies can regulate the source transcript

through an antisense mechanism [24], are a source of siR-

NAs [25-28], can affect the stability of the source tran-

script [29], and can affect expression of the source gene by

providing a molecular sponge that competes with the

source transcript for miRNA binding due to sequence

similarity to the source gene [30]. Retrocopies and retro-

genes can exert direct effects if the nearby genomic archi-

tecture promotes their expression, as is the case for a

novel insertion of the FGF4 transcript in the domestic

dog, which leads to the chondrodysplastic phenotype that

typifies many dog breeds [31]. On an evolutionary time-

scale, the process of gene duplication through retrotran-

sposition of processed transcripts constitutes a major

mechanism for new gene formation [32], typified by exam-

ples such as the jingwei gene in Drosophila [33].

Here, we refer to a processed gene transcript that is pre-

sent as a retrotransposed insertion in one or more indivi-

duals but absent from the reference genome as a gene

retrocopy insertion polymorphism (GRIP). Insertions that

are not polymorphic and not transmissible (somatic inser-

tions) are not referred to as GRIPs. We present evidence

that the interspersed insertion of processed mRNAs into

the genome is an ongoing mechanism of mutation in

humans, mice, and chimps, and can occur in tumors.

Additionally, the availability of our application for detect-

ing these events will enable all large-scale genome sequen-

cing projects to include gene retrocopy insertions in their

analysis of genomic variation.

Results and discussion

A catalog of non-reference human gene retrocopy

insertions

Since GRIPs are largely undescribed, we sought to estab-

lish a catalog of insertions detectable by our method using

the data available through the 1,000 Genomes Project [34].

We downloaded the alignments for 939 low-pass genomes

from 13 self-identified populations available from the Feb-

ruary 2011 release; a full listing of genomes is available in

Table S1 in Additional file 1. Since these genomes are

sequenced at relatively low depth, we analyzed all samples

together using the strategy illustrated in Figure 1 and

described in the material and methods section (GRIPper).

This allows us to call insertions shared between multiple

individuals, but likely has lower sensitivity to detect inser-

tions present in only one individual. In total, we describe

39 GRIPs present in one or more individuals in this set of

samples (Table S2 in Additional file 1).

In addition to samples sequenced by the 1,000 Genomes

Project, we took advantage of the many samples sequenced

to high depth by The Cancer Genome Atlas (TCGA) [35].

One aim of TCGA is to study the whole genomes of tumor

and normal samples obtained from the same patient. We

analyzed 85 paired genomes sequenced to high coverage

depth (Table S3 in Additional file 1) and found 26 distinct

GRIPs (Table S4 in Additional file 1). This dataset also pro-

vided us with the opportunity to search for cancer-specific

somatic gene retrocopy insertions.

There was an overlap of 17 insertions between the two

sets of genomes giving a total of 48 distinct gene GRIPs

derived from 45 source genes (Figure 2, Table S5 in Addi-

tional file 1), since some genes produced mRNAs that

were inserted into multiple distinct locations in one or

more genomes. Of the 48, we could find breakpoints for

40 on at least one end, and found breakpoints for both the

5’ and 3’ junctions for 29 insertions. Of those 29, 28 had

target site duplications typical of retrotransposed

sequences, and one did not. Of these insertions, 21 out of

the 48 are in introns and one has a breakpoint in an exon

(a copy of UQCR10 inserted into exon 2 of C1orf194).

Given the 45.75% genome-wide coverage of the gene

annotation set used (see Materials and methods), this is

not a significant enrichment of insertions occurring in

annotated genes.

Most of these insertions bear the hallmarks of pro-

cessed transcript insertions generated by retrotransposi-

tion. The insertion side of the 3’ junctions terminates in

poly-A sequences; we detected target site duplications in

all instances where both junctions are detectable, and we

could obtain exon-exon junctions from 39 out of 48 of

the inserted sequences through a local sequence assembly

approach (see Materials and methods and Additional file

2 for junctions derived from 1,000 Genomes samples).
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Predicted endonuclease cleavage sites agree with the con-

sensus TTTT/AA reported in prior studies (Figure S5 in

Additional file 3) [8,36].

In order to estimate the sensitivity and specificity of our

detection scheme, we created a total of 2,000 simulated

processed gene retrocopy insertions from 200 source

genes and spiked them into the BAM file for sample

TCGA-60-2711-11 and detected them by running GRIP-

per (see Materials and methods, Tables S10 and S11 in

Additional file 1). The overall precision was 100% at the

effective minimum read depth for paired TCGA samples

(60× from the combined contribution of a tumor genome

sequenced to 30× and the matched normal genome

sequenced to 30× depth) and recall was 75.1% (Table S10

in Additional file 1). We found that recall varies depending

on the identity of the source gene (Table S11 in Additional

file 1, Figure S4 in Additional file 3).

Functional characteristics of source genes

As expected, many of the source genes that contributed

new insertions fall into the same functional categories as

the source genes for pseudogenes that are already present

AAAAAAAAAAA

Source gene

Processed pseudogene

chrA

chrB (non-reference)

chrB (reference)

ins. site exon

forward reverse

ins. siteexon

forward reverse

Normal mapping

Discordant mappings

Figure 1 Schematic overview of our method for detecting non-reference gene retrocopy insertions from paired read mappings. Read

pairs are represented by two boxes for the sequenced portion of the paired read, joined by a line representing the unsequenced region (not to

scale). Reads aligning to exonic sequences are colored red, and boxes aligning to non-exonic sequences are colored blue. For genomic intervals

with no significant structural changes relative to the reference, reads will map normally as depicted in the upper panel. Note the forward-reverse

orientation pattern of the read pair mappings as indicated under the sequenced ends. Non-reference gene retrocopy insertions (bottom panel)

are represented by a series of discordant read mappings in a common interval (blue boxes) where one end of each read matches a distal exon

on a common gene annotation (red boxes). The minimum interval between the left and right groups of blue boxes defines the start and end

coordinates used in Additional file 1: Tables S2, S4-6, and S9. For Illumina paired reads, the forward-reverse sequencing scheme means that the

non-exonic end of paired reads spanning the 5’ junction is mapped in the forward orientation and the non-exonic read of the pair spanning the

3’ junction is mapped in the reverse orientation (see arrows). Thus, the regions joined by oriented paired reads between reference chrB and the

gene on reference chrA form a path that indicates a gene retrocopy insertion on the chrB allele in the individual genome from which the

paired reads were derived. As depicted on the non-reference version of chrB, processed gene retrocopies lack introns, and the resulting exon-

exon junctions are detectable by local assembly.
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in the reference genome sequence. Examples include

genes encoding proteins associated with ribosomal func-

tion, and genes involved in metabolic processes, transcrip-

tional regulation, and signal transduction (Figure 3a). By

examining the enrichment for functional annotations

through DAVID [37], we see that a number of gene ontol-

ogy (GO) terms associated with ribosomal functions are

strongly enriched in the set of source genes (Table 1).

Many of the retrocopy source genes also have other copies

present elsewhere in the reference (Figure 3b). These

include highly pseudogenized genes like cyclophilin A

(PPIA) and GAPDH [1], and this result is consistent with

the general observation that genes expressed in a wide

range of tissue types, particularly those highly expressed in

germ cells, are more likely to yield retrotransposed copies

[38].
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Figure 2 Locations of 48 non-reference gene retrocopy insertion sites in the human genome based on reads mapped to source

genes. Discordant read mappings are represented by links colored based on the chromosome of the source gene. Insertion sites are

represented by black circles, and the gene labels are based on the position of the source genes.
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Detection of cancer-specific gene retrocopy insertions

The genomes sequenced by TCGA include DNA derived

from both normal tissue and a tumor sample taken from

the same individual, enabling discovery of putative cancer-

specific somatic variants. We analyzed pairs of tumor and

normal genomes from 6 different types of cancer: 24 pairs

from acute myeloid leukemia (AML) patients, 12 breast

cancer (BRCA), 5 colorectal adenocarcinoma (COAD),

15 glioblastoma multiforme (GBM), 6 lung adenocarci-

noma (LUAD), 13 lung squamous carcinoma (LUSC), and

10 ovarian carcinoma (OV). In screening these 85 pairs of

tumor and normal genomes by combining the calls as

described in the Materials and methods section, we dis-

covered three novel somatic gene retrocopy insertions

from two lung tumors with no corresponding read pairs in

the matched normal samples and no supporting read pairs
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Figure 3 Gene retrocopy insertion annotations. (a) Functional classification of retrocopy source genes based on gene ontology and manual

curation. The genes associated with each functional classification can be found in Table S8 in Additional file 1. (b) Number of annotated

processed pseudogenes in the human genome reference assembly (GRCh37) (y-axis) for each source gene associated with a gene retrocopy in

this study (x-axis). Processed pseudogene annotations were derived from pseudogene.org human build 65 [1,3].

Table 1 GO term enrichment for human GRIP progenitor genes

GO term P Fold enrichment FDR

GO:0006414: translational elongation 4.78 × 10-9 30.61 6.24 × 10-6

GO:0006412: translation 8.63 × 10-8 11.68 1.13 × 10-4

GO:0003735: structural constituent of ribosome 2.66 × 10-7 17.17 3.06 × 10-4

GO:0033279: ribosomal subunit 1.37 × 10-6 18.89 1.53 × 10-3

GO:0005840: ribosome 1.91 × 10-6 12.85 2.14 × 10-3

GO:0022626: cytosolic ribosome 2.92 × 10-6 25.59 3.28 × 10-3

GO:0005198: structural molecule activity 3.36 × 10-5 55.69 3.87 × 10-2

GO:0015934: large ribosomal subunit 3.58 × 10-5 25.78 4.02 × 10-2

GO:0044445: cytosolic part 6.23 × 10-5 13.64 7.01 × 10-2

GO:0030529: ribonucleoprotein complex 7.34 × 10-5 6.04 8.24 × 10-2

GO: gene ontology, FDR: False discovery rate
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in any other sample in this study. The three source genes

are selenoprotein T precursor (SELT), smooth muscle

myosin heavy chain 11 (MYH11), and a spliced non-cod-

ing RNA known as Homo sapiens growth arrest-specific 5

(GAS5). While the presence of these genes is not enough

to make any causative link with carcinogenesis in this

patient, this does strongly suggest that somatic insertions

of spliced mRNAs derived from protein-coding genes may

occur, at least in the context of cancer. We note that

MYH11 rearrangements involving CBPb are implicated in

cancers including acute myeloid leukemia [39] and sarco-

mas of the small bowel [40,41], and GAS5 depletion has

been noted in breast cancer [42]. We note that the

MYH11 insertion site occurs in a region that is sometimes

deleted as a segregating variant cataloged in the Database

of Genomic Variants [43], but the sample LUSC-2722,

which has the novel MYH11 retrocopy in the tumor gen-

ome, does not have this deletion (Table S12 in Additional

file 1). Somatic LINE-1 mediated retrotransposition events

have been observed in lung, colon, ovarian, and prostate

tumors for transposable element transcripts [44-46], but

the mobilization of gene-derived transcripts is novel, and

may be a means for the amplification of oncogene copy

number in some tumors. The discordant read mappings

leading to these three calls are shown in Figures S1 to S3

in Additional file 3.

Novel gene retrocopy insertions in inbred mouse strains

We sought to extend our catalog of GRIPs to mice, as the

deeply sequenced genomes of 17 different inbred mouse

strains are now available [47], and a small set of GRIPs

have been described [48]. We applied the same method

as described for detecting GRIPs by substituting mouse

genome annotations, and identified a total of 755 inser-

tions from 610 distinct source genes (Table S6 in Addi-

tional file 1). We found that 63 loci overlap with

structural variants obtained from a mouse of the DBA

inbred strain using HYDRA-SV [48]. Since the mouse

reference (mm9/NCBI m37) is assembled from sequences

derived from the C57BL/6J strain, it is not surprising that

we only detected one novel GRIP in that strain, which

could have occurred in the generations between the last

common ancestor of the mouse sequenced by the Mouse

Genome Sequencing Consortium [49] and the more

recently sequenced individual [47]. Of the 755 insertions

identified in our analysis, 201 (26.62%) occurred in anno-

tated genes. This is a significant depletion compared to

the 40.38% of the genome covered using the UCSC

Genes annotation set (see Materials and methods, P =

1.76 × 10-14, proportions test).

The representatives from the 17 inbred strains differ

from the C57BL/6J reference by a variable number of

gene retrocopy insertions, generally correlating with what

is known about the history of these strains [50] and in

agreement with the degree to which transposable element

polymorphisms are shared between strains [51]. All of

the strains derived from Mus musculus domesticus

(excluding C57BL/6J, which is also M. m. domesticus)

have a mean of 56 GRIPs in their genomes that are not

in the C57BL/6J reference (Figure 4a). In contrast,

CAST/EiJ (M. m. castaneus), PWK/PhJ (M. m. musculus),

and SPRET/EiJ (M. spretus) are strains derived from wild

mice and have 213, 212, and 142 non-C57 gene retroco-

pies, respectively. WSB/EiJ is a wild-derived M. m.

domesticus strain, and has the most non-C57 GRIPs of

the M. m. domesticus strains sampled. Excluding C57BL/

6J, any pair of the remaining 16 mouse inbred strains dif-

fer from one another by an average of 134 insertions.

Excluding the four strains derived from wild mice, the

remaining 12 lines differ from each other by an average

of 68 insertions. The distance [52] between mouse strains

in terms of shared GRIPs recapitulates the genetic ances-

try of the strains to some degree, as might be expected

(Figure 4b). For example, the 129 substrains are closely

grouped together along with LP/J, which is closely related

[50] (inbred stain genealogies chart available from Mouse

Genome Informatics [53]).

Novel gene retrocopy insertions in chimpanzees

In addition to whole-genome sequence data available for

humans and mice, genome sequences for ten individual

chimpanzees are available through the PanMap project

[54]. These genomes were sequenced to approximately 10×

average depth and are available in .bam format aligned to

the Chimp Genome Sequencing Consortium 2.1/panTro2

reference assembly. We downloaded these and used the

same pooling strategy used for the low-coverage data from

the 1,000 Genomes Project to identify novel gene retrocopy

insertions present in one or more of the ten individual

chimps but absent from Clint, the reference chimp. In

total, we identified 19 novel GRIPs, 9 of them in introns

(Table S9 in Additional file 1).

Distribution of GRIPs in human populations

As with any heritable genomic polymorphism, GRIPs can

be restricted to certain populations. The data from the

1,000 Genomes Project provide us with the opportunity to

ascertain whether a given GRIP occurs more frequently in

one population versus another. The population distribu-

tion for the 39 GRIPs from the 13 populations represented

in the analyzed 1,000 Genomes Project data is shown in

Figure 5. A number of these appear to be restricted to a

particular geographical area of origin, such as insertions of

POLR2C, HSPE1, and SNRPC mRNAs in individuals with

self-reported African ancestry, and COX7C, NACC1,

RPL22, RPS2, and RPL37A in individuals self-identified as

belonging to Chinese or Japanese populations. The subset

of the 1,000 Genomes Project data that we analyzed to
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obtain these insertions is low-coverage by design, to allow

for detection of common alleles across a large number of

individuals [34]. The cancer and normal pairs of deeply

sequenced genomes from TCGA allow for the detection

of more rare alleles, which is reflected in the five insertions

found in only one TCGA individual versus only one

insertion found in only one individual in the 1,000 Gen-

omes low-coverage data (Table S5 in Additional file 1).

Estimating the rate of gene retroposition in humans

The rate at which new gene retrocopies are formed by

retrotransposition may be related to the rate of new gene
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Figure 4 Gene retrocopy insertions in mice. (a) Number of gene retrocopies absent from the C57BL/6J reference (y-axis) present in each of

17 inbred mouse strains [47] (x-axis). (b) Heatmap created by the heatmap.2 function in the gplots package in R based on the Jaccard distance

from pairwise comparison of GRIP alleles between strains (Materials and methods). C57BL/6NJ was left out of the inter-strain comparison of non-

reference GRIPs because all but one insertion was shared with the C57BL/6J reference. As indicated on the histogram to the left of the heatmap,

distances range from 0 (white, GRIP profile) to 1 (dark blue, no overlap in GRIP profiles). Hierarchical clustering of similarity indices generally

recapitulates the breeding history of wild and inbred mouse strains [50].
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formation. Our population-level data in humans allows a

straightforward estimate similar in method to a previous

estimate of retrotransposition for LINE-1 elements [55].

Watterson’s equation [56] estimates the mutation rate μ,

which in this context refers to the per generation rate of

processed gene transcript retroposition (see Materials and

methods). Using the 48 non-reference human GRIPs iden-

tified from the 1,024 human genomes analyzed in this

study, we estimate that 1 in every 6,256 individuals has a

novel, heritable, gene retrocopy. Since this ignores any seg-

regating retrocopies in the reference genome, we sought to

estimate the number of reference retrocopies by cross-

referencing the deletion calls from the 1,000 Genomes

Project [57] with annotated pseudogenes in the human

reference genome. We found evidence for 10 GRIPs in the

reference (see Materials and methods) yielding a total of

58 segregating insertions for 1,025 individuals (when the

reference genome is included as one individual). This

increases our estimate of μ to 1 new gene retrocopy inser-

tion per 5,177 individuals per generation (see Materials

and methods). In order to apply Watterson’s formulae

without bias, the chosen markers must be selectively neu-

tral. A Tajima’s D test yields a value of -0.99, indicating

that while there may be some tendency toward purifying

selection, the detected human GRIPs are, when considered

on the whole, under neutral selection [58], validating this

method of estimation. Performing the same estimation for

chimpanzees using an effective population size of 11,413,

which was calculated from the same whole genome

sequence data [51], we arrive at an estimate of 1 new

insertion per every 6,804 chimps, quite comparable to

humans with the small discrepancy most likely due to a

lack of information concerning pseudogene deletions rela-

tive to the chimp reference assembly.
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Conclusions

A large fraction of the human genome is covered by copy

number variants (CNVs), including regions containing

genes [59], and a number of recent publications have high-

lighted the extent of variability in gene copy number due

to CNVs between individual humans. Starting from a

large-scale set of deletions detected in human populations

[60], Schrider and Hahn calculate that any two humans

differ by over 100 gene-containing CNVs [61]. Approxi-

mately 9% of human genes appear to vary in copy number,

mostly between 0 and 5 copies [62], likely through seg-

mental duplication. The data we have presented here add

to what is known about gene copy number variation by

highlighting another mechanism separate from the large

duplications that cause copy number variability of intron-

containing gene loci. Through retrotransposition, GRIPs

occur as interspersed insertions of processed transcripts.

Whereas segmentally duplicated genes are likely to share

the same regulatory regime, gene retrocopy insertions

often mobilize copies into novel regulatory contexts,

where they tend to experience an increased likelihood of

adaptive evolution [63]. Many of these new gene retrocopy

insertions will be inactive due to missing promoters, fra-

meshifts, and truncation. That said, the subset of GRIPs

that are recent enough not to be lost or fixed through

genetic drift are likely to be more recent insertions and

likely to have suffered fewer inactivating mutations to the

open reading frame and any intact regulatory elements.

It is clear that processed gene transcripts are retrotran-

sposed in the germline, and by extension one might ima-

gine that this also occurs in somatic tissues. Transgenic

mice with a LINE-1 cassette facilitating detection of inser-

tion events show extensive variation in transposition fre-

quency across tissues [64], and in particular, neural

progenitor cells in the brain [65]. There is evidence for

somatic retrotransposition during early development in

Drosophila [66] and in humans [67]. Somatic retrotran-

sposition of retroelements may also occur in human can-

cers [44,45] and contributes to a variety of human diseases

[68]. We have demonstrated that insertions of retrotran-

sposed processed transcripts can contribute to somatic

variation in tumor tissue. Given this observation, studies

of somatic retrotransposition of processed mRNAs in a

variety of somatic tissues including the brain may yield

novel retrocopy insertions, given evidence for elevated ret-

rotransposition in some specific neural tissues from quan-

titative PCR [69] and targeted ascertainment of insertion

sites [70]. That said, a recent study indicates some neural

tissues do not appear to support a high level of retrotran-

sposition [71].

Each new insertion of a gene retrocopy presents a new

opportunity for the evolution of a new gene or the modifi-

cation of an existing function at the site of insertion.

There are a number of examples where inserted gene ret-

rocopies have acquired new functions [20]. One notable

example is the insertion of cyclophilin A (PPIA) into

TRIM5a in the owl monkey leading to a novel gene fusion

that confers resistance to HIV-1 infection [72,73]. A simi-

lar mutation involving the insertion of a cyclophilin A ret-

rocopy into TRIM5a also occurred independently in

rhesus macaques, leading to resistance to HIV-2 and feline

immunodeficiency virus infection [74,75]. In total, we

report 22 human, 201 mouse, and 9 chimp GRIPs in

introns or exons that could lead to novel gene fusions

with modified functions [21]. While human GRIPs occur

in annotated genes about as often as would be expected by

chance, we identified a marked depletion of mouse GRIPs

in genes. This may indicate purifying selection due to dele-

terious effects on the genes hosting the GRIPs. In any case,

this observation illustrates that the ability to detect this

form of genomic variation opens new questions about the

biological consequences of gene retrocopy insertion and

provides a starting point for further investigation. In gen-

eral, this study will provide a foundation for future investi-

gation into the functional consequences of gene retrocopy

insertion polymorphisms.

Materials and methods

Gene retrocopy insertion detection from mapped paired

end reads

Paired end reads consist of two DNA sequences flanking

an internal unsequenced region. Given the average insert

size of a sequencing library, and the locations relative to

a reference genome where either end of a paired end

fragment map, a pair of mappings is termed concordant

if the sequenced ends are mapped to the reference gen-

ome at an interval and orientation compatible with the

library construction. Conversely, a pair of mappings is

termed discordant if the paired ends are mapped too far

apart or in the wrong orientation relative to the reference

genome to which they are mapped. Given sufficient read

depth and agreement between multiple paired reads, dis-

cordant read pairings can contain information about gen-

ome rearrangements relative to the reference if the

rearrangements bring two pieces of the genome into

proximity that are distant from one another in the refer-

ence genome. Here, we use discordant read mappings to

detect GRIPs by finding multiple discordant mappings

that connect exonic sequences to a consistent location

distant from the exons. We refer to the genome or gen-

omes from which a sequencing library was generated and

analyzed as the query genome. For some region of a

chromosome, if the sequence of the query genome

matches the sequence of the reference genome, read

pairs mapped to that region will be concordant as shown

in the normal mapping of Figure 1. Alternately, if a
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region in the query genome contains a structural variant

(insertion, deletion inversion, and so on) relative to the

reference, some or all of the read pairs mapping to that

location may be discordant. Figure 1 also demonstrates

the pattern of discordant mappings indicative of a gene

retrocopy insertion in the query genome. In order to con-

fidently predict the presence of a gene retrocopy in a

query genome or genomes, we require at least eight dis-

tinct mappings between the source gene and its insertion

location, with at least two mappings spanning each junc-

tion. Illumina sequencing chemistry yields paired reads

where the first read in the pair is sequenced on the top

strand and the second read is sequenced on the bottom

strand, such that the first read maps to the top (+) strand

of the reference genome and the second read maps to the

bottom (-) strand of the reference genome. Given this

property, the reads mapping to the 5’ side of the pre-

dicted insertion site must be on the top strand and the

reads on the 3’ side of the site must be on the bottom

strand. Likewise, the mappings of the discordant reads

themselves must be consistent with this pattern. We also

require that the reads mapping to the source gene must

correspond to at least two distinct exons. Additionally,

we filter out putative insertion sites where the site is in a

region of the genome that contains an annotated or

unannotated pseudogene. Unannotated pseudogenes are

ascertained by comparing the insertion site +/- 500 bp to

the rest of the reference genome using BLAT [76]. This

method (GRIPper) was implemented in Python using

pysam [77] and is available from github [78]. An archival

version of the software is also available as Additional file

4; however, we suggest using the most up-to-date version

via github.

Breakpoint ascertainment from soft-clipped reads

Many of the human samples analyzed in this study were

mapped using bwa [79], which allows for part of a read to

align as long as the seed sequence meets the minimum

mismatch criteria. The unaligned portion of these map-

pings is marked as soft-clipped. This provides a conveni-

ent means to check for breakpoints by looking for

consistent break ends corresponding to the 5’ and 3’ junc-

tions of the inserted gene retrocopy. Target site duplica-

tions are ascertained by searching for correspondence

between the sequences on either side of the breakpoint.

Local sequence assembly to identify exon-exon junctions

In order to identify exon-exon junctions that are present

in inserted processed gene retrocopy sequences, we

employed a two-stage local assembly strategy. First, read

pairs that map within 500 bp of a predicted insertion

site that are discordant, one-end-anchored (reads where

the mate is unmapped), or have at least one read in the

pair that is soft-clipped are used as input to a short read

assembler. For a first attempt at assembly, we use Velvet

[80] with a k-mer size of 31, the shortPaired option to

indicate the reads were paired, and an insert length of

300. The resulting contigs are aligned back to the refer-

ence genome using BLAT [76] to identify reads that map

to exonic sequences corresponding to the source gene

and without aligning to the intervening introns (spliced

alignments). The majority of junctions are ascertained in

this first step using Velvet which utilizes de Bruijn graphs

to guide assembly. Secondarily, the discordant, one-end-

anchored, and soft-clipped reads corresponding to the

remaining insertions for which an exon-exon junction

was not apparent were then assembled using PRICE [81],

which utilizes a seed-and-extend assembly strategy, and

aligned back to the reference to identify spliced junctions.

We ran PRICE for 20 cycles using the anchored read

pairs (those which map uniquely near the gene retrocopy

insertion site) as the seed sequences.

Simulation of novel gene retrocopy insertions

Retrogene insertions were simulated by adding insertions

of spliced, polyadenylated mRNA transcripts to sample

TCGA-60-2711-11 (LUSC-2711 Normal) using bamsur-

geon [82]. Bamsurgeon can add structural variants (includ-

ing insertions) to existing BAM files through local

assembly followed by modification of the assembled con-

tig, simulation of paired read coverage (100 paired end

base pairs with 300 unsequenced insert base pairs), rea-

lignment, and replacement into the original BAM. We

added a total of 2,000 insertions from 200 different pro-

cessed mRNAs (Table S11 in Additional file 1) to LUSC-

2711, and downsampled the resultant BAM from 60×

average coverage to 40×, 30×, 20×, 10×, and 5× using

DownSampleSam, part of the Picard suite of utilities [83].

We used GRIPper to detect the spiked-in processed

mRNAs to evaluate the detection characteristics. At 60×

coverage we obtained perfect precision and a recall of

0.751 (1,501 true positives and 499 false negatives with no

false positives). As expected, recall decreases with decreas-

ing coverage (Table S10 in Additional file 1). In general,

false negatives are due to single exon genes (for example,

OR7G2) at high coverage and mainly due to insufficient

read support at low coverage. Since we combined reads

from both tumor and normal genomes for all TCGA sam-

ples in this study, which have coverage of 30× or greater,

detection of germline insertions was done on samples with

an effective coverage of 60× or greater.

Identifying gene retrocopy insertions included in the

reference genome assembly

GRIPs in the reference genome that are not present in

other individuals will appear as deletions relative to the

reference. To detect these, we cross-referenced the dele-

tion data from the 1,000 Genomes Project [34,57] with
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pseudogene annotations from GENCODE/ENCODE [84]

and Yale [1]. Deletions were obtained in variant call for-

mat from the 1,000 Genomes Project FTP server, and

pseudogene annotations where obtained from the UCSC

Genome Browser [85], and from pseudogene.org human

build 65 [3]. To allow for repetitive sequences in gene

UTRs we allowed the deletion to span a region up to three

times larger than the surrounded pseudogene annotation.

We also required homology between the deleted sequence

and the source gene of the annotated pseudogene. A list of

the GRIPs ascertained in this way is included in Additional

file 1 (Table S7 in Additional file 1), two of which corre-

spond to both of the processed pseudogene deletion poly-

morphisms (pseudocopies of GCSH and ITGB1)

mentioned in a previous study [17].

Strategy for low-pass genome sequence data and tumor/

normal pairs

In order to ascertain insertion sites from a large collec-

tion of genomes sequenced at low (2× to 5×) coverage,

or to ensure maximum sensitivity in ascertaining can-

cer-specific insertions, we combine data across multiple

samples. This is accomplished simply by extracting dis-

cordant reads where one end maps to an exon and the

other end elsewhere in the reference genome from each

genome of interest, and analyzing the merged set of dis-

cordant reads en masse while keeping track of the sam-

ple identifier associated with each discordant pair of

mapped reads. When insertions are called, all genomes

contributing reads to a call are considered to have the

insertion.

Calculating coverage of gene annotations

In order to test for enrichment or depletion of gene ret-

rocopy insertions relative to gene annotations, we must

have an accurate figure for how much of the reference

genome assembly is covered by the set of annotations

used. For both human and mouse, we used UCSC genes

[86]: human version 5 and mouse version 5. From BED

formatted versions of these annotation tracks, the bed-

Coverage tool from the Kent source utilities was used to

calculate the fraction of the genome covered. To calcu-

late enrichment, we performed a one-sample proportions

test with continuity correction using the prop.test func-

tion in R [87].

Calculating distance between GRIP profiles

The Jaccard distance [52] is defined as:

Jδ(A, B) =
|A ∪ B| − |A ∩ B|

|A ∪ B| (1)

where A and B are sets of gene retrocopy insertions for

two genomes.

Estimating the rate of gene retrocopy insertion

Given a parameter θ and an effective population size Ne,

we can calculate the per-generation mutation rate μ by

[49]:

θ = 4Neµ (2)

where θ is estimated by:

θ̂W =
S

n−1
∑

i=1

1

i

=
S

an (3)

where S is the number of segregating sites and n is the

number of individuals. Since we have n = 1,024 and S =

48, an = 7.508, and θ̂W = 48/7.508 = 6.394 . If we assume

an effective population size of 10,000, μ = 6.394/40,000 ≈

1/6,256 GRIPs per individual per generation. Including

the 10 pseudogenes present in the reference but deleted

in one or more individuals in the 1,000 Genomes Project

data (Table S7 in Additional file 1), which likely indicate

GRIPs that are included in the reference, our estimate for

θ becomes θ̂W = 58/7.508 = 7.725 yielding a rate of μ =

7.725/40,000 ≈ 1/5,178 gene retrocopy insertions per

individual per generation.

This estimate requires the segregating sites to be neutral

markers. We determined that, on the whole, GRIPs qualify

as neutral markers with Tajima’s D test, based on com-

monly used critical values of -2.0 and +2.0 corresponding

to purifying and diversifying selection, respectively [58]:

D =
θ̂T − θ̂W

√

V̂

(4)

where θ̂T
is the mean number of differences between

any two individuals in terms of the chosen segregating

sites. In this case:

D =
3.412 − 6.394√

9.073
≈ −0.990 (5)

Data access

Data from the 1,000 Genomes Project [34] is available from

the website [88]; Table S1 in Additional file 1 contains a list

of individual genomes downloaded for analysis as part of

this study. Data from The Cancer Genome Atlas is available

to authorized users through the Cancer Genomics Hub

[89]; a list of tumor/normal pairs used in this analysis is

included as Table S3 in Additional file 1. The genomes of

17 inbred mouse strains [47] are available through the

Wellcome Trust Sanger Institute Mouse Genomes Project

[90]. The genomes of ten individual chimpanzees [54] are

available through the PanMap project [91].
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Additional material

Additional file 1: See Supplemental Data (Additional file 3) for

individual table and column descriptions.

Additional file 2: Contains splice junctions detected in inserted

sequences. The FASTA-formatted file can be opened with any text

editor.

Additional file 3: Contains descriptions of supplemental tables

(Additional file 1), supplemental figures, and sequences.

Additional file 4: Archival version of GRIPper. We recommend

downloading the latest version from github [78].
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