
CHATFIELD ET AL.: RETURN OF THE DEVIL 1

Return of the Devil in the Details:

Delving Deep into Convolutional Nets

Ken Chatfield

ken@robots.ox.ac.uk

Karen Simonyan

karen@robots.ox.ac.uk

Andrea Vedaldi

vedaldi@robots.ox.ac.uk

Andrew Zisserman

az@robots.ox.ac.uk

Visual Geometry Group

Department of Engineering Science

University of Oxford

Oxford, UK

Abstract

The latest generation of Convolutional Neural Networks (CNN) have achieved im-

pressive results in challenging benchmarks on image recognition and object detection,

significantly raising the interest of the community in these methods. Nevertheless, it

is still unclear how different CNN methods compare with each other and with previ-

ous state-of-the-art shallow representations such as the Bag-of-Visual-Words and the

Improved Fisher Vector. This paper conducts a rigorous evaluation of these new tech-

niques, exploring different deep architectures and comparing them on a common ground,

identifying and disclosing important implementation details. We identify several useful

properties of CNN-based representations, including the fact that the dimensionality of

the CNN output layer can be reduced significantly without having an adverse effect on

performance. We also identify aspects of deep and shallow methods that can be success-

fully shared. In particular, we show that the data augmentation techniques commonly

applied to CNN-based methods can also be applied to shallow methods, and result in an

analogous performance boost. Source code and models to reproduce the experiments in

the paper is made publicly available.

1 Introduction
Perhaps the single most important design choice in current state-of-the-art image classifica-

tion and object recognition systems is the choice of visual features, or image representation.

In fact, most of the quantitative improvements to image understanding obtained in the past

dozen years can be ascribed to the introduction of improved representations, from the Bag-

of-Visual-Words (BoVW) [6, 28] to the (Improved) Fisher Vector (IFV) [23]. A common

characteristic of these methods is that they are largely handcrafted. They are also relatively

simple, comprising dense sampling of local image patches, describing them by means of

visual descriptors such as SIFT, encoding them into a high-dimensional representation, and

then pooling over the image. Recently, these handcrafted approaches have been substantially

outperformed by the introduction of the latest generation of Convolutional Neural Networks

(CNNs) [19] to the computer vision field. These networks have a substantially more so-

phisticated structure than standard representations, comprising several layers of non-linear

c© 2014. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.



2 CHATFIELD ET AL.: RETURN OF THE DEVIL

feature extractors, and are therefore said to be deep (in contrast, classical representation will

be referred to as shallow). Furthermore, while their structure is handcrafted, they contain a

very large number of parameters learnt from data. When applied to standard image classifi-

cation and object detection benchmark datasets such as ImageNet ILSVRC [7] and PASCAL

VOC [9] such networks have demonstrated excellent performance [8, 11, 20, 25, 27], signif-

icantly better than standard image encodings [3].

Despite these impressive results, it remains unclear how different deep architectures com-

pare to each other and to shallow computer vision methods such as IFV. Most papers did not

test these representations extensively on a common ground, so a systematic evaluation of the

effect of different design and implementation choices remains largely missing. As noted in

our previous work [3], which compared the performance of various shallow visual encod-

ings, the performance of computer vision systems depends significantly on implementation

details. For example, state-of-the-art methods such as [17] not only involve the use of a

CNN, but also include other improvements such as the use of very large scale datasets, GPU

computation, and data augmentation (also known as data jittering or virtual sampling). These

improvements could also transfer to shallow representations such as the IFV, potentially ex-

plaining a part of the performance gap [22].

In this study we analyse and empirically clarify these issues, conducting a large set of

rigorous experiments (Sect. 4), in many ways picking up the story where it last ended in [3]

with the comparison of shallow encoders. We focus on methods to construct image rep-

resentations, i.e. encoding functions φ mapping an image I to a vector φ(I) ∈ R
d suitable

for analysis with a linear classifier, such as an SVM. We consider three scenarios (Sect. 2,

Sect. 3): shallow image representations, deep representations pre-trained on outside data,

and deep representation pre-trained and then fine-tuned on the target dataset. As part of

our tests, we explore generally-applicable best practices that are nevertheless more often

found in combination with CNNs [17] or, alternatively, with shallow encoders [3], porting

them with mutual benefit. These are (Sect. 2): the use of colour information, feature normal-

isation, and, most importantly, the use of substantial data augmentation. We also determine

scenario-specific best-practices, improving the ones in [3, 24] and others, including dimen-

sionality reduction for deep features. Finally, we achieve performance competitive with

the state of the art [21, 30] on PASCAL VOC classification using less additional training

data and significantly simpler techniques. As in [3], the source code and models to reproduce

all experiments in this paper is available on the project website1.

2 Scenarios
This section introduces the three types of image representation φ(I) considered in this paper,

describing them within the context of three different scenarios. Having outlined details spe-

cific to each, general methodologies which apply to all three scenarios are reviewed, such as

data augmentation and feature normalisation, together with the linear classifier (trained with

a standard hinge loss). We also specify here the benchmark datasets used in the evaluation.

Scenario 1: Shallow representation (IFV). Our reference shallow image representation

is the IFV [23]. Our choice is motivated by the fact that IFV usually outperforms related

encoding methods such as BoVW, LLC [3], and VLAD [15]. Given an image I, the IFV

φFV(I) is obtained by extracting a dense collection of patches and corresponding local de-

scriptors xi ∈ RD (e.g. SIFT) from the image at multiple scales. Each descriptor xi is then

soft-quantized using a Gaussian Mixture Model with K components. First and second order

differences between each descriptor xi and its Gaussian cluster mean µk are accumulated

1http://www.robots.ox.ac.uk/~vgg/research/deep_eval/

http://www.robots.ox.ac.uk/~vgg/research/deep_eval/


CHATFIELD ET AL.: RETURN OF THE DEVIL 3

in corresponding blocks uk, vk in the vector φFV(I) ∈ R2KD, appropriately weighed by the

Gaussian soft-assignments and covariance, leading to a 2KD-dimensional image represen-

tation φFV(I) = [u⊤
1 ,v

⊤
1 , . . .u

⊤
K ,v

⊤
K ]

⊤. The improved version of the Fisher vector involves

post-processing φFV by computing the signed square-root of its scalar components and nor-

malising the result to a unit ℓ2 norm. The details of this construction can be found in [23];

here we follow the notation of [3].

Scenario 2: Deep representation (CNN) with pre-training. Our deep representations are

inspired by the success of the CNN of Krizhevsky et al. [17]. As shown in [8, 32], the vector

of activities φCNN(I) of the penultimate layer of a deep CNN, learnt on a large dataset such

as ImageNet [7], can be used as a powerful image descriptor applicable to other datasets.

Numerous CNN architectures that improve the previous state of the art obtained using shal-

low representations have been proposed, but choosing the best one remains an open question.

Many are inspired by [17]: DeCAF [8, 11], Caffe [16], Oquab et al. [20]. Others use larger

networks with a smaller stride of the first convolutional layer: Zeiler and Fergus [32] and

OverFeat [25, 27]. Other differences include the CNN pre-training protocols. Here we adopt

a single learning framework and experiment with architectures of different complexity ex-

ploring their performance-speed trade-off.

Scenario 3: Deep representation (CNN) with pre-training and fine-tuning. In Scenario 2

features are trained on one (large) dataset and applied to another (usually smaller). How-

ever, it was demonstrated [11] that fine-tuning a pre-trained CNN on the target data can

significantly improve the performance. We consider this scenario separately from that of

Scenario 2, as the image features become dataset-specific after the fine-tuning.

Data augmentation. Data augmentation is a method applicable to shallow and deep repre-

sentations, but that has been so far mostly applied to the latter [17, 32]. By augmentation we

mean perturbing an image I by transformations that leave the underlying class unchanged

(e.g. cropping and flipping) in order to generate additional examples of the class. Augmenta-

tion can be applied at training time, at test time, or both. The augmented samples can either

be taken as-is or combined to form a single feature, e.g. using sum/max-pooling or stacking.

Linear predictors. All the representations φ(I) in the three scenarios are used to construct

linear predictors 〈w,φ(I)〉 for each class to be recognized. These predictors are learnt using

Support Vector Machines (SVM) by fitting w to the available training data by minimizing an

objective function balancing a quadratic regularizer and the hinge-loss. The parameter C in

the SVM, trading-off regularizer and loss, is determined using an held-off validation subset

of the data. Here we use the same learning framework with all representations. It is common

experience that linear classifiers are particularly sensitive to the normalisation of the data

and that, in particular, SVMs tend to benefit from ℓ2 normalisation [23] (an interpretation is

that after normalisation the inner product corresponds to the cosine similarly).

Benchmark data. As reference benchmark we use the PASCAL VOC [9] data as already

done in [3]. The VOC-2007 edition contains about 10,000 images split into train, valida-

tion, and test sets, and labelled with twenty object classes. A one-vs-rest SVM classifier for

each class is learnt and evaluated independently and the performance is measured as mean

Average Precision (mAP) across all classes. The VOC-2012 edition contains roughly twice

as many images and does not include test labels; instead, evaluation uses the official PAS-

CAL Evaluation Server. To train deep representations we use the ILSVRC-2012 challenge

dataset. This contains 1,000 object categories from ImageNet [7] with roughly 1.2M training

images, 50,000 validation images, and 100,000 test images. Performance is evaluated using

the top-5 classification error. Finally, we also evaluate over the Caltech-101 and Caltech-



4 CHATFIELD ET AL.: RETURN OF THE DEVIL

256 image classification benchmarks [10, 12]. For Caltech-101, we followed the protocol

of [3], and considered three random splits into training and testing data, each of which com-

prises 30 training and up to 30 testing images per class. For Caltech-256, two random splits

were generated, each of which contains 60 training images per class, and the rest are used

for testing. On both Caltech datasets, performance is measured using mean class accuracy.

3 Details
3.1 Improved Fisher Vector details

Our IFV representation uses a slightly improved setting compared to the best result of [3].

Computation starts by upscaling the image I by a factor of 2 [26], followed by SIFT

features extraction with a stride of 3 pixels at 7 different scales with
√

2 scale increments.

These features are square-rooted as suggested by [1], and decorrelated and reduced in di-

mension from 128D to 80D using PCA. A GMM with K = 256 components is learnt from

features sampled from the training images. Hence the Fisher Vector φFV(I) has dimen-

sion 2KD = 40,960. Before use in classification, the vector is signed-square-rooted and

l2-normalised (square rooting correspond to the Hellinger’s kernel map [29]). As in [3],

square-rooting is applied twice, once to the raw encodings, and once again after sum pooling

and normalisation. In order to capture weak geometrical information, the IFV representa-

tion is used in a spatial pyramid [18]. As in [3], the image is divided into 1× 1, 3× 1, and

2×2 spatial subdivisions and corresponding IFVs are computed and stacked with an overall

dimension of 8×2KD = 327,680 elements.

In addition to this standard formulation, we experiment with a few modifications. The

first one is the use of intra-normalisation of the descriptor blocks, an idea recently proposed

for the VLAD descriptor [2]. In this case, the ℓ2 normalisation is applied to the individual

sub-blocks (uk,vk) of the vector φFV(I), which helps to alleviate the local feature bursti-

ness [14]. In the case of the improved intra-normalised features, it was found that applying

the square-rooting only once to the final encoding produced the best results.

The second modification is the use of spatially-extended local descriptors [26] instead of

a spatial pyramid. Here descriptors xi are appended with their image location (xi,yi) before

quantization with the GMM. Formally, xi is extended, after PCA projection, with its nor-

malised spatial coordinates: [x⊤i ,xi/W −0.5,yi/H −0.5]⊤, where W ×H are the dimensions

of the image. Since the GMM quantizes both appearance and location, this allows for spatial

information to be captured directly by the soft-quantization process. This method is signif-

icantly more memory-efficient than using a spatial pyramid. Specifically, the PCA-reduced

SIFT features are spatially augmented by appending (x,y) yielding D = 82 dimensional de-

scriptors pooled in a 2KD = 41,984 dimensional IFV.

The third modification is the use of colour features in addition to SIFT descriptors. While

colour information is used in CNNs [17] and by the original FV paper [23], it was not

explored in our previous comparison [3]. We do so here by adopting the same Local Colour

Statistics (LCS) features as used by [23]. LCS is computed by dividing an input patch into

a 4×4 spatial grid (akin to SIFT), and computing the mean and variance of each of the Lab

colour channels for each cell of the grid. The LCS dimensionality is thus 4×4×2×3 = 96.

This is then encoded in a similar manner to SIFT.

3.2 Convolutional neural networks details

The CNN-based features are based on three CNN architectures representative of the state of

the art (shown in Table 1) each exploring a different accuracy/speed trade-off. To ensure a

fair comparison between them, these networks are trained using the same training protocol



CHATFIELD ET AL.: RETURN OF THE DEVIL 5

Arch. conv1 conv2 conv3 conv4 conv5 full6 full7 full8

CNN-F
64x11x11 256x5x5 256x3x3 256x3x3 256x3x3 4096 4096 1000
st. 4, pad 0 st. 1, pad 2 st. 1, pad 1 st. 1, pad 1 st. 1, pad 1 drop- drop- soft-

LRN, x2 pool LRN, x2 pool - - x2 pool out out max

CNN-M
96x7x7 256x5x5 512x3x3 512x3x3 512x3x3 4096 4096 1000

st. 2, pad 0 st. 2, pad 1 st. 1, pad 1 st. 1, pad 1 st. 1, pad 1 drop- drop- soft-
LRN, x2 pool LRN, x2 pool - - x2 pool out out max

CNN-S
96x7x7 256x5x5 512x3x3 512x3x3 512x3x3 4096 4096 1000

st. 2, pad 0 st. 1, pad 1 st. 1, pad 1 st. 1, pad 1 st. 1, pad 1 drop- drop- soft-
LRN, x3 pool x2 pool - - x3 pool out out max

Table 1: CNN architectures. Each architecture contains 5 convolutional layers (conv 1–5)

and three fully-connected layers (full 1–3). The details of each of the convolutional layers

are given in three sub-rows: the first specifies the number of convolution filters and their

receptive field size as “num x size x size”; the second indicates the convolution stride (“st.”)

and spatial padding (“pad”); the third indicates if Local Response Normalisation (LRN) [17]

is applied, and the max-pooling downsampling factor. For full 1–3, we specify their dimen-

sionality, which is the same for all three architectures. Full6 and full7 are regularised using

dropout [17], while the last layer acts as a multi-way soft-max classifier. The activation func-

tion for all weight layers (except for full8) is the REctification Linear Unit (RELU) [17].

and the same implementation, which we developed based on the open-source Caffe frame-

work [16]. ℓ2-normalising the CNN features φCNN(I) before use in the SVM was found to

be important for performance.

Our Fast (CNN-F) architecture is similar to the one used by Krizhevsky et al. [17]. It

comprises 8 learnable layers, 5 of which are convolutional, and the last 3 are fully-connected.

The input image size is 224×224. Fast processing is ensured by the 4 pixel stride in the first

convolutional layer. The main differences between our architecture and that of [17] are the

reduced number of convolutional layers and the dense connectivity between convolutional

layers ([17] used sparse connections to enable training on two GPUs).

Our Medium (CNN-M) architecture is similar to the one used by Zeiler and Fergus [32].

It is characterised by the decreased stride and smaller receptive field of the first convolutional

layer, which was shown to be beneficial on the ILSVRC dataset. At the same time, conv2

uses larger stride (2 instead of 1) to keep the computation time reasonable. The main differ-

ence between our net and that of [32] is we use less filters in the conv4 layer (512 vs. 1024).

Our Slow (CNN-S) architecture is related to the ‘accurate’ network from the OverFeat

package [27]. It also uses 7× 7 filters with stride 2 in conv1. Unlike CNN-M and [32],

the stride in conv2 is smaller (1 pixel), but the max-pooling window in conv1 and conv5

is larger (3× 3) to compensate for the increased spatial resolution. Compared to [27], we

use 5 convolutional layers as in the previous architectures ([27] used 6), and less filters in

conv5 (512 instead of 1024); we also incorporate an LRN layer after conv1 ([27] did not use

contrast normalisation).

CNN training. In general, our CNN training procedure follows that of [17], learning on

ILSVRC-2012 using gradient descent with momentum. The hyper-parameters are the same

as used by [17]: momentum 0.9; weight decay 5 · 10−4; initial learning rate 10−2, which

is decreased by a factor of 10, when the validation error stop decreasing. The layers are

initialised from a Gaussian distribution with a zero mean and variance equal to 10−2. We

also employ similar data augmentation in the form of random crops, horizontal flips, and

RGB colour jittering. Test time crop sampling is discussed in Sect. 3.3; at training time,

224×224 crops are sampled randomly, rather than deterministically. Thus, the only notable

difference to [17] is that the crops are taken from the whole training image P×256,P ≥ 256,



6 CHATFIELD ET AL.: RETURN OF THE DEVIL

rather than its 256× 256 centre. Training was performed on a single NVIDIA GTX Titan

GPU and the training time varied from 5 days for CNN-F to 3 weeks for CNN-S.

CNN fine-tuning on the target dataset. In our experiments, we fine-tuned CNN-S using

VOC-2007, VOC-2012, or Caltech-101 as the target data. Fine-tuning was carried out us-

ing the same framework (and the same data augmentation), as we used for CNN training

on ILSVRC. The last fully-connected layer (conv8) has output dimensionality equal to the

number of classes, which differs between datasets, so we initialised it from a Gaussian distri-

bution (as used for CNN training above). Now we turn to dataset-specific fine-tuning details.

VOC-2007 and VOC-2012. Considering that PASCAL VOC is a multi-label dataset (i.e. a

single image might have multiple labels), we replaced the softmax regression loss with a

more appropriate loss function, for which we considered two options: one-vs-rest classifi-

cation hinge loss (the same loss as used in the SVM experiments) and ranking hinge loss.

Both losses define constraints on the scores of positive (Ipos) and negative (Ineg) images for

each class: wcφ(Ipos) > 1− ξ ,wcφ(Ineg) < −1+ ξ for the classification loss, wcφ(Ipos) >
wcφ(Ineg)+ 1− ξ for the ranking loss (wc is the c-th row of the last fully-connected layer,

which can be seen as a linear classifier on deep features φ(I); ξ is a slack variable). Our

fine-tuned networks are denoted as “CNN S TUNE-CLS” (for the classification loss) and

“CNN S TUNE-RNK” (for the ranking loss). In the case of both VOC datasets, the training

and validation subsets were combined to form a single training set. Given the smaller size of

the training data when compared to ILSVRC-2012, we controlled for over-fitting by using

lower initial learning rates for the fine-tuned hidden layers. The learning rate schedule for

the last layer / hidden layers was: 10−2/10−4 → 10−3/10−4 → 10−4/10−4 → 10−5/10−5.

Caltech-101 dataset contains a single class label per image, so fine-tuning was performed

using the softmax regression loss. Other settings (including the learning rate schedule) were

the same as used for the VOC fine-tuning experiments.

Low-dimensional CNN feature training. Our baseline networks (Table 1) have the same

dimensionality of the last hidden layer (full7): 4096. This design choice is in accordance

with the state-of-the-art architectures [17, 27, 32], and leads to a 4096-D dimensional image

representation, which is already rather compact compared to IFV. We further trained three

modifications of the CNN-M network, with lower dimensional full7 layers of: 2048, 1024,

and 128 dimensions respectively. The networks were learnt on ILSVRC-2012. To speed-up

training, all layers aside from full7/full8 were set to those of the CNN-M net and a lower

initial learning rate of 10−3 was used. The initial learning rate of full7/full8 was set to 10−2.

3.3 Data augmentation details

We explore three data augmentation strategies. The first strategy is to use no augmentation.

In contrast to IFV, however, CNNs require images to be transformed to a fixed size (224×
224) even when no augmentation is used. Hence the image is downsized so that the smallest

dimension is equal to 224 pixels and a 224× 224 crop is extracted from the centre.2 The

second strategy is to use flip augmentation, mirroring images about the y-axis producing

two samples from each image. The third strategy, termed C+F augmentation, combines

cropping and flipping. For CNN-based representations, the image is downsized so that the

smallest dimension is equal to 256 pixels. Then 224×224 crops are extracted from the four

corners and the centre of the image. Note that the crops are sampled from the whole image,

rather than its 256× 256 centre, as done by [17]. These crops are then flipped about the

y-axis, producing 10 perturbed samples per input image. In the case of the IFV encoding,

2Extracting a 224×224 centre crop from a 256×256 image [17] resulted in worse performance.



CHATFIELD ET AL.: RETURN OF THE DEVIL 7

Method SPool Image Aug. Dim mAP
(I) FK BL spm – 327K 61.69 79.0 67.4 51.9 70.9 30.8 72.2
(II) DECAF – (C) t t 327K 73.41 87.4 79.3 84.1 78.4 42.3 73.7

(a) FK spm – 327K 63.66 83.4 68.8 59.6 74.1 35.7 71.2
(b) FK IN spm – 327K 64.18 82.1 69.7 59.7 75.2 35.7 71.3

(c) FK (x,y) – 42K 63.51 83.2 69.4 60.6 73.9 36.3 68.6
(d) FK IN (x,y) – 42K 64.36 83.1 70.4 62.4 75.2 37.1 69.1
(e) FK IN (x,y) (F) f - 42K 64.35 83.1 70.5 62.3 75.4 37.1 69.1
(f) FK IN (x,y) (C) f s 42K 67.17 85.5 71.6 64.6 77.2 39.0 70.8
(g) FK IN (x,y) (C) s s 42K 66.68 84.9 70.1 64.7 76.3 39.2 69.8
(h) FK IN 512 (x,y) – 84K 65.36 84.1 70.4 65.0 76.7 37.2 71.3
(i) FK IN 512 (x,y) (C) f s 84K 68.02 85.9 71.8 67.1 77.1 38.8 72.3
(j) FK IN COL 512 – – 82K 52.18 69.5 52.1 47.5 64.0 24.6 49.8
(k) FK IN 512 COL+ (x,y) – 166K 66.37 82.9 70.1 67.0 77.0 36.1 70.0
(l) FK IN 512 COL+ (x,y) (C) f s 166K 67.93 85.1 70.5 67.5 77.4 35.7 71.2

(m) CNN F – (C) f s 4K 77.38 88.7 83.9 87.0 84.7 46.9 77.5
(n) CNN S – (C) f s 4K 79.74 90.7 85.7 88.9 86.6 50.5 80.1

(o) CNN M – – 4K 76.97 89.5 84.3 88.8 83.2 48.4 77.0
(p) CNN M – (C) f s 4K 79.89 91.7 85.4 89.5 86.6 51.6 79.3
(q) CNN M – (C) f m 4K 79.50 90.9 84.6 89.4 85.8 50.3 78.4
(r) CNN M – (C) s s 4K 79.44 91.4 85.2 89.1 86.1 52.1 78.0
(s) CNN M – (C) t t 41K 78.77 90.7 85.0 89.2 85.8 51.0 77.8
(t) CNN M – (C) f - 4K 77.78 90.5 84.3 88.8 84.5 47.9 78.0
(u) CNN M – (F) f - 4K 76.99 90.1 84.2 89.0 83.5 48.1 77.2
(v) CNN M GS – – 4K 73.59 87.4 80.8 82.4 82.1 44.5 73.5
(w) CNN M GS – (C) f s 4K 77.00 89.4 83.8 85.1 84.4 49.4 77.6

(x) CNN M 2048 – (C) f s 2K 80.10 91.3 85.8 89.9 86.7 52.4 79.7
(y) CNN M 1024 – (C) f s 1K 79.91 91.4 86.9 89.3 85.8 53.3 79.8
(z) CNN M 128 – (C) f s 128 78.60 91.3 83.9 89.2 86.9 52.1 81.0

(α) FK+CNN F (x,y) (C) f s 88K 77.95 89.6 83.1 87.1 84.5 48.0 79.4
(β) FK+CNN M 2048 (x,y) (C) f s 86K 80.14 90.9 85.9 88.8 85.5 52.3 81.4

(γ) CNN S TUNE-RNK – (C) f s 4K 82.42 95.3 90.4 92.5 89.6 54.4 81.9

Table 2: VOC 2007 results (continued overleaf). See Sect. 4 for details.

the same crops are extracted, but at the original image resolution.

4 Analysis
This section describes the experimental results, comparing different features and data aug-

mentation schemes. The results are given in Table 2 for VOC-2007 and analysed next,

starting from generally applicable methods such as augmentation and then discussing the

specifics of each scenario. We then move onto other datasets and the state of the art in Sect. 4.

Data augmentation. We experiment with no data augmentation (denoted Image Aug=– in

Tab. 2), flip augmentation (Image Aug=F), and C+F augmentation (Image Aug=C). Aug-

mented images are used as stand-alone samples (f ), or by fusing the corresponding descrip-

tors using sum (s) or max (m) pooling or stacking (t). So for example Image Aug=(C) f s

in row [f] of Tab. 2 means that C+F augmentation is used to generate additional samples in

training (f ), and is combined with sum-pooling in testing (s).

Augmentation consistently improves performance by ∼ 3% for both IFV (e.g. [d] vs. [f])

and CNN (e.g. [o] vs. [p]). Using additional samples for training and sum-pooling for testing

works best ([p]) followed by sum-pooling [r], max pooling [q], and stacking [s]. In terms

of the choice of transformations, flipping improves only marginally ([o] vs. [u]), but using

the more expensive C+F sampling improves, as seen, by about 2 ∼ 3% ([o] vs. [p]). We

experimented with sampling more transformations, taking a higher density of crops from the



8 CHATFIELD ET AL.: RETURN OF THE DEVIL

(I) 79.9 61.4 56.0 49.6 58.4 44.8 78.8 70.8 85.0 31.7 51.0 56.4 80.2 57.5
(II) 83.7 83.7 54.3 61.9 70.2 79.5 85.3 77.2 90.9 51.1 73.8 57.0 86.4 68.0

(a) 80.7 64.4 53.8 53.8 60.2 47.8 79.9 68.9 86.1 37.3 51.1 55.8 83.7 56.9
(b) 80.6 64.8 53.9 54.9 60.7 50.5 80.4 69.5 86.2 38.3 54.4 56.3 82.7 56.7

(c) 81.1 64.2 51.1 53.4 61.9 50.0 80.0 67.5 85.3 35.7 51.9 53.8 83.5 58.9
(d) 80.5 66.9 50.9 53.9 62.1 51.5 80.5 68.5 85.9 37.2 55.2 54.3 83.3 59.2
(e) 80.5 66.8 51.0 54.1 62.2 51.5 80.4 68.2 86.0 37.3 55.1 54.2 83.3 59.2
(f) 82.4 71.6 52.8 62.4 63.4 57.1 81.6 70.9 86.9 41.2 61.2 56.9 85.2 61.5
(g) 81.9 71.0 52.8 61.6 62.2 56.8 81.8 70.0 86.5 41.5 61.0 56.5 84.3 60.9
(h) 81.1 67.9 52.6 55.4 61.4 51.2 80.5 69.1 86.4 41.2 56.0 56.2 83.7 59.9
(i) 82.5 73.2 54.7 62.7 64.5 56.6 82.2 71.3 87.5 43.0 62.0 59.3 85.7 62.4
(j) 66.1 46.6 42.5 35.8 41.1 45.5 75.4 58.3 83.9 39.8 47.3 35.6 69.2 49.0
(k) 80.0 65.9 52.8 56.1 61.0 56.9 81.4 69.6 88.4 49.0 59.2 56.4 84.7 62.8
(l) 81.6 70.8 52.9 59.6 63.1 59.9 82.1 70.5 88.9 50.6 63.7 57.5 86.1 64.1

(m) 86.3 85.4 58.6 71.0 72.6 82.0 87.9 80.7 91.8 58.5 77.4 66.3 89.1 71.3
(n) 87.8 88.3 61.3 74.8 74.7 87.2 89.0 83.7 92.3 58.8 80.5 69.4 90.5 74.0

(o) 85.1 87.4 58.1 70.4 73.1 83.5 85.5 80.9 90.8 54.1 78.9 61.1 89.0 70.4
(p) 87.7 88.6 60.3 80.1 74.4 85.9 88.2 84.6 92.1 60.3 80.5 66.2 91.3 73.5
(q) 87.6 88.6 60.7 78.2 73.6 86.0 87.4 83.8 92.3 59.3 81.0 66.8 91.3 74.0
(r) 87.5 88.1 60.4 76.9 74.8 85.8 88.1 84.3 92.2 59.5 79.3 65.8 90.8 73.5
(s) 87.3 87.6 60.1 72.3 75.3 85.2 86.9 82.6 91.9 58.5 77.9 66.5 90.5 73.4
(t) 85.7 87.9 58.3 74.2 73.9 84.7 86.6 82.0 91.0 55.8 79.2 62.1 89.3 71.0
(u) 85.3 87.3 58.1 70.0 73.4 83.5 86.0 80.8 90.9 53.9 78.1 61.2 88.8 70.6
(v) 85.0 84.9 57.8 65.9 69.8 79.5 82.9 77.4 89.2 42.8 71.7 60.2 86.3 67.8
(w) 87.2 86.5 59.5 72.4 74.1 81.7 86.0 82.3 90.8 48.9 73.7 66.8 89.6 71.0

(x) 87.6 88.4 60.2 76.9 75.4 85.5 88.0 83.4 92.1 61.1 83.1 68.5 91.9 74.2
(y) 87.8 88.6 59.0 77.2 73.1 85.9 88.3 83.5 91.8 59.9 81.4 68.3 93.0 74.1
(z) 86.6 87.5 59.1 70.0 72.9 84.6 86.7 83.6 89.4 57.0 81.5 64.8 90.4 73.4

(α) 86.8 85.6 59.9 72.0 73.4 81.4 88.6 80.5 92.1 60.6 77.3 66.4 89.3 73.3
(β) 87.7 88.4 61.2 76.9 76.6 84.9 89.1 82.9 92.4 61.9 80.9 68.7 91.5 75.1

(γ) 91.5 91.9 64.1 76.3 74.9 89.7 92.2 86.9 95.2 60.7 82.9 68.0 95.5 74.4

Table 2: VOC 2007 results (continued from previous page)

centre of the image, but observed no benefit.

Colour. Colour information can be added and subtracted in CNN and IFV. In IFV replacing

SIFT with the colour descriptors of [23] (denoted COL in Method) yields significantly worse

performance ([j] vs. [h]). However, when SIFT and colour descriptors are combined by

stacking the corresponding IFVs (COL+) there is a small but significant improvement of

around ∼ 1% in the non-augmented case (e.g. [h] vs. [k]) but little impact in the augmented

case (e.g. [i] vs. [l]). For CNNs, retraining the network after converting all the input images to

grayscale (denoted GS in Methods) has a more significant impact, resulting in a performance

drop of ∼ 3% ([w] vs. [p], [v] vs. [o]).

Scenario 1: Shallow representation (IFV). The baseline IFV encoding using a spatial pyra-

mid [a] performs slightly better than the results [I] taken from Chatfield et al. [3], primar-

ily due to a larger number of spatial scales being used during SIFT feature extraction, and

the resultant SIFT features being square-rooted. Intra-normalisation, denoted as IN in the

Method column of the table, improves the performance by ∼ 1% (e.g. [c] vs. [d]). More

interestingly, switching from spatial pooling (denoted spm in the SPool column) to feature

spatial augmentation (SPool=(x,y)) has either little effect on the performance or results in a

marginal increase ([a] vs. [c], [b] vs. [d]), whilst resulting in a representation which is over

10× smaller. We also experimented with augmenting with scale in addition to position as



CHATFIELD ET AL.: RETURN OF THE DEVIL 9

ILSVRC-2012 VOC-2007 VOC-2012 Caltech-101 Caltech-256
(top-5 error) (mAP) (mAP) (accuracy) (accuracy)

(a) FK IN 512 - 68.0 – – –

(b) CNN F 16.7 77.4 79.9 – –
(c) CNN M 13.7 79.9 82.5 87.15 ± 0.80 77.03 ± 0.46
(d) CNN M 2048 13.5 80.1 82.4 86.64 ± 0.53 76.88 ± 0.35
(e) CNN S 13.1 79.7 82.9 87.76 ± 0.66 77.61 ± 0.12
(f) CNN S TUNE-CLS 13.1 - 83.0 88.35 ± 0.56 77.33 ± 0.56
(g) CNN S TUNE-RNK 13.1 82.4 83.2 – –

(h) Zeiler & Fergus [32] 16.1 - 79.0 86.5 ± 0.5 74.2 ± 0.3
(i) Razavian et al. [25, 27] 14.7 77.2 – – –

(j) Oquab et al. [20] 18 77.7 78.7 (82.8*) – –

(k) Oquab et al. [21] - - 86.3* – –

(l) Wei et al. [30] - 81.5 (85.2*) 81.7 (90.3*) – –
(m) He et al. [13] 13.6 80.1 - 91.4 ± 0.7 –

Table 3: Comparison with the state of the art on ILSVRC2012, VOC2007, VOC2012,

Caltech-101, and Caltech-256. Results marked with * were achieved using models pre-

trained on the extended ILSVRC datasets (1512 classes in [20, 21], 2000 classes in [30]).

All other results were achieved using CNNs pre-trained on ILSVRC-2012 (1000 classes).

in [26] but observed no improvement. Finally, we investigate pushing the parameters of the

representation setting K = 512 (rows [h]-[l]). Increasing the number of GMM centres in the

model from K = 256 to 512 results in a further performance increase (e.g. [h] vs. [d]), but at

the expense of higher-dimensional codes (125K dimensional).

Scenario 2: Deep representation (CNN) with pre-training. CNN-based methods consis-

tently outperform the shallow encodings, even after the improvements discussed above, by

a large ∼ 10% mAP margin ([i] vs. [p]). Our small architecture CNN-F, which is similar to

DeCAF [8], performs significantly better than the latter ([II] vs. [s]), validating our imple-

mentation. Both medium CNN-M [m] and slow CNN-S [p] outperform the fast CNN-F [m]

by a significant 2 ∼ 3% margin. Since the accuracy of CNN-S and CNN-M is nearly the

same, we focus on the latter as it is simpler and marginally (∼ 25%) faster. Remarkably,

these good networks work very well even with no augmentation [o]. Another advantage of

CNNs compared to IFV is the small dimensionality of the output features, although IFV can

be compressed to an extent. We explored retraining the CNNs such that the final layer was

of a lower dimensionality, and reducing from 4096 to 2048 actually resulted in a marginal

performance boost ([x] vs. [p]). What is surprising is that we can reduce the output dimen-

sionality further to 1024D [y] and even 128D [z] with only a drop of ∼ 2% for codes that are

32× smaller (∼ 650× smaller than our best performing IFV [i]). Note, ℓ2-normalising the

features accounted for up to ∼ 5% of their performance over VOC 2007; it should be applied

before input to the SVM and after pooling the augmented descriptors (where applicable).

Scenario 3: Deep representation (CNN) with pre-training and fine-tuning. We fine-

tuned our CNN-S architecture on VOC-2007 using the ranking hinge loss, and achieved a

significant improvement: 2.7% ([γ] vs. [n]). This demonstrates that in spite of the small

amount of VOC training data (5,011 images), fine-tuning is able to adjust the learnt deep

representation to better suit the dataset in question.

Combinations. For the CNN-M 2048 representation [x], stacking deep and shallow repre-

sentations to form a higher-dimensional descriptor makes little difference ([x] vs. [β]). For

the weaker CNN-F it results in a small boost of ∼ 0.8% ([m] vs. [α]).

Comparison with the state of the art. In Table 3 we report our results on ILSVRC-2012,

VOC-2007, VOC-2012, Caltech-101, and Caltech-256 datasets, and compare them to the



10 CHATFIELD ET AL.: RETURN OF THE DEVIL

state of the art. First, we note that the ILSVRC error rates of our CNN-F, CNN-M, and

CNN-S networks are better than those reported by [17], [32], and [27] for the related con-

figurations. This validates our implementation, and the difference is likely to be due to the

sampling of image crops from the uncropped image plane (instead of the centre). When

using our CNN features on other datasets, the relative performance generally follows the

same pattern as on ILSVRC, where the nets are trained – the CNN-F architecture exhibits

the worst performance, with CNN-M and CNN-S performing considerably better.

Further fine-tuning of CNN-S on the VOC datasets turns out to be beneficial; on VOC-

2012, using the ranking loss is marginally better than the classification loss ([g] vs. [f]),

which can be explained by the ranking-based VOC evaluation criterion. Fine-tuning on

Caltech-101 also yields a small improvement, but no gain is observed over Caltech-256.

Our CNN-S net is competitive with recent CNN-based approaches [13, 20, 21, 25, 30, 32]

and on a number of datasets (VOC-2007, VOC-2012, Caltech-101, Caltech-256) and sets the

state of the art on VOC-2007 and VOC-2012 across methods pre-trained solely on ILSVRC-

2012 dataset. While the CNN-based methods of [21, 30] achieve better performance on

VOC (86.3% and 90.3% respectively), they were trained using extended ILSVRC datasets,

enriched with additional categories semantically close to the ones in VOC. Additionally, [30]

used a significantly more complex classification pipeline, driven by bounding box propos-

als [5], pre-trained on ILSVRC-2013 detection dataset. Their best reported result on VOC-

2012 (90.3%) was achieved by the late fusion with a complex hand-crafted method of [31];

without fusion, they get 84.2%. On Caltech-101, [13] achieves the state of the art using spa-

tial pyramid pooling of conv5 layer features, while we used full7 layer features consistently

across all datasets (for full7 features, they report 87.08%).

In addition to achieving performance comparable to the state of the art with a very simple

approach (but powerful CNN-based features), with the modifications outlined in the paper

(primarily the use of data augmentation similar to the CNN-based methods) we are able to

improve the performance of shallow IFV to 68.02% (Table 2, [i]).

Timings and dimensionality. One of our best-performing CNN representations CNN-M-

2048 [x] is ∼ 42× more compact than the best performing IFV [i] (84K vs. 2K) and CNN-M

features are also ∼ 50× faster to compute (∼ 120s vs. ∼ 2.4s per image with augmentation

enabled, over a single CPU core). Non-augmented CNN-M features [o] take around 0.3s per

image, compared to ∼ 0.4s for CNN-S features and ∼ 0.13s for CNN-F features.

5 Conclusion
In this paper we presented a rigorous empirical evaluation of CNN-based methods for im-

age classification, along with a comparison with more traditional shallow feature encoding

methods. We have demonstrated that the performance of shallow representations can be sig-

nificantly improved by adopting data augmentation, typically used in deep learning. In spite

of this improvement, deep architectures still outperform the shallow methods by a large mar-

gin. We have shown that the performance of deep representations on the ILSVRC dataset is

a good indicator of their performance on other datasets, and that fine-tuning can further im-

prove on already very strong results achieved using the combination of deep representations

and a linear SVM. Source code and CNN models to reproduce the experiments presented in

the paper are available on the project website [4] in the hope that it would provide common

ground for future comparisons, and good baselines for image representation research.

Acknowledgements. This work was supported by the EPSRC and ERC grant VisRec no.

228180. We gratefully acknowledge the support of NVIDIA Corporation with the donation

of the GPUs used for this research.



CHATFIELD ET AL.: RETURN OF THE DEVIL 11

References

[1] R. Arandjelović and A. Zisserman. Three things everyone should know to improve

object retrieval. In Proc. CVPR, 2012.

[2] R. Arandjelović and A. Zisserman. All about VLAD. In Proc. CVPR, 2013.

[3] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details:

an evaluation of recent feature encoding methods. In Proc. BMVC., 2011.

[4] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the

details: delving deep into convolutional nets webpage, 2014. URL http://www.

robots.ox.ac.uk/~vgg/research/deep_eval.

[5] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. H. S. Torr. BING: Binarized normed gradi-

ents for objectness estimation at 300fps. In Proc. CVPR, 2014.

[6] G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags of keypoints.

In Workshop on Statistical Learning in Computer Vision, ECCV, pages 1–22, 2004.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. In Proc. CVPR, 2009.

[8] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. De-

caf: A deep convolutional activation feature for generic visual recognition. CoRR,

abs/1310.1531, 2013.

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

PASCAL Visual Object Classes (VOC) challenge. IJCV, 88(2):303–338, 2010.

[10] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few

training examples: An incremental bayesian approach tested on 101 object categories.

In IEEE CVPR Workshop of Generative Model Based Vision, 2004.

[11] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for

accurate object detection and semantic segmentation. In Proc. CVPR, 2014.

[12] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical

Report 7694, California Institute of Technology, 2007. URL http://authors.

library.caltech.edu/7694.

[13] K. He, A. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional

networks for visual recognition. In Proc. ECCV, 2014.

[14] H. Jégou, M. Douze, and C. Schmid. On the burstiness of visual elements. In Proc.

CVPR, Jun 2009.

[15] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid. Aggregating

local images descriptors into compact codes. IEEE PAMI, 2012.

[16] Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding.

http://caffe.berkeleyvision.org/, 2013.

http://www.robots.ox.ac.uk/~vgg/research/deep_eval
http://www.robots.ox.ac.uk/~vgg/research/deep_eval
http://authors.library.caltech.edu/7694
http://authors.library.caltech.edu/7694
http://caffe.berkeleyvision.org/


12 CHATFIELD ET AL.: RETURN OF THE DEVIL

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep con-

volutional neural networks. In NIPS, pages 1106–1114, 2012.

[18] S. Lazebnik, C. Schmid, and J Ponce. Beyond Bags of Features: Spatial Pyramid

Matching for Recognizing Natural Scene Categories. In Proc. CVPR, 2006.

[19] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural

Computation, 1(4):541–551, 1989.

[20] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and Transferring Mid-Level

Image Representations using Convolutional Neural Networks. In Proc. CVPR, 2014.

[21] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Weakly supervised object recognition

with convolutional neural networks. Technical Report HAL-01015140, INRIA, 2014.

[22] M. Paulin, J. Revaud, Z. Harchaoui, F. Perronnin, and C. Schmid. Transformation

Pursuit for Image Classification. In Proc. CVPR, 2014.

[23] F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel for large-scale

image classification. In Proc. ECCV, 2010.

[24] F. Perronnin, Z. Akata, Z. Harchaoui, and C. Schmid. Towards good practice in large-

scale learning for image classification. In Proc. CVPR, pages 3482–3489, 2012.

[25] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN Features off-the-shelf: an

Astounding Baseline for Recognition. CoRR, abs/1403.6382, 2014.

[26] J. Sánchez, F. Perronnin, and T. Emídio de Campos. Modeling the spatial layout of im-

ages beyond spatial pyramids. Pattern Recognition Letters, 33(16):2216–2223, 2012.

[27] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat:

Integrated Recognition, Localization and Detection using Convolutional Networks. In

Proc. ICLR, 2014.

[28] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching

in videos. In Proc. ICCV, volume 2, pages 1470–1477, 2003.

[29] A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. IEEE

PAMI, 2011.

[30] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao, and S. Yan. CNN: Single-label to

multi-label. CoRR, abs/1406.5726, 2014.

[31] S. Yan, J. Dong, Q. Chen, Z. Song, Y. Pan, W. Xia, H. Zhongyang, Y. Hua, and S. Shen.

Generalized hierarchical matching for subcategory aware object classification. In The

PASCAL Visual Object Classes Challenge Workshop, 2012.

[32] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.

CoRR, abs/1311.2901, 2013.


