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I 

Robert G. Bartle 

To J. T. Schwartz, on his 65th birthday 

§1. INTRODUCTION. It is well known that the Riemann integral is not adequate 
for advanced mathematics, since there are many functions that are not Riemann- 
integrable, and since the integral does not possess sufficiently strong convergence 
theorems. To correct these deficiencies, Lebesgue developed his integral around 
the turn of the present century, and his integral has become the "official" integral 
in mathematical research. 

However, there are also difficulties with the Lebesgue integral: 
(1) There exist functions F that are differentiable at every point, but such that 

their derivatives F' are not Lebesgue integrable. Thus an added hypothesis is 
necessary to validate the formula 

| F' = Ffb)-Ffa)* ( la) 

As one consequence, theorems justifying the substitution formula 

|9(b)t= | (t° f)9' (lb) 

become unnecessarily complicated. 
(2) Some improper integrals, such as the important Dirichlet integral 

X sin x 
| -dx, ( lc) 

do not exist as Lebesgue integrals (since lx-1 sin xl is not Lebesgue integrable). 
(3) A considerable amount of measure theory needs to be developed before the 

Lebesgue integral can be defined. 
It is the position of the present author that the time has come to discard the 

Lebesgue integral as the primary integral. We should replace it with a general form of 
the Riemann integral that surprisingly enough is more general than the 
Lebesgue integral and corrects the above difficulties. This generalization was 
discovered by Jaroslav Kurzweil and Ralph Henstock around 1960, but for some 
reason it has not become well known. Its definition is "Riemann-like", but its 
power is "super-Lebesgue". It is our view that we should not try to teach proofs 
to beginning calculus students, but that we should equip them with theorems to 
apply. Somewhat later, serious undergraduate students should be expected to 
understand appropriate proofs. We believe that most American undergraduates 
are not ready to study the Lebesgue integral, but that they are capable of 
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mastering a (somewhat stripped-down) version of the generalized Riemann inte- 
gral. In §§2-10, we will provide an outline of such a version, with some side 
remarks to those who already know about the Lebesgue integral. 

Historical remark Over 20 years ago, E. J. McShane [7] made an eloquent 
argument for replacing the usual measure-theoretic approach to the Lebesgue 
integral by a Riemann-type approach that is afforded by the generalized Riemann 
integral. He later published a book [8] that could be used as a text for undergradu- 
ates in such a course. It is the present author's opinion that McShane was (i) overly 
optimistic in believing that the full Lebesgue integral can be taught to undergradu- 
ates, and (ii) overly conservative in developing the Lebesgue integral and not the 
generalized Riemann integral, which is more powerful and, we believe, conceptu- 
ally simpler. 

§2. BASIC DEFINITIONS. For the sake of simplicity, we will limit most of our 
remarks to the case of an interval I = [a, b], a < b, in R and functions with 
(finite!) values in R. 

A partition of I is a finite collection of non-overlapping nondegenerate closed 
intervals {Ii}i'l 1 whose union is I. Usually the partition is ordered and the intervals 
are specified by their end points; thus Ii = [xi_1, xi], where 

a =x0 <x1 < *i <xi_1 <xi< *i <x)1 =b (2a) 

A tagged partition P = {([xi_1, xi], ti)}i'1 1 is a finite set of ordered pairs, where the 
closed intervals Ii = [xi_l, xi] form a partition of I and the numbers ti E Ii are 
called the corresponding tags. If P = {([xi_1, xi], ti)tI l is a tagged partition of I 

and f: I R is a function, then the Riemann sum S( f; P) of f corresponding to P 

is the number 
n 

Sf f; P) = E f(ti)(xi - xi_1) (2b) 
i=l 

The usual definition of the Riemann integral can be phrased: The number 

A E R is the Riemann integral of f: I R if for every e > O there exists a constant 

t > 0 such that if P = {([xi_1, xi], ti)}i'1 1 is any tagged partition of I satisfying 
° <Xi - Xi-l < aE for i = 1, . . . ,n, then 

|S(f;P) -A| < s. (2c) 

It turns out that tte use of a constant t > 0 restricts the Riemann integral 
quite considerably. The generalized Riemann integral is obtained by allowing t to 
be any strictly positive function on I. At first glance, that change seems to be very 
minor, but it turns out to make a profound difference in the properties of the 
resulting integral. 

A strictly positive function 8 on I is called a gauge on I. If 8 is a gauge on I 
and P = {([xi_1, xi], ti)}i'1 1 is a tagged partition of I, we say that P is 8-fine in 
case 

0 <xi -xi_1 < 8(ti) for i = 1,...,n. (2d) 

The Nested Intervals Theorem implies that, given any gauge 8 on I, there exist 
&fine partitions of I. The definition of the generalized Riemann integral differs 
from that of the ordinary Riemann integral by allowing nonconstant gauges. 
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(2.1) DeXlnition. A number B E R is the generalized Riemann integral of a function 

f: I R if for every e > O there exists a gauge G on I such that if P = 

{([xi_1, xi], ti)01 1 is any partition of I that is AE-fine, then 

|S(f;P)-B|<e. (2e) 

In this case we will write f sS*(I) and denote B = lif = labf 

To show directly that f eSf*(I), one must produce a suitable gauge t on I for 
any given e > 0. However, there is a Cauchy condition for integrability and it is 
usually more convenient to use that condition (or other theorems) to establish the 
integrability of functions. It is an easy exercise to show that if f eSf*(I), then the 
number B in (2e) is uniquely determined. Further, one can change the values of an 
integrable function on a null set without affecting the integrability or the value of 
the integral. The collection S*(I) is a vector space and admits pointwise multipli- 
cation by functions of bounded variation. (Recall the Abel and Dirichlet Tests for 
non-absolutely convergent series.) 

Remark In establishing the details of the theory, it is found to be convenient to 
use a slightly different definition of 8-fineness. 

§3. SOME EXAMPLES. We now give some examples of functions that belong to 
the collection S*(I). 

(3.1) Every Riemann integrable function on I is in S*(I). 
This follows from the fact that the gauge can be a strictly positive constant 

function. Thus, every continuous function on I is in S*(I), and every step 
function on I is in S*(I). 

(3.2) If h: [0,1] R is Dirichlet's function (= the characteristic function of the 

rational numbers in [0, 1]), then h E Sf *([O, 1]) and loh = 0. 
To prove this assertion, we will define an appropriate gauge t. First we 

enumerate these rational numbers as {rl, r2, . . . }. We define bE(ri) = E/2i+1, and 
if x E [0,1] is irrational we define t(x) = 1; clearly aE iS a gauge on [0,1]. If P is 
a t-fine tagged partition, there can be at most two subintervals in P that have the 
number ri as tag, and the length of each of those subintervals is < s/2i+l. Hence 
the contribution to S(h; P) from subintervals with tag ri is < s/2i. Since the 
terms in S(h; P) with tags at irrational points contribute 0, we readily see that 

00 

O<S(h;P) < E s/2i= s. 
i=l 

Since e > O is arbitrary, this shows that h E S*([0, 1]) and that lolh = 0. 

(3.3) Every Lebesgue integrable function on I is in S*(I). 
A proof of this (non-obvious) result requires an understanding of the Lebesgue 

integral. Thus the teacher will want to know a proof, but the student is not 
concerned with this result or its proof. 

(3.4) There exist functions in S*(I) that do not belong to S(I). 
Indeed, the function F(x) = X2 COS(7r/X2) for x E (0,1] and F(O) = O is readily 

seen to be differentiable at every point of [0,1]. It will be seen in §4 that this 
implies that f = F' eSF*([O, 1]). [However, since F is not absolutely continuous 
on [0,1] the teacher will understand that f ¢S([0, 1]).] 
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(3.5) If ,1=la,1 is any convergent series, then one can define h(x) = 2nan for 
x E (1/2'1, 1/2'1-1 ] for n E N and h(O) = O. A gauge can be constructed to show 
that h E Sf *([O, 1]) and that 

r h = E a,1 . 

O n=l 

Moreover, Ihl s*([O, 1]) if and only if the series £n1a,1 is absolutely convergent 
[if and only if h sS([O, 1])]. 

Example (3.5) shows that the absolute value of function in S*(I) is not 
necessarily in S*(I). Thus the generalized Riemann integral is not an "absolute 
integral". That is why the Dirichlet integrand in (lc) can be in *([O, oo)). 

§4. THE FUNDAMENTAL THEOREM. We have noted in §1 that the Lebesgue 
integral is not powerful enough to integrate evezy derivative. That fact led Denjoy 
and Perron to develop their (very different) theories of integration. The details and 
subtleties of these theories of integration are quite considerable (see [2]). This 
stands in marked contrast with the geeralized Riemann integrals, for which, as we 
will now see, the details are remarkably simple. 

(4.1) Fundamental Theorem. It F: [a, b] R is digerentiable at euery point of 

I = [a, b], then f = F' belongs to Sf*(I) and 

| f = F( b)-F f a) * (4a) 

Proof: If t E I, since f(t) = F'(t) exists, given E > O there exists t(t) > O such 
that if O < lz - tl S t(t), z E I, then 

F(z)-F(t) _ f(t) S E. 

Thus a gauge t has been defined on I. Further, if lz - tl S bE(t) z E I, then 

I F( Z)-F(t)-( z-t) f (t) | < E|Z-tl. 

Hence,ifa<u<t<v<bandO<v-ust(t),thenitfollowsthat 

|F(V)-F(u)-(v-u)t(t) | 

< IF(V)-F(t)-(v-t)f(t) | + |F(t)-F(u)-(t-u)f(t) | 

< E(V - t) + E(t - u) = E(V-u) 

If P = {([xi_1, xi], ti)}i'1 1 is a bE-fine partition of I, then the telescoping sum 
F(b) - F(a) = '11_1{F(xi) - F(xi_1)} satisfies the approximation 

n 

|F(b)-F(a)-S( f; P) | = E {F(xi)-F(xi_1)-t(ti)(xi-xi-1)} 
i 1 

n 

S E | F(xi)-F(xi_l )-f(ti)(Xi-Xi-l ) I 
i=l 

n 

< E E(Xi -Xi-1) = E(b a). 
i=l 

Since E > O iS arbitrary, this shows that f is in S*(I) and establishes (4a). 
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It is not difficult to extend the Fundamental Theorem (4.1) to a function that is 
the derivative of a continuous function at all but a countable set of points in I. 
Thus, it follows that the function defined by f(x) = 1/4 for x E (0,1] and 
f(O) = O is in S*([0, 1]), since it is the derivative of the function F(x) = 24 
except at x = 0. Thus we have 

| f = |-dx = 2410 = 2. 
O o W 

Of course, the function f is well known to have an improper Riemann integral; we 
have just seen that it has an ordinary generalized Riemann integral. 

§5. SUBbl'll'tJTION THEOREMS. In view of the simplicity of the Fundamental 
Theorem (4.1), one can make corresponding improvements in the theorems justify- 
ing the familiar "substitution formula": 

lsp(a) la ( Sa) 

Although this formula is a basic tool in analysis, it is seldom stated (or proved) with 
the generality required for nontrivial use. We will content ourself with two 
theorems that the generalized Riemann integral renders valid. 

(S.1) Substitution Theorem, I. Let sp: [a, b] R be differentiable on I = [a, b] and 

let F be differentiable on the interval sp(I). If f(x) = F'(x) for all x E sp(I), then 
equation (Sa) holds. 

Proof: It follows from the Chain Rule that (F° sp)'(x) = (f o sp)(x)sp'(x) for all 
x E I. Two applications of the Fundamental Theorem (4.1) imply that 

la (f 'P) (P = F O |b = F|<P(b) = |5°(b)f 

The proof of the next result is more subtle. 

(5.2) Substitution Theorem, II. Let f be a strictly increasing and differentiable 
mappingof I = [a, b] onto sp(I) = [sp(a), sp(b)]. Then f belongs to Sf*(sp(I)) if and 
only if (f o sp)sp' belongs to Sf*(I). In this case (Sa) holds. 

Both (S.1) and (5.2) can be extended to more general circumstances. 

§6. IMPROPER INTEGRALS. One of the remarkable properties of the general- 
ized Riemann integral (that is not shared by either the ordinary Riemann integral 
or the Lebesgue integral) is the following theorem due to H. Hake. 

(6.1) Hake's Theorem. A function f belongs to Sf *([a, b]) if and only if it belongs to 
Sf *([a, c]) for every c E (a, b) and limc c b- JaCf exists in R. In this case labf = 
limc c b- la f 

One can interpret Hake's Theorem as asserting: The generalized Riemann integral 
cannot be extended by adjoining functions with "improper integrals". In other words, if 
the "improper integral" exists, then the integral exists as (an ordinary) generalized 
Riemann integral. 

1996] RETURN TO THE RIEMANN INTEGRAL 629 



The student would be interested in the half of the theorem asserting that the 
integral can be evaluated as a limit; the proof of that part is rather easy. The 
harder part of the proof is of interest only to the teacher, since only the teacher 
believes in improper integrals. 

§7. CHARAC1EM>TION OF INDERNITE INTEGS. In §4 we discussed 
one aspect of the Fundamental Theorem, namely the integrability of any deriva- 
tive. The other aspect of the Fundamental Theorem pertains to the differentiation 
of the indefinite integral off, which is the fUnction F defined by 

F(x) = A f for x E [a, b] (7a) 

In an undergraduate course, it would probably be best to content oneself with 
showing that F'(c) = f(c) at every point c E I where f is continuous. 

[The teacher, of course, should know more. In fact, using the Vitali Covering 
Theorem, one can show that F is differentiable almost evetywhere and that 

F'(x) =f(x) almost evetywhere. (7b) 
However, the proof of this fact is a bit too much for most undergraduates. The 
teacher should know that there is an extension of Lebesgue's characterization of 
indefinite integrals that is valid for the generalized Riemann integral. Somewhat 
imprecisely stated, a function F is an indefinite integral of f E w* (I) if and only if 
(i) F'(x) = f(x) almost everywhere in I, and (ii) on the set where (i) does not hold, 
then F has "arbitrarily small variation". This characterization can be used to give a 
proof that ?(I) cS*(I), of interest to the teacher. It also implies that f s2(I) 
if and only if both f and If l belong to S*(I).] 

However, from the student's standpoint, it would be appropriate merely to 
define the space of Lebesgue integrable functions to be: 

(I) = {f w*(I): If l 6w*(I)}, 
and to make 2(I) into a semi-normed space under 

llflll = llfl. 
I 

§8. CONVERGENCE THEOREMS. One of the main reasons for the interest in 
the Lebesgue integral is its convergence theorems. It is quite surprising that they 
also hold in S*(I). 

It is easy to prove that if (t,1) is a sequence in Sf*([a,b]) that converges 
uniformly to f on [a, b], then f eSf*([a, b]) and 

| f = lim | f,1. (8a) 
a n a 

However, the Monotone Convergence Theorem is also true in S*(I). 

(8.1) Monotone Convergence Theorem. Let (f,1) be a sequence in Sf*([a, b]) that is 
monotone increasing: 

f1(x) _ < f,1(x) < f,1+l(x) < forall x E [a, b], 
and letf(x) = lim,1 f,1(x) E Rforallx E [a,b]. Then f eSf*([a,b]) if and only if 

b 
SUp | f,1 < 

n a 

In this case, (8a) holds. 
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From this one can prove Fatou's Lemma and the following version of the 
Dominated Convergence Theorem. 

(8.2) Dominated Convergence Theorem. Let (f,t) be a sequence in Sf*([a, b]), let 
g, h cgF*([a, b]) be such that 

g(X) < tBt(X) < h(x) forall x c [a, b], 

and let f(x) = lim,t f,t(x) C R for all x c [a, b]. Then f cgF*([a, b]) and (8a) holds. 

These proofs do not need any measure theory, but they may be slightly out of 
the range of most undergraduates. 

§9. MEASURE THEORY. Ultimately, it is desirable that students learn some 
measure theory. We now suggest how that theory can be developed from the 
generalized Riemann integral. (The situation is slightly more complicated for an 
infinite interval.) 

As usual, we define a null set in I = [a, b] to be a set that can be covered by a 
countable union of intervals with arbitrarily small total length. We define a 

function f: I R to be measurable if there exists a sequence of step (or 

continuous) functions on I that converges to f almost everywhere (that is, on the 
complement of a null set). One can now relate this notion to the generalized 
Riemann integral. 

(9.1) Measurabilib Theorem. Evezy f c S* (I ) is measurable on I. 

Indeed, f is equal almost everywhere to the limit of a sequence of difference 
quotients of its (continuous) indefinite integral function. 

(9.2) Integrabilib Theorem. If f: I R is measurable on I and if there exist 

g, h c Sf * (I ) such that g(x) < f(x) < h(x) for all x c I, then f c S* (I ). 

The proof uses the fact that f is the limit almost everywhere of a sequence of 
simple functions and the Dominated Convergence Theorem (8.2). 

We say that a set A c I = [a, b] is measurable if its characteristic function is a 
measurable function (or, equivalently, belongs to S*(I)). One can show that the 
sets 

AnB, AUIB, and I-A 

are measurable sets in I whenever A, B are measurable. Thus the collection X(I) 
of all measurable subsets of I is an algebra of sets, and the Monotone Conver- 
gence Theorem (8.1) implies that X(I) is a (r-algebra of sets. Since X(I) contains 
all intervals in I, it follows that it contains the Borel measurable subsets of I. Since 

X(I) contains all null subsets of I, it follows that it is precisely the collection of all 
Lebesgue measurable subsets of I. 

§10. HNAL COMMENTS. It is easy to see that everything extends to complex- 
valued functions, or to functions with values in Rm, m > 1. 

The theory can also be extended to functions whose domain is a non-compact 
interval by using a simple device that is discussed in the books of McLeod and of 
DePree and Swartz. 

1996] 631 RETURN TO THE RIEMANN INTEGRAL 



The main outlines of the theory carry over easily for functions defined on a 
compact rectangle in Rm, m > 1; see the books of Mawhin, McLeod, and Pfeffer 
that are cited below. There are certain complications when the domain is not 
compact, but the major parts of the theory extend. One of the active areas of 
research in this topic is in adapting the integral so that a version of the Divergence 
Iheorem with minimal hypotheses holds. The reader is referred to the book of 
Pfeffer for an account of this work, and to papers of Jarnik, Jurkat, Kurzweil, 
Mawhin, Nonnenmacher, Pfeffer and others for more detail. Some very significant 
results have been obtained in this direction, but it seems fair to say that a 
completely satisfactory theory has not yet been established. 

In the preceding discussion the domains of the fuhctions have been assumed to 
belong to one of the spaces Rm. Some important steps have been taken to extend 
the theory to more general domains; we refer the reader to the recent book of 
Henstock for more details and a very comprehensive bibliography. 

There is an account of the history of this material in the books of McLeod and 
Henstock. The most complete account of the theory in S*([a,b]) is in the 
excellent recent book by Gordon, where it is proved that the generalized Riemann 
integral (there called the Henstock integral) is equivalent to the integrals of 
Denjoy and Perron. 
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