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Abstract

The purpose of this paper is to examine the asymmetric relationship between

price and implied volatility and the associated extreme quantile dependence us-

ing linear and non linear quantile regression approach. Our goal in this paper is to

demonstrate that the relationship between the volatility and market return as quan-

tified by Ordinary Least Square (OLS) regression is not uniform across the distribu-

tion of the volatility-price return pairs using quantile regressions. We examine the

bivariate relationship of six volatility-return pairs, viz. CBOE-VIX and S&P-500,

FTSE-100 Volatility and FTSE-100, NASDAQ-100 Volatility (VXN) and NASDAQ,

DAX Volatility (VDAX) and DAX-30, CAC Volatility (VCAC) and CAC-40 and

STOXX Volatility (VSTOXX) and STOXX. The assumption of a normal distribu-

tion in the return series is not appropriate when the distribution is skewed and hence

OLS does not capture the complete picture of the relationship. Quantile regression

on the other hand can be set up with various loss functions, both parametric and

non-parametric (linear case) and can be evaluated with skewed marginal based cop-

ulas (for the non linear case). Which is helpful in evaluating the non-normal and

non-linear nature of the relationship between price and volatility. In the empirical

analysis we compare the results from linear quantile regression (LQR) and copula

based non linear quantile regression known as copula quantile regression (CQR).

The discussion of the properties of the volatility series and empirical findings in

this paper have significance for portfolio optimization, hedging strategies, trading

strategies and risk management in general.
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1 Introduction

Quantifiction of relationship between the change in stock index return and changes in the

volatility index serves as the basis for hedging. This relationship is mostly quantified as

being asymmetric (Badshah, 2012; Dennis, Mayhew & Stivers, 2006; Fleming, Ostdiek,

& Whaley, 1995; Giot, 2005; Hibbert, Daigler, & Dupoyet, 2008; Low, 2004; Whaley,

2000; Wu, 2001). Asymmetric relationship means that the negative change in the stock

market has higher impact on the volatility index than a positive change or vice versa. The

asymmetric volatility-return relationship has been pointed out in two hypothesis i.e., the

leverage hypothesis (Black, 1976; Christie, 1982) and the volatility feedback hypothesis

(Campbell and Hentchel, 1992).

In a call/put option contract time to maturity and strike price form its basic charac-

teristics, the other inputs viz., risk free rate and divident payout can be decided easily

(Black and Scholes, 1973). When pricing an option the expected volatility over the life

of the option becomes a critical input, it is also the only input which is not directly

observed by market participants. In an actively traded market volatility can be calcu-

lated by inverting the chosen option pricing formula for the observed market price of the

option. This volatility calculated by inverting the option pricing formula is known as

implied volatility. With increasing focus on risk modelling in modern finance modelling

and predicting asset volatility along with its dependence with the underlying asset class

has become an important research topic.

The change in volatility leads to the movement in the stock market prices. For example

an expected rise in volatility will lead to a decline in stock market prices. The volatility

indices are used for option pricing and hedging calculations and the change in them gets

reflected on the corresponding stock markets. Financial risk is mostly composed of rare

or extreme events which results in high risk and lies in the tail of the return distribution.

In option pricing rare or extreme events results in volatility skew patterns (Liu, Pan and

Wang, 2005).
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Figure 1: Time Series Plot VIX and S&P 500

Ordinary least squares regression method is the most widely used method for quantify-

ing a relationship between two class of assets or return distribution in finance literature.

Figure-1, shows the logarithmic return series of VIX and S&P-500 stock indices from

year 2008-2011. The time series plot shows that the VIX index change according to the

change in S&P-500. We employ two cases of quantile regression (linear and non-linear)

to evaluate the asymmetric volatility-return relationship between change in the volatility

index (VIX, VFTSE,VXN, VDAX, VSTOXX and VCAC) and corresponding stock index

return (S&P-500, FTSE-100, NASDAQ, DAX-30, STOXX and CAC-40). We focus on

the daily asymmetric return-volatility relation in this study.

Giot (2005), Hibbert et al. (2008) and Low (2004) use OLS in their study of asymmet-

ric return-volatility relationship across implied volatility (IV) change distribution. OLS

as it is evaluation is based on the deviations from the mean of the distribution under-

estimates the extreme quantile relationships. Badshah (2012) extends the past studies

using LQR to estimate the negative asymmetric return-volatility relationship between

stock index return (S&P-500, NASDAQ, DAX-30,STOXX ) and changes in volatility

index return (VIX, VXN, VDAX, VSTOXX) for lower and upper quantiles which give

negative and positive returns . In his study Badshah (2012) found that negative returns

has higher impacts than the positive returns using linear quantile regression framework.

Kumar (2012), used LQR to examine the statistical properties of volatility index of India

and its relationship with Indian stock market.
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Figure 2: Q-Q Plots

Figure-2, gives the quantile-quantile plots for our data, none of the data series show

normality in its distribution. When the data distribution is not normal, QR can provide

more efficient estimates for return-volatility relationship (Badshah, 2012). QR can not

only be used linearly but can also be evaluated for non-linear relationships using Copula

based models. The only comprehensive study (Badshah, 2012) done using QR on return-

volatility relationship till now focus on linear case of the relationship. We extend this

study by considering the non-linear nature of the relationship using copula based non

linear quantile regression models, CQR.

The rest of the paper is designed as follows; in section-2 we give details about linear

quantile regression LQR, followed by non-linear quantile regression using copula CQR

in section-3. In Section-4 we describe our data together with our research design and

methodology. We discuss the results in section-5 and conclude in section-6.
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2 Quantile Regression

Regression analysis is undoubtedly the most widely used technique in market risk mod-

elling, from factor models to model returns to autocorrelated models to model volatility

in time series. All models are based on regression analysis with different approaches.

A simple linear regression model can be written as:

Y = α + βX + ε, (1)

which represents the dependent variable, Y as a linear function of one or more in-

dependent variable, X, subject to a random ‘disturbance’ or ‘error’ term, ε which is

assumed to be i.i.d and independent of X.

A bivariate normal distribution is assumed between a dependent and independent

variable in simple linear regression. It estimates the mean value of the dependent variable

for given levels of the independent variables. For this type of regression, where we want

to understand the central tendency in a dataset, OLS is an effective method. OLS loses

its effectiveness when we try to go beyond the median value or towards the extremes

of a data set (see; Allen, Singh and Powell, 2010; Allen, Gerrans, Singh and Powell,

2009; Barnes and Hughes, 2002). Specifically in the case of an unknown or arbitrary

joint distribution (X, Y ), OLS does not provide all the necessary information required to

quantify the conditional distribution of the dependent variable. As given in descriptive

statistics (section-4.1) the dataset used in this analysis is not normal and hence quantile

regression can be a better choice.

Quantile Regression is modelled as an extension of classical OLS (Koenker and Bas-

sett, 1978). In Quantile Regression the estimation of conditional mean as estimated by

OLS is extended to similar estimation of an ensemble of models of various conditional

quantile functions for a data distribution. In this fashion Quantile Regression can better

quantify the conditional distribution of (Y |X). The central special case is the median

regression estimator that minimises a sum of absolute errors. The estimates of remaining

conditional quantile functions are obtained by minimizing an asymmetrically weighted

sum of absolute errors, where weights are the function of the quantile of interest. This

makes Quantile Regression a robust technique even in presence of outliers. Taken to-

gether the ensemble of estimated conditional quantile functions of (Y |X) offers a much

more complete view of the effect of covariates on the location, scale and shape of the

distribution of the response variable.

For parameter estimation in Quantile Regression, quantiles as proposed by Koenker

and Bassett (1978) can be defined through an optimisation problem. To solve an OLS

regression problem a sample mean is defined as the solution of the problem of minimising

the sum of squared residuals, in the same way the median quantile (0.5%) in Quantile

Regression is defined through the problem of minimising the sum of absolute residuals.
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The symmetrical piecewise linear absolute value function assures the same number of

observations above and below the median of the distribution.

The other quantile values can be obtained by minimizing a sum of asymmetrically

weighted absolute residuals, (giving different weights to positive and negative residuals).

Solving

minξεR
∑

ρτ (yi − ξ) (2)

Where ρτ (�) is the tilted absolute value function as shown in Figure 2.4, which gives the

τth sample quantile with its solution. Taking the directional derivatives of the objective

function with respect to ξ (from left to right) shows that this problem yields the sample

quantile as its solution.

Figure 3: Quantile Regression ρ Function

After defining the unconditional quantiles as an optimisation problem, it is easy to

define conditional quantiles similarly. Taking the least squares regression model as a base

to proceed, for a random sample, y1, y2, . . . , yn, we solve

minµεR

n
∑

i=1

(yi − µ)2 (3)

which gives the sample mean, an estimate of the unconditional population mean, EY.

Replacing the scalar µ by a parametric function µ(x, β) and then solving

minµεRp

n
∑

i=1

(yi − µ(xi, β))
2 (4)

gives an estimate of the conditional expectation function E(Y|x).

Proceeding the same way for Quantile Regression, to obtain an estimate of the con-
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ditional median function, the scalar ξ in the first equation is replaced by the parametric

function ξ(xt, β) and τ is set to 1/2 . The estimates of the other conditional quantile

functions are obtained by replacing absolute values by ρτ (�) and solving

minµεRp

∑

ρτ (yi − ξ(xi, β)) (5)

The resulting minimization problem, when ξ(x, β) is formulated as a linear function of

parameters, and can be solved very efficiently by linear programming methods. Further

insight into this robust regression technique can be obtained from Koenkar and Bassett’s

Quantile Regression monograph (2005) or a text book introduction to Quantile Regression

as can be found in Alexandar (2008).

Quantile regression has been frequently tested in research work over the past decade

in various areas of econometric analysis, financial modelling and socio-economic research.

The studies include Buchinsky and Leslie (1997) who analyse changing US wage struc-

tures. Buchinsky and Hunt (1999) analyse the earning mobility and factors affecting

the transmission of earnings across generations. Eide and Showanter (1998) study the

effect of school quality on education. Financial research work using Quantile Regres-

sion includes Engle and Manganelli (2004) and Morillo (2000) quantifying VaR using

Quantile Regression and studying option pricing using Monte Carlo simulations. Barnes

and Hughes (2002) applied Quantile Regression to study CAPM in their work on cross

sections of stock market returns. Chan and Lakonishok (1992) applied Quantile Regres-

sion to robust measurement of size and book to market effects. Gowlland, Xiao and

Zeng (2009) investigate book to market effect beyond central tendency. Allen, Singh and

Powell (2011), apply Quantile Regression to test the Fama-French factor model in the

DJIA-30 stocks which focuses on the applicability of better estimates of factor based risk

factors across quantiles.

Other than Badshah (2012) and Kumar (2012) there is no prior work done on in-

vestigating the return-volatility relationship between volatiltiy indices and corresponding

market indices using quantile regression. We not only apply the LQR model to evaluate

the return-volatility relationship but we also test the non-linear case of CQR to examine

the relationship.

3 Non-Linear Quantile Regression (CQR)

Bouyé and Salmon (2009) extended Koenker and Basset’s (1978) idea of regression quan-

tiles and introduced a general approach to non linear quantile regression modelling using

copula functions. Copula functions are used to define the dependence structure between

the dependent and independent variables of interest. We first give a brief introduction

to copula followed by the introduction to the concept of CQR.
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3.1 Copula

Modelling dependency structure within assets is a key issue in risk measurement. The

most common measure for dependency, correlation, loses its effect when a dependency

measure is required for distribution which deviates from the mean or are not normally

distributed. Examples of deviations from normality are the presence of kurtosis or fat

tails and skewness in univariate distributions. Deviation from normality also occurs

in multivariate distributions given by asymmetric dependence, which infers that assets

show different level of correlation during different market conditions (Erb et al., 1994;

Longin and Solnik, 2001; Ang and Chen, 2002 and Patton, 2004). Modelling dependence

with correlation is not inefficient when the distribution follow the strict assumptions of

normality and constant dependence across the quantiles. But as now it is well known in

financial risk modelling, return distribution does not necessarily follow normality across

quantiles, we need more sophisticated tools for modelling dependence than correlation

and Copulas provide one such measure.

The statistical tool which is used to model the underlying dependence structure of

a multivariate distribution is the copula function. The capability of copula to model

and estimate multivariate distributions comes from Sklar’s Theorem, according to which

each joint distribution can be decomposed into its marginal distributions and a copula

C responsible for the dependence structure. Here we define Copula with Sklar’s theorem

along with some important types of copula, adapted from Franke, Härdle and Hafner

(2008).

A function C : [0, 1]d → [0, 1] is a d dimensional copula if it satisfies the following

conditions for every u = (u1, . . . , ud)
⊤ ∈ [0, 1]d and j ∈ {1, . . . , d}

1. if uj = 0 then C(u1, . . . , ud) = 0

2. C(1, . . . , 1, uj, 1, . . . , 1) = uj

3. for every υ = (υ1, . . . , υd)
⊤ ∈ [0, 1]d, υj ≤ uj

VC(u, υ) ≥ 0

where VC(u, υ) is given by

2
∑

i1=1

. . .

2
∑

id=1

(−1)i1+...+idC(g1i1 , . . . , gdid)

Properties 1 and 3 state that copulae are grounded functions and that all d-dimensional

boxes with vertices in [0, 1]d have non-negative C-volume. Property second shows that

the copulae have uniform marginal distributions.
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Sklar’s Theorem

Consider a d-dimensional distribution function F with marginals F1 . . . , Fd. Then for

every x1, . . . , xd ∈ R, a copula, C can exist with

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} (6)

C is unique if F1 . . . , Fd are continuous. If F1, . . . , Fd are distributions then the func-

tion F is a joint distribution function with marginals F1, . . . , Fd.

For a joint distribution F with continuous marginals F1, . . . , Fd , for all u = (u1, . . . , ud)
⊤ ∈

[0, 1]d the unique copula C is given as

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F

−1
d (ud)} (7)

Copula can be divided into two broad types, Elliptical Copulae-Gaussian Copula and

Student’s t-copula and Archimedean Copulae-Gumbel copula and Clayton copula and

Frank Copula .

Normal or Gaussian Copula

The copula derived from the n-dimensional multivariate and univariate standard normal

distribution functions, Φ and Φ, is called a normal or gaussian copula. The normal copula

can be defined as

C(u1, . . . , un;Σ) = Φ
(

Φ−1(u1), . . . ,Φ
−1(un)

)

(8)

where correlation matrix(Σ) is the parameter for normal copula and ui = Fi(xi) is

the marginal distribution function.

The normal copula density is given by

c(u1, . . . , un;Σ) = |Σ|−1/2 exp

(

−
1

2
ξ′(Σ−1

− I)ξ

)

(9)

where Σ is the correlation matrix, |Σ| is its determinant. ξ = (ξ1, . . . , ξn)
′, where ξi

is the ui quantile of the standard normal variable Xi.

Figure- 4 gives the density plot for a bivariate gaussian copula with a correlation of

0.5. As shown in the figure, normal copula is a symmetric copula.

Student’s t-Copula

Similar to gaussian copula, t-copula models the dependence structure of multivariate t-

distributions. The parameters for student’s t-copula are correlation matrix and degrees

of freedom. Student’s t-copula show symmetrical dependence but are higher than those
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Figure 4: Density of the Gaussian copula

in gaussian copula as shown in figure-5. Kindly refer Alexandar (2008) for the density

functions and quantile functions of student-t copula.

Figure 5: Density of t-copula
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Archimedean Copulae

Archimedean copulae are family of copulae which are build on a generator function,

with some restrictions. There can be various copulae in this family of copulae due to

various generator functions available (see Nelson (1999)). For a generator function φ the

Archimedean copula can be defined as

C(u1, . . . , un) = φ−1(φ(u1) + . . .+ φ(un)) (10)

The density function is given by

c(u1, . . . , un) = φ−1(φ(u1) + . . .+ φ(un))
n
∏

i=1

φ′(ui) (11)

Clayton Copula

The Clayton copula, as introduced by Clayton (1978) has a generator function;

φ(u) = α−1(u−α − 1), α 6= 0 (12)

the inverse generator function is

φ−1(x) = (αx+ 1)−1/α

With variation in parameter α the Clayton copulas capture a range of dependence.

Clayton copula is particularly helpful in capturing positive lower tail dependence. Figure-

6 gives a density plot for bivariate clayton copula with α = 0.5, the asymmetric lower

tail dependence is evident from the figure.

Like Normal and Student-t copula, Archimedean copulae can also be used for CQR1.

Here we use only Normal and Student-t copula for our analysis as they capture both

positive and negative dependnece, the clayton copula captures only positive lower tail

dependence and hence its left out.

We will not further discuss the types of copula in detail but rather refer to Joe (1997)

and Nelsen (1999), Alexandar (2008) and Cheung (2009) who give a useful overview

of copula for financial practitioners. The quantile functions of the copulas used in the

CQR are reported in the following discussion of copula quantile regression. The quantile

function of Clayton is also given for the completeness.

3.2 Copula Quantile Regression (CQR)

Bouyé and Salmon (2009) in their work has discussed copula quantile regression in detail

by highlighting the properties of quantile curves. They also gave the simple closed forms of

1The example of Clayton Copula with its quantile function is given in next subsection.
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Figure 6: Density of Clayton Copula

the quantile curve for major copula (normal, Student t, Joe-Clayton and Frank) which are

used in the linear quantile regression model (equation-5) to calculate non-linear regression

quantiles. Here we will just give the closed form of the four copula quantile curve for

the sake of brevity, please refer to the original paper by Bouyé and Salmon (2009) for

detailed discussion. Alexandar (2008) also gives a breif introduction of non-linear copula

based quantile regressions and also give some empirical examples using excel work books.

The non-linear quantile regression model is formed by replacing linear quantile regres-

sion model (5) with the quantile curve of a copula. Every copula has a quantile curve

which may be decomposed in an explicit function.

If we have two marginals FX(x) and FY (y) of x and y, with their estimated distribution

parameters. We can then define a bivariate copula with certain parameters θ.

Normal CQR

The bivariate normal copula has one parameter, the correlation ̺, its quantile curve can

be written as

y = F−1
Y

[

Φ
(

̺Φ−1(FX(x)) +
√

1− ̺2Φ−1(q)
)]

(13)
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Student-t CQR

The Student-t copula has two parameters, the degree of freedom ν and the correlation ̺.

The quantile curve of Student t copula is given by

y = F−1
Y

[

tν

(

̺t−1
ν (FX(x)) +

√

(1− ̺2)(ν + 1)−1 (ν + t−1
ν (FX(x))2)t

−1
ν+1(q)

)]

(14)

Clayton CQR

Clayton copula is a member of Archimedean Copulae with a generator function having

parameter α. The quantile curve of Clayton copula is given by

y = F−1
Y

[

(

1+FX(x)−α
(

q−α/(1+α) − 1)
))−1/α

]

(15)

To evaluate non-linear quantile regression using copula, for a given sample {(xt, yt)}
T
t=1

the q (or τ) quantile regression curve can be defined as yt = ξ(xt, q; θ̂q). The parameters

θ̂qare found by solving the following optimization problem.

minµεRp

∑

ρq(yt − ξ(xt, q;θ)) (16)

This optimization problem can be solved by using Quantreg package of statistical

software R after defining the copula using copula related packages.

In this study we use LQR and CQR with normal or gaussian and Student-t copula to

evaluate the return-volatility relationship. We will now discuss the data and methodology

implemented in the following section.

4 Data and Methodology

4.1 Description of Data

In this empirical analysis we use daily price data for market and volatility indices of six

volatility-return pairs viz., VIX and S&P-500, VFTSE and FTSE 100, VXN and NAS-

DAQ, VDAX and DAX-30, VCAC and CAC-40 and VSTOXX and STOXX. We obtained

daily prices from Datastream for a period of approximately 10 years from 2/02/2001 to

31/12/2011. Daily percentage logarithmic returns are used for the analysis. Table-1,

gives the descriptive statistics for our dataset. All the dataseries show excess kurtosis

indicating fat tails, the Jarque-Berra test statistics in table-1 for normal distribution

strongly rejects the presence of normal distribution in the series. With the descriptive

statistics we can conclude that all the return time series (for market and volatility series)

exhibit fat tails and are not normally distributed. The ADF test statistics also rejects
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the presence of unit root in the time series.

4.2 Methodology

With this empirical exercise we evaluate the volatility-return relationship which can be

represented by the following:

Vt = α + βRt + ε (17)

where Vt is the daily logarithmic return of the volatility index and Rt gives the daily

logarithmic return of the market index. α, β and ε gives the intercept , the coefficient

which represent the degree of association and the error term respectively.

We will use three regression techniques in this study, the basic linear regression or OLS,

linear quantile regression and non-linear copula quantile regression to quantify the return-

volatility relationship for our six return-volatility pairs. The relationship quantified by

OLS is around the mean of the distribution and hence does not quantify the tail regions.

In this study we examine if the relationship quantified by the quantile regression are

different from OLS and if they are different across the various quantiles in the distribution.

The major results from the study are discussed in the following section.

5 Discussion of the Results

5.1 Linear Regression-OLS

We will first evaluate the volatility-return relationship using OLS. As mentioned before

OLS gives the relationship around the mean of the distribution and hence leaves out

the extreme cases, like when the market is in crisis or when it is performing well. The

relationship quantified by OLS gives the relationship between the average of volatility

and return series.
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Figure 7: OLS Regression for Volatility-Return Pairs

Figure-7 gives the plot of OLS regression fit with the actual volatility-return data. The

common observation in all the figures is that the regression line runs through the mean

of the observations. As the regression line represent the mean behaviour, the estimated

values are around the mean of the distribution and is unable to quantify the tails or

other quantiles diverting from mean. Table-2 gives the point estimates of the intercept

and regression coefficient for all the volatility-return pairs, the values of the regression

coefficient indicate an inverse volatility return relationship. These results confirms the

earlier research work.

α P-Value β P-Value

VIX-S&P -0.0065 0.9325 -3.5147 0.0000
VFTSE-FTSE 0.0039 0.9646 -2.5387 0.0000
VXN-NASDAQ -0.0355 0.6419 -1.7651 0.0000
VDAX-DAX 0.0421 0.5862 -1.8059 0.0000
VCAC-CAC -0.0060 0.8304 -0.1549 0.0000
VSTOXX-STOXX -0.0011 0.9893 -2.1028 0.0000

Table 2: OLS Regression Results
All the β values are significant at 99% level in the results

5.2 Linear Quantile Regression (LQR)

In financial risk measurement quantification of tails plays an important role in risk mod-

elling. OLS estimates quantifies the relationship around the mean of the distribution but

QR on the other hand can be used to quantify the relationship across various quantiles.

We use LQR to model the volatility-return relationship across quantiles, we focus partic-

ularly on lower quantiles which represent high negative returns and represent the risk in

17



the market. We evaluate volatility-return relationship across seven quantiles of interest

q = {0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99} which includes median as well as two extremes,

lower 1% and higher 99% quantile.

Figure-8 gives the plots for the LQR coefficient (β) for all the volatility-return pairs,

it is evident from the figure that these coefficients are different across the quantiles and

hence the relationship also changes.

(a) (b) (c)

(d) (e) (f)

Figure 8: Volatility-Return Coefficient (β) Estimates Across Quantiles

Table-3 gives the estimates for the LQR model with intercept α and coefficient β which

measures the dependence of volatility on market return. The dependence coefficient (β)

values are significant across the quantiles and are also not same. The results clearly

indicate that the volatility-return relationship changes across quantiles and it is also

statistically significant.
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Quantile Regression Estimates

α0.01 β0.01 α0.05 β0.05 α0.25 β0.25 α0.5 β0.5 α0.75 β0.75 α0.95 β0.95 α0.99 β0.99

VIX-S&P -9.92 -3.26 -5.72 -3.22 -2.31 -3.49 -0.09 -3.55 1.95 -3.62 6.59 -3.61 12.06 -3.71

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VFTSE-
FTSE

-11.87 -1.63 -6.84 -2.42 -2.63 -2.66 -0.15 -2.76 2.45 -2.86 7.51 -2.76 13.31 -2.26

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VXN-
NASDAQ

-9.75 -1.83 -6.07 -1.62 -2.28 -1.65 -0.16 -1.66 2.00 -1.77 6.90 -2.00 12.22 -1.90

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VDAX-DAX -10.12 -1.29 -5.96 -1.73 -2.43 -1.71 -0.06 -1.75 2.26 -1.85 6.56 -1.94 12.60 -1.89

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VCAC-CAC -4.48 -0.13 -2.23 -0.18 -0.72 -0.16 0.02 -0.15 0.71 -0.14 2.18 -0.15 4.10 -0.13

p-value 0.00 0.01 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VSTOXX-
STOXX

-9.62 -1.85 -6.44 -1.92 -2.58 -1.93 -0.15 -2.05 2.34 -2.15 6.86 -2.29 12.41 -2.14

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: LQR Results
p-value of ≤ 0.05 shows significance at 95% level or higher

5.3 Copula Quantile Regression (CQR)

LQR quantifies linear volatility-return relationship but CQR can be used to quantify

this relationship in a non-linear framework. In CQR the non linear volatility-return

relationship is quantified by the copula quantile functions of the respective copula. We

use Normal and Student-t Copula in this part of the analysis.

The marginals for the bivariate CQR are assumed to be Student-t distribution. The

data is first transformed to marginals by fitting it to the standard Student-t distribution.

The estimates are calculated using the Quantreg package in R.

Table-4 gives the ̺ estimates for the seven quantiles for Normal and Student-t copula.

In most of the pairs the negative dependence is greater for low and high quantiles. Also

the lower tail negative dependence is higher than the upper tail negative dependence.

Figure-9 plots the estimates for Student-t CQR for all the volatility-return pairs across

the quantiles. The figure shows that the graph of the estimates have an approximate

inverted U shape except for VIX-S&P 500. The inverted U shape (higher dependence

across tails) is most prominent for VCAC-CAC 40 pair.
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Normal CQR
̺0.01 ̺0.05 ̺0.25 ̺0.5 ̺0.75 ̺0.95 ̺0.99

VIX-S&P -0.8645 -0.8913 -0.8861 -0.8916 -0.9099 -0.8696 -0.8602
VFTSE-FTSE -0.7735 -0.8114 -0.7925 -0.8137 -0.8287 -0.7891 -0.7497
VXN-NASDAQ -0.8066 -0.8164 -0.7647 -0.7045 -0.8047 -0.7831 -0.7718
VDAX-DAX -0.7584 -0.7937 -0.7322 -0.7106 -0.7841 -0.7785 -0.7479
VCAC-CAC -0.6915 -0.7755 -0.7067 -0.5631 -0.6759 -0.7691 -0.6970
VSTOXX-STOXX -0.8015 -0.8055 -0.7517 -0.7496 -0.8122 -0.7999 -0.7469

Student-t CQR
̺0.01 ̺0.05 ̺0.25 ̺0.5 ̺0.75 ̺0.95 ̺0.99

VIX-S&P -0.8726 -0.8920 -0.8814 -0.8857 -0.9030 -0.8691 -0.8617
VFTSE-FTSE -0.7815 -0.8058 -0.7780 -0.7818 -0.8048 -0.7827 -0.7915
VXN-NASDAQ -0.8207 -0.8074 -0.7500 -0.6930 -0.7916 -0.7806 -0.7794
VDAX-DAX -0.7696 -0.8016 -0.7159 -0.6911 -0.7578 -0.7782 -0.7663
VCAC-CAC -0.7868 -0.7608 -0.6436 -0.4888 -0.5959 -0.7667 -0.7661
VSTOXX-STOXX -0.8190 -0.8065 -0.7404 -0.7322 -0.7990 -0.8027 -0.7458

Table 4: Normal and Student-t CQR Estimates
All the estimates given in the table are found to be statistically significant.

Figure 9: Student-t CQR Estimates

Another point of analysis is to see how well the estimates from LQR and CQR fit

to the data. Figure-10 plots the LQR and CQR fitted values across the quantiles over

the marginal data. Figure-10(a) plots the VFTSE-FTSE pair fitted values estimated

from Normal CQR and LQR and figure-10(b) plots the VIX-S&P pair fitted values esti-
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mated from Student-t CQR and LQR. The figures show that we can model the non-linear

relationship with the help of copula in quantile regression framework.

(a) VFTSE-FTSE Normal CQR

(b) VIX-S&P Student-t CQR

Figure 10: Fitted Values from CQR and LQR
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6 Conclusion

The empirical analysis in this paper demonstrated the application of both linear and non

linear quantile regression models. We used LQR and CQR to model the inverse volatility-

return relationship for six volatility-return pairs. The study focussed on the use of copula

to model non linear quantile regression which facilitates the quantification of bivariate

non linear correlation within the quantiles of the distribution. Linear regression quantifies

the relationship between a dependent and independent variable(s) around the mean of

the distribution and hence does not quantify the relationship for the quantiles across the

distribution. Quantile regression is a very useful tool to quantify the relationship across

various quantiles in a distribution.

Tails of the return distribution are of immense interest in financial risk modelling as

they represent the risk associated with the asset or the financial instrument. Volatility-

return relationship and its quantification has importance for hedging as the change in

volatility leads to the change in market prices. In this analysis we used OLS to quantify

the linear volatility-return relationship around the mean which as quantified by LQR is

not consistent for quantiles across the distribution. CQR is yet another useful tool for

quantifying nonlinear bivariate relationship across quantiles. The analysis conducted in

this paper demonstrated that CQR fits better to the actual data than LQR as it is capable

of capturing non linear nature of the volatility-return relationship. The results from this

analysis also supports the asymmetric volatility-return relationship for majority of the

index pairs.

The empirical analysis of this paper has significance for hedging, portfolio management

or risk modelling in general. The empirical analysis in this paper can be furthered by

including more copula models like Frank Copula, Joe-Clayton copula etc, in CQR model.
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