
Reusable Concurrent Data Types

Vincent Gramoli1 and Rachid Guerraoui2

1 NICTA and University of Sydney

vincent.gramoli@sydney.edu.au
2 EPFL

rachid.guerraoui@epfl.ch

Abstract. This paper contributes to address the fundamental challenge of build-

ing Concurrent Data Types (CDT) that are reusable and scalable at the same time.

We do so by proposing the abstraction of Polymorphic Transactions (PT): a new

programming abstraction that offers different compatible transactions that can

run concurrently in the same application.

We outline the commonality of the problem in various object-oriented

languages and implement PT and a reusable package in Java. With PT, anno-

tating sequential ADTs guarantee novice programmers to obtain an atomic and

deadlock-free CDT and let an advanced programmer leverage the application se-

mantics to get higher performance.

We compare our polymorphic synchronization against transaction-based, lock-

based and lock-free synchronizations on SPARC and x86-64 architectures and

we integrate our methodology to a travel reservation benchmark. Although our

reusable CDTs are sometimes less efficient than non-composable handcrafted

CDTs from the JDK, they outperform all reusable Java CDTs.

1 Introduction

Abstract data types (ADTs) have shown to be instrumental in making sequential pro-

grams reusable [1]. ADTs promote (a) extensibility when an ADT is specialized through,

for example, inheritance by overriding or adding new methods, and (b) composability

when two ADTs are combined into another ADT whose methods invoke the original

ones. Key to this reusability is that there is no need to know the internals of an ADT

to reuse it: its interface suffices. With the latest technology development of multi-core

architectures many programs are expected to scale with a large number of cores: ADTs

need thus to be shared by many threads.

Unfortunately, most ADTs that export shared methods, often called Concurrent Data

Types (CDTs), are not reusable: the programmer can hardly build upon them. For ex-

ample, programmers cannot reuse the popular concurrent data types of C++, Java and

C# libraries. CDTs typically export a set of methods, guaranteeing that, even if invoked

concurrently, each of these methods always appears as if it was executed in sequence.

This property, known as atomicity (or linearizability [2]), lets the programmer reason

in terms of sequential accesses. However, atomicity is generally not preserved under

extension or composition, hence annihilating reusability.

Basically, CDTs are synchronized using either lock-based (i.e., mutual exclusion)

or lock-free primitives (e.g., compare-and-swap). On the one hand, CDTs that rely

R. Jones (Ed.): ECOOP 2014, LNCS 8586, pp. 182–206, 2014.

c© Springer-Verlag Berlin Heidelberg 2014

Reusable Concurrent Data Types 183

on locks have limited composability as a user could accidentally write two composite

methods that deadlock when calling in different order two existing methods that require

distinct locks. The same CDTs might not be extensible either as adding a new method

may require to know the lock granularity used by existing methods. On the other hand,

lock-free CDTs relying on hardware primitives can generally modify only one or two

memory words atomically, requiring the user to precisely identify these words before

obtaining a scalable and atomic composite method. Knowing these internals may, how-

ever, not even help extending lock-free CDTs as we will describe in Section 2.

Some synchronization schemes do enable reusability, yet their performance does

not scale with concurrency. Typically, Transactional Memory (TM) systems ensure that

within a sequence of shared memory reads/writes, all execute atomically (the transac-

tion commits) or none of them execute (the transaction aborts) [3,4]. One can exploit

TM to write an atomic CDT easily: it suffices to (a) write the bare sequential code of the

ADT and then (b) to encapsulate each of the methods of the resulting ADT into a trans-

action. Transactional methods commit only if their execution is equivalent to a serial

one. TMs typically provide composability [5] as a new composite operation encapsu-

lated in a transaction can invoke multiple existing methods from a (transactional) CDT.

Also, specific transactions facilitate extensibility by preventing anomalies when inherit-

ing from an existing CDT [6]. Nevertheless, classic transactions are overly conservative

and clearly hamper scalability simply because they cannot exploit the application se-

mantics [7,8,9,10,11,12].

In light of this lack of scalability, expert programmers would implement handcrafted

libraries whose semantics is difficult to understand to say the least: instead of being

simply equivalent to a sequential execution (or atomic), an iteration over a CDT would

typically return different results depending on the current status of concurrent updates

of the same CDT. This strategy clearly promotes scalability while preventing a program-

mer, who ignores the underlying implementation details, from reusing the abstraction.

Built-in C++ thread building block library, java.util.concurrent package and C# System

libraries all adopt this strategy, hence limiting the ability for novices to write concurrent

code in main object-oriented languages.

In this paper, we propose the Polymorphic Transaction (PT) methodology, which

helps write concurrent programs that are both scalable and reusable. Its main novelty

is not in providing a novel transaction semantics but in combining multiple of them to

Table 1. The use-cases in which we applied the PT methodology

Use-cases of the PT methodology Data structure Type Annotated Non-protected Total

methods methods

ReusableLinkedQueue Linked list Queue 13 2 15

ReusableVector Vector Collection 37 11 48

ReusableLinkedListSortedSet Linked list Set 11 4 15

ReusableHashMap Hash table Map 11 3 14

ReusableSkipListSet Skip list Set 11 4 15

Vacation Red-black trees Database 3 88 91

Total 86 112 198

184 V. Gramoli and R. Guerraoui

scale to high levels of parallelism as they let advanced programmers exploit the applica-

tion semantics. The PT methodology achieves better scalability than classic TM systems

because it ensures the atomicity of the CDT operations but not of their read/write se-

quences. It also retains the appealing simplicity of TM systems as novice programmers

obtain a safe (but less efficient) concurrent program if they ignore these semantics. In

summary, it gives a framework for all programmers to write software pieces that com-

bine with one another. To illustrate the performance potential of the PT methodology,

we implemented (a) the polymorphic software transactional memory (PSTM), (b) on

top of which we built a Java package of reusable CDTs that we use as a new TM bench-

mark suite on x86-64 and SPARC architectures, (c) we compared this library to the JDK

(incuding java.util.concurrent) and (d) we integrated our solution to the STAMP travel

reservation application, called vacation [13].

In contrast with lock-based and lock-free libraries, our library is reusable, thereby

simplifying the life of concurrent programmers. In fact, we prove that our semantics

combine with each other which translates into the composability and extensibility of

our library as opposed to mainstream Java, C++ and C# concurrent libraries. To write

an atomic (linearizable) CDT, the programmer writes a semantically equivalent bare

sequential ADT and annotates each of its methods with one of the existing transaction

forms without the need of altering the sequential code. To reuse existing CDTs, the

programmer can either (a) compose these CDTs by invoking their methods in a method

annotated with one existing transaction form or (b) extend these CDTs by inheriting

from them and adding new methods annotated with one of the transaction forms. If the

form of the annotation is omitted then the default form guarantees atomicity regardless

of the application semantics. The four forms of PSTM, detailed in Section 3, are as

follows:

– Hand-over-hand: A form of transaction that allows update methods to run con-

currently. It builds upon a locking technique where each accessed location remains

protected until the next location(s) within the same sequence gets protected. This

technique is known as chain-locking, lock-coupling, or hand-over-hand locking [14].

As opposed to hand-over-hand locking, a hand-over-hand transaction may abort and

release all its locks rather than blocking, thus being deadlock-free. (Hand-over-hand

transactions guarantee elastic-opacity [9].)

– Snapshot: A form of transaction that allows read-only methods to run concurrently

with updates. This form exploits multiversion concurrency control [15] to provide

snapshot isolation, a property of production database systems that allows reads to

execute at a different time from writes. Snapshot isolated transactions are prone to

the write-skew problem when they concurrently read a set of data and later update

disjoint subsets of these data, however, our form applies exclusively to read-only

methods and guarantees atomicity.

– Opacity: the default form of transaction. Similar to strict-serializability targeted

by database systems, opacity guarantees that transactions execute as if all their ac-

cesses were executed at some indivisible point in time (serializability) between the

time they are invoked and the time they return (strictness). In contrast with database

transactions, opaque transactions are guaranteed to never observe an inconsistent

state of the system (even transiently) be they doomed to abort or still pending [16].

Reusable Concurrent Data Types 185

– Irrevocability: The form of a transaction that never aborts [17]. This form can

be used to enforce that an atomic series of accesses executes exactly once. It is

typically useful for executing I/O operations or invoking legacy code that cannot

be rolled back, however, this form should be avoided when possible as it prevents

transactions from executing concurrently.

A novel aspect of this work is to allow several transactional forms in the same ap-

plication hence raising a new interesting compatibility challenge: guaranteeing that

methods synchronized with different semantics do not affect the semantics of each

other when accessing the same mutable data concurrently. For example, consider a

hand-over-hand transaction, th, reading x before a concurrent opaque transaction, to,

writes x. This write-after-read (WAR) conflict would typically be detected by to but ig-

nored by th. Upon writing and detecting the conflict, if to resolves the conflict by abort-

ing or delaying one of the two transactions, then concurrency would be suboptimal.

Conversely, if to ignores the conflict, it may violate its semantics by committing: if say

a later conflict on y requires that to be serialized before th. To cope with this, we prevent

a WAR conflict from being resolved eagerly by the transaction that conflicts by writing,

instead it is always resolved by the transaction that conflicts by reading (regardless of

its form). This is described in Section 4 along with the resolution of write-after-write

(WAW) and read-after-write (RAW) conflicts.

To integrate our methodology in the Java programming language, we extended

the Deuce [18] bytecode instrumentation framework, so that synchronizing a bare

sequential method simply consists of annotating it with either a hand-over-hand,

a snapshot, an opaque or an irrevocable transaction. As detailed in Section 5,

the produced bytecode is automatically instrumented so that shared reads/writes

get redirected to the transactional reads/writes of the appropriate form featured

by PSTM. We only annotated few methods in our benchmarks (cf. Table 1): all

methods they call are automatically instrumented. We compared our reusable pack-

age to the JDK packages. First, we devised reusable CDTs using specific but

restrictive techniques from the JDK like java.util.Collections.synchronizedSet or

java.util.concurrent.copyOnWriteArraySet. Note that we could have also used our own

implementation of a universal construction [19] to achieve similar results. Second, we

tested mainstream non-reusable CDTs like the lock-based java.util.Vector or the lock-

free java.util.concurrent.ConcurrentLinkedQueue [20].

While our implementation could benefit from recent speculative hardware instruc-

tions, even in its software form, the PT methodology helps improving significantly the

performance of existing reusable techniques from the JDK (2.4× speedup). We also

tested as a baseline the performance of non-reusable but well-engineered JDK CDTs

and we observed great differences: while our CDTs could, in some executions, speedup

the performance of the non-reusable JDK CDTs by 4×, our experiments also outline

circumstances where reusability comes at a cost. All these experimental results are re-

ported in Section 6.

Finally, we discuss the related work in Section 7 and conclude in Section 8.

186 V. Gramoli and R. Guerraoui

2 Overview

Most concurrent object-oriented libraries trade reusability off for efficiency. We distin-

guish their two reusability limitations, namely extensibility and composability issues,

and describe how the PT methodology addresses them.

2.1 Extensibility

Illustrating the issue. In Java, the ConcurrentLinkedQueue type of the JDK 7 exports

an inconsistent size method. The problem comes from the fact that this CDT aims at im-

plementing the lock-free algorithm from Michael and Scott designed to provide efficient

offer (i.e., push) and poll (i.e., pop) [20] but aims also at implementing the Collection

interface including a size method for a neat integration in the Java API. On the one

hand, a size method is useful to count the number of elements comprised in this col-

lection: although size remains optional, various Collection CDTs do provide it. On the

other hand, the algorithm of Michael and Scott was optimized to export deadlock-free

offer and poll without aiming at supporting a size method or allowing extensibility.

The problem of extending the Michael and Scott’s algorithm with a size, which

could access concurrently the same data as offer and poll, is far from being trivial,

precisely due to the way the algorithm was originally proposed. In short, the algorithm

was made deadlock-free by relying exclusively on compare-and-swap for synchroniza-

tion. Comparing-and-swapping versions of the data structure to compute the size would

annihilate effective concurrency while using locks to protect the data structure would

not prevent the offer and poll from concurrently updating the structure. This lack of

extensibility, which is inherent to the synchronization used, led expert programmers to

implement a non-atomic size method.

Specifically, this size consists of traversing the underlying linked list from the head

to the tail while elements are pushed at the head and popped at the tail. Assume that

some elements are moved from the tail to the head, one after the other, so that the size s

changes by ±1. As the size method does not protect the head and the tail of the queue, it

simply ignores any of these moved elements and returns an incorrect value way smaller

than s−1. Precisely because predicting the outcomes of this size requires to understand

the implementation internals, the resulting CDT is not reusable.

We reported this ConcurrentLinkedQueue issue to the JSR166 expert group. Follow-

ing up our report, this unexpected behavior has been warned in the documentation of

the class ConcurrentLinkedQueue on the JSR166 site since revision 1.54 and the is-

sue is still present in the JDK 7. Since then other researchers unaware of this warning

observed the same problem [21]. This size problem simply illustrates the more general

lack of extensibility. One may think of using ArrayBlockingQueue to obtain a correct

size that returns the current value of a counter, however, such a size implementation

requires to modify all insertion and removal methods to make them adjust the counter.

Apart from the size example, a programmer would have similar problems as soon as she

tries to extend these CDTs with, for example, a sum method.

The PT solution. Figure 1 illustrates how to exploit the PT methodology to cope with

the ConcurrentLinkedQueue issue. It requires that the methods pop and push accessing

Reusable Concurrent Data Types 187

class ReusableLinkedQueue {

...

@Transactional(form= SNAPSHOT)
public int size() {

int count = 0;

for (Node<E> p=first(); p!=null;

p=p.getNext()) {

if (p.getItem() != null) {

if (++count == Integer.MAX_VALUE)

break;

}

}

return count;

}

Fig. 1. PT fixes the ConcurrentLinkedQueue.size() problem and allows extensibility

mutable shared variables use no explicit synchronizations besides annotations. In this

particular example, the size is added as a sequential size method annotated with a form

called snapshot denoted by @Transactional(form= SNAPSHOT).
The resulting implementation is inherently extensible. The snapshot transaction

form guarantees that all shared read accesses of the size method, including the one

to p.getNext(), return values present at a common point in time between the invocation

and the response of size. To this end, the implementation (detailed in Section 3) asso-

ciates a version to each value written by any transaction, a snapshot transaction records

the highest version upon start and identifies the correct value to return upon reading

based on the associated version. In particular, all updates to mutable shared variables

are tracked using metadata so that size can detect that a field of ReusableLinkedQueue

is being or has been overridden by a concurrent method (e.g., offer or poll) and choose

to return a preceding version of the field to bypass the conflict or to abort.

Note that one could have safely omitted the form parameter here (@Transactional)

hence adopting the default opaque semantics instead, however, it would limit concur-

rency by often aborting the size or its potential conflicting updates.

Related issues. Similarly, C# concurrent libraries trade reusability for efficiency. Con-

sider the System.Collections.ConcurrentDictionary CDT as another example. This

CDT cannot be easily extended with a correct size() or sum() method, in particular

one should not use the existing GetEnumerator() to count or sum-up the elements as

the resulting method would not be atomic.

Note that a subset of these problems arise upon inheritance and are thus referred to

as inheritance anomalies [22].

2.2 Composability

Illustrating the issue. In most languages, there is no clear way of ensuring that atom-

icity gets preserved under composition of methods into another (the new one invoking

the existing ones). This difficulty made it hard to identify bugs in basic Java CDTs,

like java.util.Vector. Similar bugs have been unveiled thanks to automated frame-

works helping researchers detect atomicity violations [23,24,25,26,27]. As noted ear-

lier [24,26], the version 1.4.2 of the JDK suffered from a critical issue related to one

188 V. Gramoli and R. Guerraoui

public ReusableOldVector(Collection c) {

init(c);

}

@Transactional(form=OPAQUE)
public void init(Collection c) {

elementCount = c.size();

elementData = new Object[(int)Math.min(

(elementCount*110L)/100,Integer.MAX_VALUE)];

c.toArray(elementData);

}

Fig. 2. PT fixes the Vector constructor problem and allows composability

of the constructors of java.util.Vector, a widely used abstraction that is supposed to be

thread-safe. Upon constructing a new Vector based on an existing Collection c of ob-

jects, an ArrayOutOfBoundsException could be raised. The reason is that between the

time the size of the collection c is computed and the time c gets converted into an array,

a concurrent update may modify the size of the collection c.

The PT solution. The java.util.Vector issue can be easily fixed using our PT method-

ology that instruments all transactional shared accesses (including to the Collection).

The obtainedReusableOldVector simply consists of the original constructor placed into

the init method that is annotated with a keyword @Transactional(form=OPAQUE)
as depicted in Figure 2. We actually copy-pasted the constructor into a transactional

init method simply because the instrumentation is automated for methods but not con-

structors. Note that we use the opaque form in this example as we motivate later in

Section 3.1.

We implemented a ReusableVector CDT by converting all the synchronized methods

of the java.util.Vector of the JDK 7 (hence the name ReusableOldVector for the fix of

the version 1.4.2) into sequential methods annotated using the opaque transactional

wrapper. An advantage of our transaction annotations is that each method, be it private

(e.g., ensureCapacityHelper) or public (e.g., ensureCapacity) can be annotated as a

transaction. In contrast, nesting of locks may be problematic leading to deadlocks when

a programmer encapsulates in a synchronized block a call to an external method already

using synchronized.

Related issues. In C#, the aforementioned ConcurrentDictionary CDT exposes

GetOrAdd(k,v) and AddOrUpdate(k,v′) that are not the (atomic) composition of get-

ting, adding and updating actions. Actually, we observed a lost update problem when

GetOrAdd(k,v) and AddOrUpdate(k,v′) run concurrently. Intuitively, any concurrent

execution of these two methods should always end up in a final state where k is present

and its associated value is v′: either GetOrAdd fails in adding if AddOrUpdate is lin-

earized first, or v is updated to v′ if AddOrUpdate is linearized second. The lost update

may lead, however, to an inconsistent final state in which k is present with value v. Pre-

cisely because its behavior is incorrect, such subtlety is not visible at the level of the

interface of this CDT.

Within the last two years, more than 300 bugs due to this lack of composability were

identified in real-world applications [28,27].

Reusable Concurrent Data Types 189

Table 2. Domain and states of the algorithm

Domain of the algorithm

X the set of references

V the set of values

T ⊆ N the set of versions

State of transaction t

form ∈ {opaque,hand-over- transaction form (initially opaque)

hand,snapshot, irrevocable}
wset ⊂ X ×V the write set (initially /0)

rset ⊂ X ×T the read set (initially /0)

bkp ⊂ X ×V ×T backup of value-version (init. /0)

lb ∈ N versions lower bound (initially 0)

ub ∈ N versions higher bound (initially 0)

3 Polymorphic Transactional Memory

We present a polymorphic software transactional memory (PSTM) that underlies our

PT methodology. The PSTM implementation has four distinct forms of transactions,

opaque, hand-over-hand, snapshot, and irrevocable, hence the name. A bytecode in-

strumentation phase automatically redirects all shared memory accesses of annotated

methods, including the accesses within their nested methods, to the proper transac-

tion form. (Details about nesting semantics are given in Section 5.3.) At run-time the

method starts by calling the tx-start passing the optional form as a parameter, invokes

tx-read/tx-write instead of directly accessing the shared memory and calls tx-commit

right before returning. If the corresponding transaction aborts it restarts and the method

returns after the transaction successfully commits.

The domain and transaction states of PSTM are depicted in Table 2, the revoca-

ble transactions code is depicted in Algorithm 1. Conflicts are detected at the level of

accesses to an object field to enable higher concurrency than object-based detection,

thus we say that PSTM is field-based. Each field reference is associated with a ver-

sioned lock that stores the version of the associated reference if unlocked, or its owner

if locked (ℓ.owner = ⊥ indicates that the lock is not held). Each transaction consults a

global counter, clock (Line 2), and maintains version lower and upper bounds, resp. lb

and ub, that help checking whether an access is consistent. Like most time-based soft-

ware transactional memories (STMs) [29], all transactions update the memory lazily by

buffering writes into a write-set, wset, until it commits, and have invisible reads: none

of the read accesses from any transaction is visible from other transactions.

Our solution is deadlock-free because a transaction that cannot acquire a lock simply

releases all the previous locks it acquired (and aborts). Adapting more elaborate con-

tention managers [30] to obtain stronger progress guarantees, e.g., to avoid starvation,

is left to future work. For the sake of efficiency, only writes lock and reads do not lock,

however, the values read must be validated each time a read or a write occurs to make

sure that they have not been overridden by concurrent transactions.

We omitted the pseudocode of several helper functions. The function vervalver

(Lines 6) is a three-read process spinning until the value and versioned lock returned are

190 V. Gramoli and R. Guerraoui

guaranteed to be consistent (as if they were both read atomically). The truncate func-

tion (Line 20) discards the oldest entries from the read-set rset to keep the two most

recent ones. Finally, lock acquires a lock on a given reference and returns the previous

lock state or raises an exception if the lock is taken while unlock releases the lock on the

given reference, store reports changes in memory, set-ver associates a new version with

some value, get-ver/get-val return the versioned lock and the value of the reference,

respectively, and bkp.version/value returns the old (backup) version/value of the given

reference.

3.1 Opaque Transactions

The opaque semantics captures the intuitive single-global-lock semantics provided by

common monomorphic (i.e., non-polymorphic) STMs. It has the strongest semantics,

hence, it can be used to guarantee atomicity of any method. It clearly benefits the novice

programmers who ignore other forms, but in general it limits scalability when applied

to long methods. In our package, we used opaque transactions for the short methods

with few accesses, like head, first, firstEntry, firstKey and most of the ReusableVector

methods because their exploitable concurrency is limited.

Our implementation of opaque transactions follows the LSA algorithm [31]: it ac-

quires locations eagerly, upon write at Line 28. Upon reading a location with a lower

version than ub, the opaque transaction knows that this value has not been concurrently

overridden so it can safely read it and record the corresponding read entry for further

validation (Line 11). If the read location has a higher version than ub, then the opaque

transaction tries to increase its ub (Line 15): if the validation is successful then it up-

grades ub to the value the clock had at the time right before the validate was invoked.

This upgrade allows an opaque transaction that observes a value committed after it

started to be serialized after the conflicting transaction.

Upon writing, the transaction tries to lock the reference and aborts if it read the ref

before it got overridden (Line 30). Upon commit, the read set is revalidated (Line 46),

the value-version pair is copied (Line 48), the wset is reported to memory (Line 49)

with a higher version (Lines 44), and locks are released (Line 51).

3.2 Hand-over-Hand Transactions

Hand-over-hand transactions relax the opaque semantics to one that resembles hand-

over-hand locking [14]. More precisely, they guarantee elastic-opacity but their im-

plementation differ from E -STM elastic transactions [9] to be made compatible with

other transactions (e.g., hand-over-hand transactions record backup versions). Hand-

over-hand transactions are well-suited for ensuring atomicity of search structures that

are traversed in a specific order. These transactions speed up traversals looking for a

single location and possibly updating multiple ones. If used in other circumstances, like

for computing the size of a structure, the size method may return a semantically incor-

rect result (like most concurrent libraries do), hence the need for complementary forms.

In our package we used it for wrapping the methods contains, get, insert, insertAll, put,

remove, replace, removeAll, putIfAbsent and the like.

Reusable Concurrent Data Types 191

Algorithm 1. PSTM algorithm for revocable transaction t

1: tx-start(tx-form)t : ✄ the form parameter
2: lb ← ub ← clock ✄ versions lower-/upper-bound

3: if tx-form �=⊥ then form ← tx-form ✄ initialize tx form
4: else form ← opaque ✄ opaque by default

5: tx-read(ref)t : ✄ transactional read
6: 〈ℓ,v〉 ← vervalver(ref) ✄ get lock and value copies atomically

7: if ℓ.owner �∈ {t,⊥} then abort() ✄ locked by other, conflict

8: if ℓ.owner = t then ✄ if locked by me
9: v ← w.val : w ∈ wset∧w.ref = ref ✄ return my written value

10: if ℓ.owner =⊥ ∧ ℓ.version ≤ ub then ✄ if no conflict
11: rset ← rset ∪ {〈ref ,ℓ.version〉} ✄ record read entry

12: if ℓ.owner =⊥ ∧ ℓ.version > ub then ✄ ref’s been written, conflict

13: if form = opaque then ✄ if opaque tx
14: now ← clock ✄ record clock locally

15: if validate() then ub ← now else abort() ✄ upgrade upper bound

16: rset ← rset ∪ {〈ref ,ℓ.version〉} ✄ record read entry

17: else if form = hand-over-hand then ✄ if hand-over-hand tx
18: if ¬validate() then abort() ✄ validate (potentially truncated) read-set

19: rset ← rset ∪ {〈ref ,ℓ.version〉} ✄ record read entry

20: if wset = /0 then truncate(rset,2) ✄ keep only last two entries

21: else if form = snapshot then ✄ if snapshot tx
22: if (old = bkp.version(ref))≤ ub then ✄ sufficiently old version
23: v ← bkp.value(ref) ✄ return old version

24: rset ← rset ∪ {〈ref ,old〉} ✄ record read entry
25: else abort() ✄ old version is too recent

26: return v

27: tx-write(ref ,value)t : ✄ transactional write
28: try ℓ= lock(ref) catch-e abort() ✄ acquire the lock and copy old lock state

29: if ℓ.owner =⊥ ∧ ℓ.version > ub then ✄ ref’s been written, WAW conflict

30: if ref ∈ rset then abort() ✄ cycle in precedence graph

31: if ¬validate() then abort() ✄ validation of some of the conflicts

32: wset ← wset ∪ {〈ref ,value〉} ✄ buffer write entry
33: return ok

34: validate()t : ✄ make sure read set has not changed
35: for all 〈r,ver〉 ∈ rset do ✄ for any read entry...

36: ℓ← get-ver(r) ✄ reread its versioned lock
37: if ver �= ℓ.version∨ ℓ.owner �∈ {t,⊥} then ✄ if has been overriden/locked
38: return false ✄ validation fails (simplified)

39: return true

40: abort()t : ✄ rollback before automatic restart
41: for all w ∈ wset do unlock(w.ref) ✄ release all locks

42: tx-commit()t : ✄ try to commit

43: if wset �= /0 then ✄ if something to redo
44: ts ← clock++ ✄ fetch-and-increment global counter

45: if ts > lb+1 then ✄ if concurrent update...
46: if ¬validate() then abort() ✄ validate read set, check WAR conflicts

47: for all w ∈ wset do ✄ apply writes and release locks
48: bkp ← bkp ∪ {〈w.ref ,get-val(w.ref),get-ver(w.ref)〉} ✄ backup

49: store(w.val,w.ref) ✄ write in memory
50: set-ver(w.ref , ts) ✄ upgrade version

51: unlock(w.ref) ✄ release lock

A hand-over-hand transaction automatically ignores the old values read during its

read-only prefix (i.e., as long as wset = /0). When a hand-over-hand transaction still in

its read-only prefix reads a location, it creates a new read entry in its rset and discards

192 V. Gramoli and R. Guerraoui

all but the two last entries by truncation (Line 20). By contrast, the E -STM elastic

transactions [9] used to keep only one extra entry to ensure the atomicity of the list-

based set. This was made possible thanks to a marking trick used before re-allocating

the memory in unmanaged language. As we do not control memory reclamation in Java,

we could not use the same trick, which explains why a hand-over-hand transaction needs

to maintain up to two read entries to guarantee correctness of pointer-based structures.

Although keeping two entries is actually sufficient for multiple search structures (e.g.,

linked lists, skip lists, hash tables), more entries could be thought for other application

semantics. If the read location has a higher version than ub, the entries of its (potentially

truncated) read set get revalidated (Line 18) to make sure its read values are still up-

to-date. By exploiting the semantics of search structures, hand-over-hand transactions

enable higher concurrency than traditional transactions. In particular, a hand-over-hand

transaction that has traversed an ordered structure and that is updating its end would not

conflict with a concurrent transaction updating the beginning of the structure.

When a hand-over-hand transaction writes for the first time, it has to revalidate the

two entries of its rset. When a hand-over-hand transaction has already written (i.e., it is

no longer executing its read-only prefix) it behaves like an opaque transaction: it stops

truncating the rset. A hand-over-hand transaction commits as an opaque transaction

except that its validation may occur on a truncated read set (Line 46).

3.3 Snapshot Transactions

In contrast with opaque transactions, snapshot transactions are read-only and tolerate

concurrent updates by potentially returning values that can be slightly out-of-date at

the time it commits. Note that atomicity is ensured because all its read values are guar-

anteed to be up-to-date at a common point of the execution between the invocation

and the response of the transaction. In our package, snapshot transactions are used for

methods iterating over a collection of elements: descendingSet, headMap, headSet,

size, subMap, subSet, tailMap, toArray, toString and the like.

To exploit concurrency between updates and snapshots the implementation of a snap-

shot transaction builds upon multi-version concurrency control. Multi-version concur-

rency control has proved useful in software transactional memories, like JVSTM [32],

to guarantee either opacity or snapshot isolation but not to combine both. Maintaining

the minimum of versions per object that maximizes the variety of output histories comes

at a cost [33]: the proposed useless-prefix multi-version (UP MV) STM guarantees this

property but, as a drawback, does not support invisible reads. To avoid such constraints,

we chose to maintain two versions at each location. All update transactions create a

backup value-version pair before overriding them (Line 48). The snapshot transaction

has simply to detect that the location it aims to access has a higher version than its up-

per bound ub (Line 12) to try getting an older version (Line 22). The transaction has to

abort if the old version is too recent at Line 25 as there are no older versions.

3.4 Irrevocable Transactions

We provide irrevocable transactions that never abort. They are used to execute atom-

ically a series of statements in a pessimistic manner without speculation, similar to

Reusable Concurrent Data Types 193

critical sections, and are particularly useful for executing external actions like I/O. One

can delimit an irrevocable transaction using a dedicated Irrevocable annotation. We

omitted the pseudocode of irrevocable transactions, as they simply consist of (implicit)

mutual exclusion [34]. All regions annotated as irrevocable are identified by the un-

derlying Java agent, Deuce [18], and automatically wrapped in a critical section. In

contrast with other forms, an irrevocable transaction starts by trying to acquire a reader-

writer lock in exclusive mode that is held until the commit of the irrevocable transaction

is called. This strategy prevents an irrevocable transaction from running concurrently

with any other transaction but lets revocable transactions run concurrently. A revocable

transaction actually acquires a shared reader-writer lock to guarantee this. Hence, any

transaction trying to execute while an irrevocable transaction is running is blocked until

the irrevocable transaction commits.

4 Correctness

In this section, we discuss the correctness of PSTM. First, it is crucial that all transaction

forms be pairwise compatible, meaning that the semantics of each transaction form be

preserved despite concurrency. In particular, the semantics of some writing transaction

should not impact the semantics of another transaction accessing the written elements.

Second, a concurrent library should always be linearizable and reusable.

4.1 Invariants

The model is a concurrent environment where a set of threads execute transactional

methods on shared data types. The synchronization semantics of each method is given

by its transaction form that can be of the type opaque, hand-over-hand or snapshot but

we ignore the irrevocable form as it cannot run concurrently with others. A transaction

is the execution sequence of a method read and write accesses to the shared memory. It

completes either by committing, meaning that the corresponding method returns and all

its changes are visible from other transactions, or by aborting, meaning that no changes

are visible. Note that the system implicitly starts a new transaction executing the same

method if the preceding one aborted. A well-formed execution of this model is an exe-

cution where each transaction executed by one thread completes before the same thread

starts another: the nesting discussion is deferred to Section 5.3.

For the sake of compatibility our three revocable forms defer conflict resolution to

the same conflicting transaction and never ignore WAW conflicts.

Invariant 1. Let t1 and t2 be two transactions involved in a WAW conflict. At least one

of these two aborts.

For the sake of high concurrency, we adjust the conflict resolution strategy depending

on the transaction form. We differentiate the semantics of our forms in the way they

handle RAW and WAR conflicts. Reads are idempotent, as they do not affect the system

state; hence the decision taken by the reading transaction detecting a RAW conflict,

which depends on the semantics of this transaction, never affects the semantics of other

transactions. Specifically, reads can interchangeably return committed values or abort,

this result is invisible from the standpoint of concurrent transactions.

194 V. Gramoli and R. Guerraoui

Invariant 2. Let two transactions tr and tw be involved in a RAW conflict where tr
executes the conflicting read whereas tw executes the conflicting write. Transaction tr
either ignores the conflict by resuming or resolves it by aborting itself.

The problem of enhancing concurrency is more subtle upon WAR conflicts. If

a transaction tries to solve a WAR conflict upon detecting it by writing, then it

could either conservatively limit concurrency (e.g., by aborting while its semantics is

hand-over-hand) or it could violate the semantics of other transactions (e.g., committing

while the conflicting transaction is opaque and this conflict would induce a cycle in the

precedence graph observed by this transaction). This issue is addressed by forcing the

reading transaction to solve all WAR conflicts, which requires all reading transactions

to (re-)validate either at some later read, write or commit.

Invariant 3. Let two transactions tr and tw be involved in a WAR conflict where tr
executes the conflicting read whereas tw executes the conflicting write. Transaction tr
either ignores the conflict by resuming or resolves it by aborting itself.

4.2 Semantics Preservation

Opacity requires committed transactions to be strictly serializable and non-committed

ones to observe consistent states [16]. The semantics of opaque transactions is preserved

due to Invariant 1 and the fact that all transactions write values at commit time so that

the read operations cannot return transient values (Line 15). As opposed to other forms

of optimistic transactions [35,36], a snapshot transaction is not necessarily serialized

at its commit time as it only returns values that were present at its start time (Lines 10

and 22) to exploit multi-versioning while ensuring strict serializability. Finally, hand-

over-hand transactions prevent some read/write from being interleaved with conflicting

writes to ensure elastic opacity [9]. As they are not necessarily strictly serializable, they

allow to implement efficient linearizable CDTs.

4.3 Linearizability of the Data Type

One can easily deduce a linearization point for each operation of a transaction form,

at which the transaction of the corresponding form appears to execute instantaneously.

The opaque transaction always keep the locks until commit hence a valid linearization

point is the point at which it starts releasing its first lock (Line 51); a read-only opaque

transaction linearization point is at Line 6 of its last read. The snapshot transaction may

return values that have been overridden, hence its linearization point cannot be taken

from its commit phase, however, since it makes sure that all versions it observes falls

in its range upper bound, ub, a valid linearization point is the point where it sets its

timestamp to the global clock (Line 2). The hand-over-hand transaction is well-suited

for some data types but not all, and this is the responsibility of the expert to use it appro-

priately. For example, one cannot implement a data type exporting a putIfAbsent(x,y)

method synchronized with hand-over-hand transaction. The hand-over-hand transac-

tion may ignore conflicting writes, hence acting as if it was linearized after them: a

valid linearization point for an appropriate data type is when it grabs the lock of its first

Reusable Concurrent Data Types 195

write (Line 28) or at Line 6 of its last read (if read-only). Recall that linearizability is

ensured precisely because it is defined for arbitrary objects (or types) without requir-

ing that all low-level reads and writes of a method appear as if they were all executed

instantaneously [2].

4.4 Reusability

Extensibility is ensured by the fact that our transaction forms are compatible as dis-

cussed previously, hence adding a new method annotated with one of the proposed

forms guarantees that the semantics of existing methods will not be affected.

Composability is guaranteed by the fact that whatever forms protect original meth-

ods, the programmer always has the possibility to derive a composite annotated method

that will execute atomically. By default the semantics of the composite method would be

opaque which guarantees the atomicity of any method. In particular, while two traver-

sals may be originally annotated as hand-over-hand ignoring some conflicts for the sake

of concurrency, a new composite method annotated as opaque that reuses them switches

their semantics to opaque. The simplicity stems from the fact that the source code of

the original methods does not need to be available as the switch is transparently done

at the bytecode level. The nesting of different forms is discussed in Section 5. Note that

in addition to concurrent methods annotated with transactions, bare sequential meth-

ods (without annotation) can be composed into a composite concurrent method that is

annotated. This allows programmers to reuse existing sequential ADTs (in addition to

transactional CDTs) to produce CDTs that are themselves reusable.

5 Language Integration

We integrated the PT methodology to Java to simplify the development and reuse of

concurrent objects using annotations. We detail below how the bytecode gets automati-

cally instrumented, how exceptions are handled, how transactions nest within each other

and to which extend one can use legacy code.

5.1 Bytecode Instrumentation

Our implementation of the PT methodology extends the Deuce [18] bytecode instru-

mentation framework to support multiple forms of transactions. Figure 3 depicts the

process of the PT methodology: (1) The programmer first compiles the data types whose

methods accessing mutable shared variables are annotated with transaction forms—

these annotations persist in the bytecode. Then (2) the Java agent automatically pro-

duces a transactional version of all objects used to redirect all their shared accesses

invoked within a transaction to the tx-read/tx-write of the corresponding transaction

form of PSTM. (3) This outputs the bytecode of the corresponding reusable CDT that

can be run by any JVM.

196 V. Gramoli and R. Guerraoui

Class FileSystem {
 ...

 @Transaction(form1)
 void mv(n1, n2) {
 cp(n1, n2);
 rm(n1);
 }

 @Transaction(form2)
 void touch(n1) {
 ...
 }
 }

transaction

form1

transaction

form2

Reusable CDT
Annotated ADT

void mv_form1(n1, n2)
{
 cp_form1(n1, n2);
 rm_form1(n1);
 }

void touch_form2(n1) {
 ...
}

Polymorphic STM

1 2 3

Fig. 3. Our PT methodology relies on annotating manually a sequential (or transactional) type,

and producing a reusable CDT by automatically instrumenting methods using the transactional

wrappers of the underlying polymorphic transactional memory system (e.g., PSTM)

5.2 Exception Handling

Our framework supports exception handling within transactions. An exception raised

within a transaction provokes the transaction to commit and the exception gets propa-

gated outside the scope of the transaction similarly to synchronized blocks and as im-

plemented in Deuce. The advantage of this semantics is to guarantee that the cause of

the exception remains visible if the exception itself is visible. An alternative interesting

semantics is failure atomicity where an exception is considered a failure from which

the system recovers by rolling back to the most recent checkpoint. For a failure-atomic

exception handler in Java using STMs we refer the reader to the CXH compiler [37].

5.3 Nesting Semantics

For the sake of safety, we adopt a conservative flat nesting approach by imposing the

most restrictive (when comparable) form of the inner/outer transaction to always pre-

vail. In our form examples, opaque prevails over snapshot and hand-over-hand. To

motivate our choice take the following non-trivial example where Alice would like to

reuse Bob’s package. For efficiency purpose Bob’s package provides a hand-over-hand

contains(y) and a hand-over-hand put(x) methods. Alice would like to derive a new

data type by nesting these two methods into an opaque putIfAbsent(x,y) that inserts x

in a data structure only if y is absent. It is crucial that the contains(y) and put(x) inherit

the opaque semantics of its parent putIfAbsent(x,y) transaction to avoid a write-skew

problem if a putIfAbsent(y,x) happens to run concurrently. If the opaque semantics is

not inherited, then there exists an execution in which both contains(x) and contains(y)

executing concurrently return false and then both x and y get successfully inserted, lead-

ing to an inconsistent state where both x and y are present. Note that Alice has to be

Reusable Concurrent Data Types 197

an expert who understands the semantics of a transaction to use it. This is particularly

important for her to be aware that putIfAbsent cannot be executed as a hand-over-hand

transactions in her new data type.

5.4 Legacy Code

The PT methodology recommend not to use other forms of synchronization besides

transaction forms, however, legacy code can be invoked through irrevocable transac-

tions. In particular, the PT methodology does not guarantee compatibility between the

transaction forms and the explicit use of compare-and-swap and mutual exclusion as it

there is no clear semantics on conflicting accesses using these different synchronization

techniques. A potential risk is that non-transactional accesses would typically observe

transient states if they could access transactional CDTs as we do not provide strong

atomicity [38]. Note that requiring CDTs to be accessed transactionally can be enforced

in Java through the use of pre-existing setters and getters as, for example, when access-

ing ThreadLocal variables. Finally, the PT methodology can still be used to turn most

sequential ADTs into equivalent atomic CDT.

6 Evaluation

In this section, we evaluate our methodology in Java. We compare our reusable library

to lock-based and lock-free libraries from the JDK and STM-based libraries, on SPARC

and x86-64 architectures using Synchrobench and the Vacation application.

6.1 Settings

We used two 64-way machines with different architectures: an UltraSPARC T2 (Nia-

gara 2) 1.165GHz with 32GB of memory and a 2U server with 4 AMD Opteron 6378

2.4GHz 16-core processors with 128GB of memory. (All graphs except the last ones re-

port the results from SPARC.) Each data point of the graphs corresponds to the through-

put averaged over 3 runs of 13 seconds executed in separate JVM instances and where

the 10 first seconds of each run are used to warmup each JVM. (Each point of the graph

thus takes nearly 40 seconds to be computed and we carefully checked that the variance

was negligible enough for the results to be meaningful.) The JVM runs in server mode

with 2G of initial/maximum Java heap size.

6.2 PT Methodology vs JDK

First, we evaluate two techniques from the JDK 6 to construct reusable set CDTs: (1) the

copy-on-write wraps a set ADT into a java.util.concurrent.copyOnWriteArraySet

to obtain an array whose methods are guaranteed to be atomic and whose read-

only methods are wait-free (JDKCopyOnWrite), and (2) a lock-based one consist-

ing of wrapping a set ADT into a synchronizedSet (JDKLocks) to transparently

make its methods atomic. Second, we evaluate the PT methodology when based on

PSTM and when using four implementations of state-of-the-art (monomorphic) STMs:

198 V. Gramoli and R. Guerraoui

*
,)

('
0#
"
.&
,*
/
%
&
+
/
.

/)!#, *$.&,# "-

(a) 5% update, 210 elements

!

"

#

$

%

&

'

" # % ("' $# '%

*
,)

('
0#
"
.&
,*
/
%
&
+
/
.

/)!#, *$.&,# "-

(b) 5% update, 212 elements

!

"

#

$

%

&

'

" # % ("' $# '%

*
,)

('
0#
"
.&
,*
/
%
&
+
/
.

/)!#, *$.&,# "-

(c) 10% update, 210 elts

!

#

%

&

'

"!

" # % ' "& $# &%

*
,)

('
0#
"
.&
,*
/
%
&
+
/
.

/)!#, *$.&,# "-

(d) 10% update, 212 elts

!

"

#

$

%

&

" # % ("' $# '%

*
,)

('
0#
"
.&
,*
/
%
&
+
/
.

/)!#, *$.&,# "-

(e) 15% update, 210 elts

!

"

#

$

%

&

'

" # % ("' $# '%

*
,)

('
0#
"
.&
,*
/
%
&
+
/
.

/)!#, *$.&,# "-

(f) 15% update, 212 elts

!

"

#

$

%

&

'

" # % ("' $# '%

*
,)

('
0#
"
.&
,*
/
%
&
+
/
.

/)!#, *$.&,# "-

(g) 20% update, 210 elts

!

"

#

$

%

&

'

" # % ("' $# '%

*
,)

('
0#
"
.&
,*
/
%
&
+
/
.

/)!#, *$.&,# "-

(h) 20% update, 212 elts

Fig. 4. Throughput (normalized over sequential) obtained when using polymorphic transactions

(PSTM), the lock-based synchronizedSet from the JDK, the copyOnWriteArraySet from the

JDK and the highest throughput we obtained from our four monomorphic STMs (LSA, TL2,

SwissTM, NOrec). Workloads include 10% of size, from 5% to 20% of updates (add or remove

with the same probability) and from 70% to 85% of contains.

Reusable Concurrent Data Types 199

LSA [31], TL2 [39], SwissTM [40] and NOrec [41]. For evaluating them on the

same ground, all these implementations are field-based and match the interface of

Deuce [18] (in particular, LSA, TL2, and NOrec are the standard versions provided

with Deuce). We tested all STMs including PSTM and observed that PSTM was more

efficient than other STMs on ReusableLinkedQueue, ReusableLinkedListSortedSet,

ReusableHashMap and the ReusableSkipListSet thus we only report the data from

the ReusableLinkedListSortedSet. This benchmark comprises add/remove (5–20%),

contains (70–85%) and size (10%) methods on a sorted linked list data structure, meth-

ods that are all provided by Java CDTs.

Figure 4 depicts the throughput of our PT methology (PSTM), of existing monomor-

phic STMs, and of existing copy-on-write and pessimistic lock-based solutions, all

normalized over the throughput of bare sequential code, on SPARC. About the

monomorphic STMs curve, we have chosen, for each single point, the maximum

throughput we obtained from LSA, TL2, SwissTM, and NOrec. The detailed speedup of

PSTM over each of these STMs is presented in Section 6.5. The overall performance of

PSTM is better than the synchronization alternatives. At low levels of contention, when

update ratio is 5% or at low number of threads, PSTM executes slower than a copy-on-

write and pessimistic lock-based alternatives. The reason is that PSTM suffers from the

overhead (due to wrapping each individual access) that is common to STM implemen-

tations including monomorphic ones. This overhead is however rapidly compensated as

PSTM scales well with contention whereas the copy-on-write solution scales badly and

the lock-based solution does not even scale. More precisely, PSTM speeds up the exist-

ing copy-on-write solution by 2.4× on average, and the existing pessimistic lock-based

solution by 4.7× on average at the highest level of parallelism we have at our disposal

(64 hardware threads).

!

"

#

$

%

&

" # % ("' $# '%

(a) 210 elements

!
"
#
$
%
&
'
(
)
*
"!

" # %) "' $# '%

(b) 212 elements

Fig. 5. Speedup of PSTM over each monomorphic STM: LSA, TL2, SwissTM and NOrec, from

1 to 64 threads (the throughput is identical when speedup has value 1)

200 V. Gramoli and R. Guerraoui

!

"

#

$ $!

!
)
&
&
%
+
)
(
'

!
"

#)%$*& ,0-

(a) 210 elements

!

"

#

$ $!

!
)
&
&
%
+
)
(
'

!
"

#)%$*& ,0-

(b) 212 elements

Fig. 6. Speedup of PSTM over the variant that does not use snapshot transactions and the one

that does not use hand-over-hand transactions

6.3 Polymorphism vs Monomorphism

Figure 5 depicts the speedup of PSTM over monomorphic STMs, LSA, TL2, SwissTM,

NOrec, as the throughput of PSTM divided by the throughput of the corresponding

monomorphic STM (with 20% update) on SPARC.

These results show that PSTM scales better than other STMs. More precisely, PSTM

presents a slight overhead at low levels of parallelism, typically when running a sin-

gle thread but rapidly compensates this slight overhead in concurrent executions. This

overhead is caused by the fact that polymorphism adds some necessary checks at each

access to determine the type of the current transaction and that it records one ver-

sion at each write for multi-version concurrency control. At large levels of parallelism,

PSTM is significantly more efficient as its polymorphism exploits adequately concur-

rency whereas monomorphic STM executes a single form of transaction, which has a

fortiori the strongest semantics that also limits concurrency. More precisely, PSTM out-

performs the tested monomorphic STMs by up to a factor of 8.6× on 64 threads. This

improvement is specific to polymorphism as PSTM outperforms every single monomor-

phic STM by a mean factor of at least 4 on 64 threads.

6.4 Adding Forms Is Beneficial

We have also evaluated the advantage of combining three revocable transaction seman-

tics instead of only two. Figure 6 illustrates the speedup of using the three revocable

semantics (PSTM) over the use of only two of them at high level of concurrency (64

threads) for different update ratios on SPARC. “PSTM without Snapshot” indicates

the speedup of PSTM over a variant where all snapshot transactions have been re-

placed by opaque transactions. (All transactions of this variant are either opaque or

hand-over-hand.) “PSTM without Hand-over-hand” indicates the speedup of PSTM

over another variant where all hand-over-hand transactions have been replaced by

opaque transactions. (All transactions of this variant are either opaque or snapshot.)

Reusable Concurrent Data Types 201

!

#!!!

%!!!

&!!!

'!!!

"!!!!

"#!!!

" # % ' "& $# &%

(
,*
/
'
(
+
/
.
1*
+
-0
)
-%
#2

/)"%, *& .(,%!$-

(a) Read-only workload

!

&

"!

"&

#!

#&

$!

" # % ("' $# '%

(
,*
/
'
(
+
/
.
1*
+
-0
)
-%
#2

/)"%, *& .(,%!$-

(b) Contended workload

Fig. 7. Comparison of our ReusableVector (PSTM Vector) against the java.util.Vector from the

JDK and the bare sequential Vector

The overall result is that exploiting the three revocable forms of PSTM is always ben-

eficial as the speedup is never below 1. In particular the speedup of PSTM over “PSTM

without hand-over-hand” speedup tends to grow with the update ratio. This result is not

surprising as we expected the combination of the three revocable semantics to be espe-

cially suited to limit the number of aborts, thus, it is natural for its gain to increase with

the contention. An interesting observation is that the speedup of PSTM over “PSTM

without snapshot” is generally low. This is explained in part by the implementation of

the latter being particularly lightweight: “PSTM without snapshot” has less overhead

because it does not backup values upon write as multiple versions are not needed. By

contrast, both PSTM and “PSTM without hand-over-hand” have snapshot transactions

and require one backup per write.

6.5 java.util.Vector vs ReusableVector

The vector benchmark comprises add, remove and contains and compare the per-

formance obtained with our ReusableVector against the lock-based java.util.Vector
from the JDK and against a bare sequential code version that is taken from the

java.util.Vector from which we removed all locks.

Figure 7 depicts the throughput for a read-only workload and a contented workload

(with 10% updates) on the java.util.Vector from the JDK 7 and on our ReusableVector

(on SPARC). Interestingly, the PT methodology does a better job in outperforming

sequential code when concurrency can be exploited. The reason is that our approach

differentiates automatically read and write accesses to object fields and enables read

sharing. By contrast, the java.util.Vector relies essentially on synchronized methods

that act as mutual exclusion independently from their access mode. Consequently, our

solution performs better than the java.util.Vector on the read-only workload by up to

4× (Figure 7(a)). However, we can observe the high overhead due to the bookkeep-

ing of TM wrappers at low levels of parallelism. When almost no concurrency can be

exploited (Figure 7(b)), our approach executes significantly slower.

202 V. Gramoli and R. Guerraoui

!

#

%

&

'

"!

"#

"%

" # % ' "& $# &%

)
1
$
+-
$
#
#
0
+!
.
*
)

46
3
.
(
$
')
(
')
0
-$
5

 0("$+ *% -&+$!#,

(a) STAMP Vacation

!

"!!!

#!!!

$!!!

%!!!

" # % ' "& $# &%
(
,*
/
'
(
+
/
.
1*
+
-0
)
-%
#2

/)"%, *& .(,%!$-

(b) Reusable vs non-reusable queue

Fig. 8. STAMP Vacation results and comparison of our ReusableLinkedQueue (PSTM Queue)

against the j.u.c.ConcurrentLinkedQueue from the JDK

6.6 The Vacation Application

We evaluate our methodology with a Java version of STAMP vacation [13]. This appli-

cation is a typical transactional application in that it uses a travel reservation database

engine that organizes cars, rooms, flights and customers tables into four red-black trees.

Tables are accessed through three transactions to (a) check prices and reserve few items,

(b) delete customers and (c) add or remove items of a reservation. To evaluate the PT

methodology, we made the first transaction read-only by simply returning prices and

annotated it as snapshot, we annotated the two others as opaque (all transactions are

opaque when running the monomorphic STMs). We set the initial and maximum Java

heap size to 4G and use the recommended low contention parameters of vacation.

Figure 8(a) depicts the vacation performance as the inverted duration time on x86-

64. The performance of PSTM keeps scaling up to 64 threads at which point it becomes

19% faster than monomorphic alternatives. Although monomorphic STMs stop scal-

ing at 32 threads, they are more efficient than PSTM at lower levels of parallelism

confirming our observations on micro-benchmarks. In particular, TL2 achieves good

performance at 16 threads, which may be due to TL2’s code being optimized through

the use of metadata pools to reduce memory reclamation. This feature seems appealing

in more realistic benchmarks, like vacation, that tend to use more memory for longer

than our micro-benchmarks.

6.7 j.u.c.ConcurrentLinkedQueue vs ReusableQueue

We also evaluated the cost of reusability by comparing the performance of one of our

reusable CDT against a similar but non-reusable lock-free CDT on the x86-64 archi-

tecture (our SPARC results were similar). We compare the queue CDT of the JDK 7

as described in Section 2.1 to the ReusableLinkedQueue as they both rely on a linked

list implementation where elements are added to the head and the remove operation

Reusable Concurrent Data Types 203

searches for the given value by traversing the list. Figure 8 shows the performance of

our ReusableLinkedQueue against the ConcurrentLinkedQueue running 30% of size,

1% of updates (add/remove), 69% of contains on a 128-element queue. The perfor-

mance difference is quite substantial as the non-reusable queue speeds up the reusable

queue by up to 3×. We see two reasons: (a) some overhead is induced by the extra book-

keeping of our synchronizations that triggers the Java garbage collector more often, (b)

the atomicity of the reusable size and updates precludes a lot of non-atomic executions

allowed by the non-reusable skip list. Even though we may reduce the overhead using

hardware transactional memory opcodes, making sure that someone can reuse a concur-

rent library comes with a substantial cost. As opposed to transactional memories that

tend to scale badly [12], PSTM performance scales.

7 Related Work

There is a large body of work on concurrent object-oriented programming languages.

Some approaches rely on monitors, like Guava [42], that may restrict inter-method con-

currency. SCOOP allows to specify an object accessed by a different process as sep-

arate [43]. A client object must acquire an exclusive lock on a separate object before

invoking it through a routine. SCOOP was ported to Java [44] but is not inherently

deadlock-free [45]. Some recent lock-inference techniques are deadlock-free, yet they

require the programmer to provide a semantic description of methods [46].

One of the original motivations for transactional memory (TM) is to alleviate lock-

related problems like deadlocks [3]. Without deadlocks the program is guaranteed to

execute, and a simple exponential backoff strategy can manage contention so that the

program progresses. The first TM to handle concurrency in a dynamic control flow

redirects speculative accesses to Java object copies [47]. The back-end interface of this

TM implementation was later improved in a Java library supporting interchangeable

transactional factory [48]. Lightweight transactions were suggested to avoid copying

entire objects by using a mapping of addresses to word-sized ownership records [49]

before field-based instrumentation was proposed [18].

Exploiting highly concurrent transactions was extensively ex-

plored [7,50,51,52,8,35,53,54]. The aim of Galois [52], JANUS [53] and CSpec [54]

was not to simplify concurrent programming but to enhance optimistic concurrency

in complex scenarios; Galois requires explicit commutativity specifications, Janus

exploits an offline learning phase of commutative relations and CSpec converts already

concurrent code with annotations and locks.

Note that the PT methodology could potentially achieve similar concurrency results

as open nesting [7] and transactional boosting [8] as they all exploit the application-

level semantics. In contrast with our solution, both techniques acquire abstract locks

eagerly and need explicit abort handlers to compensate their actions upon roll-back.

Existing implementations of open nesting require to order transactions and to guaran-

tee that transactions are nested in this specific order to prevent an abort handler from

deadlocking [55]. Transactional boosting suggests to add timeouts to avoid deadlocks

when two transactions acquire abstract locks in different order [8]. Note that our current

implementation of the PT methodology needs annotated sequential code but does not

204 V. Gramoli and R. Guerraoui

use compensating actions. As it keeps all the locks it acquires until commit or abort

time, it is inherently deadlock-free.

8 Concluding Remarks

Concurrent programming would greatly be simplified if concurrent libraries were made

reusable: a programmer could build upon any CDT without having to understand its

synchronization internals. The PT methodology helps reaching this goal by allowing

collaborative development of scalable libraries any programmer can compose and ex-

tend, hence confirming our recent observation [11]. This new methodology promotes

a clear separation of the implementation of synchronization semantics, which requires

advanced programming skills, from the raw sequential code that describes the expected

behavior of an abstract data type.

The ease of use of this methodology is demonstrated using automatic instrumentation

of method bytecode. We confirmed using a novel Java library that reusability of CDTs

comes at a cost. However, we also observe that this cost can be rapidly compensated by

exploiting the high level of concurrency of existing multicore architectures. Actually,

one does not even have to sacrifice scalability for reusability.

Future work includes (a) formalizing a framework to derive incompatibilities of syn-

chronization semantics and (b) optimizing our current implementation through con-

current irrevocable transactions [56] or transactional instruction extensions with Java

opcodes to reduce overhead.

Acknowledgments. The Java port of SwissTM is from Mihai Letia. NICTA is funded

by the Australian Government through the Department of Communications and the

Australian Research Council through the ICT Centre of Excellence Program.

References

1. Meyer, B.: Reusability: The case for object-oriented design. IEEE Software 4(2), 50–64

(1987)

2. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent objects. ACM

Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

3. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data

structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

4. Shavit, N., Touitou, D.: Software transactional memory. In: PODC, pp. 204–213 (1995)

5. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transactions. In:

PPoPP, pp. 48–60 (2005)

6. Wakita, K., Yonezawa, A.: Linguistic supports for development of distributed organiza-

tional information systems in object-oriented concurrent computation frameworks. SIGOIS

Bull. 12, 185–198 (1991)

7. Moss, J.E.B.: Open nested transactions: Semantics and support. In: Workshop on Memory

Performance Issues (February 2006)

8. Herlihy, M., Koskinen, E.: Transactional boosting: A methodology for highly-concurrent

transactional objects. In: PPoPP, pp. 207–216 (2008)

Reusable Concurrent Data Types 205

9. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: Keidar, I. (ed.) DISC 2009.

LNCS, vol. 5805, pp. 93–107. Springer, Heidelberg (2009)

10. Kulkarni, M., Nguyen, D., Prountzos, D., Sui, X., Pingali, K.: Exploiting the commutativity

lattice. In: PLDI, pp. 542–555 (2011)

11. Gramoli, V., Guerraoui, R.: Democratizing transactional programming. In: Kon, F., Kermar-

rec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 1–19. Springer, Heidelberg (2011)

12. Turon, A.: Reagents: expressing and composing fine-grained concurrency. In: PLDI, pp. 157–

168 (2012)

13. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional applica-

tions for multi-processing. In: IISWC (2008)

14. Bayer, R., Schkolnick, M.: Concurrency of operations on b-trees. In: Readings in Database

Systems, pp. 129–139 (1988)

15. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database

Systems. Addison-Wesley (1987)

16. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: PPoPP, pp. 175–

184 (2008)

17. Welc, A., Saha, B., Adl-Tabatabai, A.R.: Irrevocable transactions and their applications. In:

SPAA, pp. 285–296 (2008)

18. Korland, G., Shavit, N., Felber, P.: Deuce: Noninvasive software transactional memory.

Transactions on HiPEAC 5(2) (2010)

19. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann Pub-

lishers Inc., San Francisco (2008)

20. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking concur-

rent queue algorithms. In: PODC (1996)

21. Burnim, J., Necula, G., Sen, K.: Specifying and checking semantic atomicity for multi-

threaded programs. In: ASPLOS, pp. 79–90 (2011)

22. Matsuoka, S., Yonezawa, A.: Analysis of inheritance anomaly in object-oriented concurrent

programming languages. In: Research Directions in Concurrent Object-Oriented Program-

ming, pp. 107–150. MIT Press, Cambridge (1993)

23. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI, pp. 338–349

(2003)

24. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multithreaded programs. IEEE

Trans. Softw. Eng. 32(2), 93–110 (2006)

25. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking consistency of concurrent

data types on relaxed memory models. In: PLDI, pp. 12–21 (2007)

26. Flanagan, C., Freund, S.N., Lifshin, M., Qadeer, S.: Types for atomicity: Static checking and

inference for Java. ACM Trans. Program. Lang. Syst. 30 (2008)

27. Lin, Y., Dig, D.: Check-then-act misuse of java concurrent collections. In: ICST, pp. 164–173

(2013)

28. Shacham, O., Bronson, N., Aiken, A., Sagiv, M., Vechev, M., Yahav, E.: Testing atomicity of

composed concurrent operations. In: OOPSLA, pp. 51–64 (2011)

29. Felber, P., Fetzer, C., Marlier, P., Riegel, T.: Time-based software transactional memory.

IEEE Trans. Parallel and Distributed Systems 21(12), 1793–1807 (2010)

30. Scherer, I.W.N., Scott, M.L.: Advanced contention management for dynamic software trans-

actional memory. In: PODC, pp. 240–248 (2005)

31. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation. In: Dolev,

S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)

32. Cachopo, J.A., Rito-Silva, A.: Versioned boxes as the basis for memory transactions. Sci.

Comput. Program. 63(2), 172–185 (2006)

33. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In: PODC, pp.

16–25 (2010)

206 V. Gramoli and R. Guerraoui

34. Carlstrom, B.D., Chung, J., Chafi, H., McDonald, A., Cao Minh, C., Hammond, L.,

Kozyrakis, C., Olukotun, K.: Transactional execution of Java programs. In: SCOOL (2005)

35. Koskinen, E., Parkinson, M., Herlihy, M.: Coarse-grained transactions. In: POPL, pp. 19–30

(2010)

36. Hassan, A., Palmieri, R., Ravindran, B.: Optimistic transactional boosting. In: PPoPP, pp.

387–388 (2014)

37. Harmanci, D., Gramoli, V., Felber, P.: Atomic boxes: Coordinated exception handling with

transactional memory. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 634–657.

Springer, Heidelberg (2011)

38. Martin, M., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity semantics.

IEEE Comput. Archit. Lett. 5 (2006)

39. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.

LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

40. Dragojević, A., Guerraoui, R., Kapałka, M.: Stretching transactional memory. In: PLDI, pp.

155–165 (2009)

41. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing owner-

ship records. In: PPoPP, pp. 67–78 (2010)

42. Bacon, D.F., Strom, R.E., Tarafdar, A.: Guava: a dialect of Java without data races. In: OOP-

SLA, pp. 382–400 (2000)

43. Meyer, B.: Systematic concurrent object-oriented programming. Commun. ACM 36(9), 56–

80 (1993)

44. Torshizi, F.A., Ostroff, J.S., Paige, R.F., Chechik, M.: The SCOOP concurrency model in

Java-like languages. In: CPA, pp. 7–24 (2009)

45. West, S., Nanz, S., Meyer, B.: A modular scheme for deadlock prevention in an object-

oriented programming model. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447,

pp. 597–612. Springer, Heidelberg (2010)

46. Gueta, G.G., Ramalingam, G., Sagiv, M., Yahav, E.: Concurrent libraries with foresight. In:

PLDI, pp. 263–274 (2013)

47. Herlihy, M., Luchangco, V., Moir, M., Scherer, I.W.N.: Software transactional memory for

dynamic-sized data structures. In: PODC, pp. 92–101 (2003)

48. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing software trans-

actional memory. In: OOPSLA, pp. 253–262 (2006)

49. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA, pp. 388–

402 (2003)

50. Carlstrom, B.D., McDonald, A., Chafi, H., Chung, J., Minh, C.C., Kozyrakis, C., Olukotun,

K.: The atomos transactional programming language. In: PLDI, pp. 1–13 (2006)

51. Carlstrom, B.D., McDonald, A., Carbin, M., Kozyrakis, C., Olukotun, K.: Transactional col-

lection classes. In: PPoPP, pp. 56–67 (2007)

52. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.: Optimistic

parallelism requires abstractions. In: PLDI, pp. 211–222 (2007)

53. Tripp, O., Manevich, R., Field, J., Sagiv, M.: JANUS: exploiting parallelism via hindsight.

In: PLDI, pp. 145–156 (2012)

54. Xiang, L., Scott, M.L.: Compiler aided manual speculation for high performance concurrent

data structures. In: PPoPP, pp. 47–56 (2013)

55. Ni, Y., Menon, V., Abd-Tabatabai, A.R., Hosking, A.L., Hudson, R.L., Moss, J.E.B., Saha,

B., Shpeisman, T.: Open nesting in software transactional memory. In: PPoPP, pp. 68–78

(2007)

56. Spear, M.F., Silverman, M., Dalessandro, L., Michael, M.M., Scott, M.L.: Implementing and

exploiting inevitability in software transactional memory. In: ICPP, pp. 59–66 (2008)

	Reusable Concurrent Data Types
	1 Introduction
	2 Overview
	2.1 Extensibility
	2.2 Composability

	3 Polymorphic Transactional Memory
	3.1 Opaque Transactions
	3.2 Hand-over-Hand Transactions
	3.3 Snapshot Transactions
	3.4 Irrevocable Transactions

	4 Correctness
	4.1 Invariants
	4.2 Semantics Preservation
	4.3 Linearizability of the Data Type
	4.4 Reusability

	5 Language Integration
	5.1 Bytecode Instrumentation
	5.2 Exception Handling
	5.3 Nesting Semantics
	5.4 Legacy Code

	6 Evaluation
	6.1 Settings
	6.2 PT Methodology vs JDK
	6.3 Polymorphism vs Monomorphism
	6.4 Adding Forms Is Beneficial
	6.5 java.util.Vector vs ReusableVector
	6.6 The Vacation Application
	6.7 j.u.c.ConcurrentLinkedQueue vs ReusableQueue

	7 Related Work
	8 Concluding Remarks
	References

