
Reusable Decision Space for Mashup Tool Design
Saeed Aghaee

Faculty of Informatics,
University of Lugano (USI)
via Buffi 13, 6900 Lugano,

Switzerland
saeed.aghaee@usi.ch

Marcin Nowak
Faculty of Informatics,

University of Lugano (USI)
via Buffi 13, 6900 Lugano,

Switzerland
marcin.nowak@usi.ch

Cesare Pautasso
Faculty of Informatics,

University of Lugano (USI)
via Buffi 13, 6900 Lugano,

Switzerland
c.pautasso@ieee.org

ABSTRACT
Mashup tools are a class of integrated development en-
vironments that enable rapid, on-the-fly development of
mashups—a type of lightweight Web applications mixing
content and services provided through the Web. In the past
few years there have been growing number of projects, both
from academia and industry, aimed at the development of in-
novative mashup tools. From the software architecture per-
spective, the massive effort behind the development of these
tools creates a large pool of reusable architectural decisions
from which the design of future mashup tools can derive con-
siderable benefits. In this paper, focusing on the design of
mashup tools, we explore a design space of decisions com-
prised of design issues and alternatives. The design space
knowledge not only is broad enough to explain the variability
of existing tools, but also provides a road-map towards the
design of next generation mashup tools.

Author Keywords
Mashup tools; software architecture; design rationale;

ACM Classification Keywords
D.2.2 Software Engineering: Design

INTRODUCTION
Mashup tools are interactive systems which target the needs
of end-users developing a specific kind of Web applications,
built of the reuse and composition of multiple Web data
sources and Web services [5]. The past few years have wit-
nessed a rapid growth of many interactive Mashup tools, both
from research and industry, offering a broad range of charac-
teristics and affordances. Some are based on visual composi-
tion languages [30], others feature a high degree of automa-
tion and liveness [47], many support collaborative develop-
ment [20], engaging public and private online communities.

The challenges faced by mashup tools designers include the
need for defining a high level descriptions of computations
and integration logic to be combined with suitable abstrac-
tions to represent Web widgets, distributed Web services and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’12, June 25–26, 2012, Copenhagen, Denmark.
Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00.

Web data sources as reusable components [14]. Mashups can
be and are built by programmers using traditional Web tech-
nologies and tools [1], as shown on ProgrammableWeb1, a
directory listing thousands of mashups and Web APIs. The
goal of most mashup tools is to enable non-programmers to
build mashups, by making it easy [8] to quickly [29] reuse and
reassemble whatever content, services, APIs and data sources
can be found on the Web.

Architectural knowledge management [3] advocates the
extraction of design knowledge from successful software
projects in order to accumulate best practices [6], design pat-
terns [7] and reusable architectural decisions. In this paper we
survey the existing mashup tooling landscape with the goal of
harvesting reusable architectural design decisions. The goal
is to take a conscious approach to explicit design decisions,
which is intended to result in higher quality software architec-
tures. The decisions are structured into a design space, which
(1) helps to classify and explain the heterogeneity of existing
mashup tools; and (2) by enumerating relevant design issues
and their dependencies, provides a valuable guidance model
to mashup tool designers.

The rest of this paper is structured as follows: in the next sec-
tion we describe the methodology we applied to extract the
design issues and alternatives as well as to conduct our sur-
vey of mashup tools based on them. Next, we present the core
of this paper consisting of the issues and alternatives that arise
in the design of a selection of 22 mashup tools. Afterwards,
we discuss how the issues and alternatives relate to each other
in the context of the design of existing tools. Finally, the pre-
sentation of the related work is followed by the conclusions.

METHODOLOGY
In order to give a clear structure to the content collected in
this paper, we have constructed a model (Figure 1) conform-
ing to a simple, yet powerful decision metamodel proposed
in [43] and used the corresponding tool2 to gather and pro-
cess the knowledge. The metamodel is comprised of design
issues and, related to them, design alternatives. The design
issues represent a design problem, while each design alterna-
tive serves as a potential solution.

Our model was constructed based on the knowledge gained
from using/reading about existing mashup tools. In the sur-
veyed literature, there are more than 60 mashup tools, from
which we picked 22 tools based on their availability and their
1http://www.programmableweb.com/
2http://saw.inf.unisi.ch

211

http://www.programmableweb.com/
http://saw.inf.unisi.ch

Figure 1. Mashup tool design dpace overview

representativeness to ensure that at least a concrete example
corresponds to each design alternative. We further refined
the knowledge into design decisions by eliminating overlap-
ping issues and alternatives and dividing them into groups.
The validation was conducted by checking whether the deci-
sion space covered all the issues found in the selected mashup
tools. We prioritized those design issues with the most impact
on the usability of mashup tools, seen as a specific class of in-
teractive systems.

For the sake of readability, we classified the 9 design issues
and 27 alternatives in three different groups (as shown colored
in Figure 1): (1) Strategic (red), grouping the top level crite-
ria regarding the user community where a mashup tool is sup-
posed to be deployed; (2) Environment-specific (orange), col-
lecting issues on the development environment where users
are provided with facilities to develop and possibly execute
and debug mashups; (3) Language (blue), concerning the de-
sign of mashup composition languages.

STRATEGIC DESIGN ISSUES FOR MASHUP TOOLS

Design Issue: Specificity
Mashups have gained a broad range of applications ranging
from daily utilities of Web users to narrowly specialized do-
mains. Soi and Baez [46], therefore, distinguish between spe-
cialized and generic mashup tools.

Alternative: Generic
The main characteristic of generic mashup tools is that they
do not target any specific group of end-users or any particular
application domain, but rather focus on addressing the daily
needs of end-users. Generic mashup tools take advantage of
publicly available Web resources. The growing number and

big diversity of these resources enable the creation of innova-
tive mashups that can be published, discovered and used by
other end-users.

Benefits: A generic tool has the potential to reach a wide
range of end-users and become popular on the Web. Depend-
ing on the architecture of the tool, it can be further tailored to
fit a particular domain or application [46].
Challenges: Due to the diversity and sheer number of end-
users on the Web, it is a non-trivial task to assess and support
the needs and abilities (i.e., programming skills) of all.
Example: FeedRinse3 exemplifies a generic mashup tool.
With the use of this tool, users can filter and combine multiple
RSS feeds, and republish the results in a single RSS feed.

Alternative: Specialized
Recently, investigating the applications of mashups in differ-
ent specialized domains has gained momentum. Examples
of the use of mashups in specialized domains include enter-
prise computing [29], e-learning [16], bioinformatics [21],
and telecom [4]. Specialized mashup tools support the de-
velopment of mashups suited for these domains by mixing
domain-related resources that can be either free or propri-
etary. One example of such domain-related resources could
be a private enterprise database.

Benefits: The end-users targeted by specialized tools are of-
ten limited in number, homogeneous in terms of technical
skills, and geared towards the same task. These factors help
assess, evaluate, and improve the usability of the tool.
Challenges: Designing a mashup tool for a specialized do-
main requires an advanced, in-depth knowledge about that

3http://feedrinse.com/

212

http://feedrinse.com/

domain. The specific functional and non-functional require-
ments for mashups within the domain (e.g., secure data access
for enterprise data fusion) need to be extracted so that a suit-
able tool for domain-specific mashups can be designed.
Example: Kapow Katalyst4, and the tool presented by Ca-
puano et. al. [10] exemplify two specialized mashup tools tar-
geting, respectively, telecom and e-learning domains.

Design Issue: Target End-user
As described by Nardi [41, p. 104], in terms of technical and
programming skills, there is a spectrum of end-users, rang-
ing from non-programmers to experienced programmers. In
the middle of this spectrum lie professional end-users without
programming skills but interests in computer and program-
ming, who are referred to by Nardi as “local developers”. De-
termining which group of end-users is targeted by a mashup
tool is a design issue, as the tool should provide different af-
fordances for a different group of end-users.

Alternative: Non-Programmers
Non-programmer do not have programming skills. Yet, they
are interested in creating mashup as long as that does not re-
quire them to learn and use a programming language.

Benefits: A mashup tool created for non-programmers is
designed to suit those with minimum technical skills. As
a result, it will be usable and applicable to not only non-
programmers, which constitute the majority of Web users, but
also both local developers and programmers.
Challenges: Non-programmers should be provided with
tools that limit their involvement in the development process
to small customizations of predefined mashup templates, or
execution of parametrized mashups.
Example: Dapper5 is designed for non-programmers. It pro-
vides a set of easy-to-use toolchains to visually scrape content
from a website and integrate it with Web feeds, without the
need to get involved in the development process.

Alternative: Local Developers
Local developers are those non-programmers who usually
have advanced knowledge in computer tools [41, p. 104].
They are willing to explore and harvest all the functionality
of a mashup tool tailored for their abilities.

Benefits: Tools targeting local developers can provide com-
position functionality, where mashups can be assembled from
scratch by composing predefined components or by customiz-
ing and changing existing examples and templates.
Challenges: Mashup tools for local developers must provide
a very high level of abstraction that ideally hides all the un-
derlying technical complexity of the mashup development.
However, such a high level of abstraction usually comes at
the price of sacrificing the expressive power of the tool. The
challenge is thus to find a proper balance between them.
Example: JOpera [45] offers a high expressive power to cre-
ate various types of mashups. Despite the visual language and
the level of abstraction provided by the tool, creation of some
complex mashups may still involve a small amount of coding
in JavaScript and HTML.
4http://kapowsoftware.com/
5http://open.dapper.net/

Alternative: Programmers
Programmers have adequate programming skills and experi-
ence to develop mashups using programming and scripting
languages (e.g., JavaScript and PHP).

Benefits: Programmers can produce high quality, feature-
rich, and useful mashups, which can be later reused by non-
programmers. Tools targeting programmers can provide both
composition and component development features. Com-
ponents can be then provided to local developers and non-
programmers for reassembly and customization.
Challenges: The expressive power of the tool should not
be compromised when compared to existing general-purpose
programming and Web scripting languages for developing
mashups.
Example: Swashup [36] is a Web-based development en-
vironment for a textual Domain-Specific Language (DSL)
based on the Ruby on Rails framework (RoR).

Design Issue: Automation Degree
A mashup tool needs to leverage automation to lower the bar-
riers of and enable on-the-fly mashup development. The au-
tomation degree of a mashup tool, hence, refers to how much
of the development process can be undertaken by the tool
on behalf of its users, and can be broken down into semi-
automation and full automation.

Alternative: Full Automation
Full automation of mashup development eliminates the need
for direct involvement of users in the development process.
Instead, the users will gain a supervisory role with the oppor-
tunity to provide input (i.e., requirements), intervene in the
development process, and validate the final result.

Benefits: Since the development process is carried out by the
tool, the burden of learning is considerably lifted from the
users. Also, if designed properly, it can significantly decrease
the effort of mashup development.
Challenges: A common challenge is not to deviate from the
user’s needs by producing irrelevant mashups. The tool can
allow users to iteratively validate the resulting mashup and
in case of deviation to intervene in the development process.
Even though this may partially address the challenge, users
might encounter the risk of experiencing many iterations.
Example: Piggy Bank [27] uses semantic technologies to au-
tomate the extraction and mixing of content from different
websites. It falls back to visual screen scraping techniques, in
case the target website does not expose RDF data.

Alternative: Semi Automation
Semi-automatic tools partially automate mashup develop-
ment by providing guidance and assistance. Still, their users
are involved in the development process.

Benefits: Due to the direct involvement of the user in the
development process, there is a lower probability of deviation
from his/her needs, compared to automatic tools.
Challenges: The users should go through a relatively longer
learning curve to be able to create their desired mashups. This
presents a challenge to motivate and encourage end-users to
learn how to use the tool.

213

http://kapowsoftware.com/
http://open.dapper.net/

Example: The majority of mashup tools are semi-automatic.
RoofTop [25] automates and abstracts many complex aspects
of mashup development. Yet, users need to actively select and
connect widgets to create a mashup with it.

ENVIRONMENT-SPECIFIC DESIGN ISSUES

Design Issue: Liveness
In the context of visual languages, Tanimoto proposed the
concept of liveness [47], according to which four levels of
liveness are distinguished. We believe that the applicability
of the concept can be found in the domain of mashups as well.

Alternative: Level 1. Flowchart as ancillary description
At the first level, a tool is just used to create prototype
mashups that are not directly connected to any kind of run-
time system. A prototype mashup usually only has the final
user interface without underlying functionality.

Benefits: The main benefit is the relative simplicity of these
tools. They are only used to create prototype mashups by al-
lowing to design their user interfaces in a visual manner.
Challenges: The goal of the majority of mashup tools is to
provide a development environment for creating executable
mashups. However, tools supporting liveness level 1 only
help to create non-executable prototype mashups.
Example: Microsoft Visio enables the creation of prototype
mashups. The resulting prototypes can be fed with data and
executed by Microsoft Excel [52].

Alternative: Level 2. Executable flowchart
The second level of liveness is characterized by the fact that
the mashup design blueprint carries sufficient details to give
it an executable semantics.

Benefits: A primary benefit of having (indirectly) executable
blueprints is that its consistency (logical, semantical, or syn-
tactical) can be verified. Another advantage is that such
blueprint is self-contained in terms of documentation, hence
can serve as reference for users and developers.
Challenges: The fact that design blueprints can be automat-
ically transformed into executable mashups implies that they
might need to carry on some amount of low-level technical
design details, which may make them difficult to interpret by
non-programmers.
Example: Petals BPM6 is a Business Process Modeling No-
tation (BPMN) modeler that offers features such as valida-
tion, and allows the created diagrams to be exported to WS-
BPEL format for the sake of execution using a different tool.

Alternative: Level 3. Edit triggered updates
Mashups characterized by the third level of liveness can be
rapidly deployed into operation. Deployment in this case can
be triggered for example by each edit-change or by an explicit
action executed by the developer.

Benefits: Thanks to this feature, mashup designers and de-
velopers are released from the burden of going through a po-
tentially time-consuming manual deployment process.
Challenges: Users need to be aware in which mode (design-
time editor or run-time execution monitor) they are operating
6http://research.petalslink.org/display/petalsbpm/

the mashup tool. Users may be unsure whether the design and
runtime environments are in sync with each other, unless they
manually press the ”run” button, or make use of any other
means to trigger the automatic redeployment of the mashup.
Example: A good example of a mashup tool of liveness level
three is JackBe Presto7. In the tool design environment, there
is a “run” button which automatically executes a mashup and
switches the screen to the runtime environment used for de-
bugging and monitoring purposes.

Alternative: Level 4. Stream-driven updates
The fourth level of mashup liveness is obtained by the tools
that support live modification of the mashup code, while it is
being executed.

Benefits: Designers are allowed to tinker with mashup code
in the real time. In turn, changes are (almost) instantly ob-
servable, and therefore, quick adaptation is possible. As a
result, the development cycle is very rapid.
Challenges: High design agility comes with the risk that un-
controlled changes to an operational system could make it
fail. The same danger applies in case of live collaboration on
mashup development that can potentially leave the system in-
consistent. Finally, a challenge which designers need to face
is that highly responsive environments can result in high costs
of running the mashup, as – for example – remote Web ser-
vices need to be invoked every time a change is done on the
mashup code.
Example: DashMash [9] supports liveness at level 4 by
merging the mashup design and runtime environments, and
proving a mechanism to keep both of them synchronized.

Design Issue: Online Community
Online communities are an important resource in assisting
end-users to program [41]. They can potentially support tech-
nical discussion as well as collaborative mashup categoriza-
tion, sharing, rating, and recommendation [22]. An online
community can take the form of a blog, a newsgroup, a chat
room, or even a social network, depending on the role it is
supposed to fulfill. From a security and privacy point of view,
currently available online communities for mashup tools fall
into two distinct types: public, and private.

Alternative: Public
The content published in public communities are accessible
by any user on the Web who wishes to join them. This, how-
ever, does not imply that these communities do not require
registration prior to accessing them.

Benefits: The added value of a public community lies in
its great potential for growth, ultimately resulting in the in-
creased number of the tool users.
Challenges: As the content shared in the community is pub-
lic, users may refuse or refrain from sharing certain details.
Example: Yahoo! Pipes8 maintains one of the largest public
communities of mashup developers. Members of the commu-
nity can share, discuss, reuse, and categorize mashups created
with the Yahoo! Pipes tool.
7http://www.jackbe.com/enterprise-mashup/
8http://pipes.yahoo.com/

214

http://research.petalslink.org/display/petalsbpm/
http://www.jackbe.com/enterprise-mashup/
http://pipes.yahoo.com/

Alternative: Private
The authority to join a private or a gated community is
granted on the basis of compliance with some special criteria.
These criteria can be having an invitation or being a regis-
tered member of a certain organization. Private communities
are usually small in number of users.

Benefits: The content stored in private communities is inac-
cessible to non-members, resulting in a higher level of confi-
dence for users to discuss issues related to their organization.
Challenges: Private communities require much more effort
to start. Content should be mostly created by the community
staff, since with a small number of users, there will not be
much user-generated content initially.
Example: IBM Mashup Center9 allows enterprises to build
their own private community, organized around a centralized
catalogue. Users can publish mashups to this catalogue so
that other users can discover and reuse them.

Design Issue: Collaboration
From a software development methodology point of view,
mashup development is a form of agile development [26],
which is characterized by a high degree of collaboration be-
tween the involved actors. Mashup development can also be
performed in a collaborative manner [15], provided that it is
supported by the mashup tool. To this end the availability of
on online community is both essential and beneficial. To date,
this support has came in different forms which we refer to as
fork and edit, wiki, and blackboard.

Alternative: Fork and Edit
Fork and edit is a common method for enabling collaborative
mashup development that is typically based on online com-
munities. The method relies on a scenario, where a user cre-
ates and shares a mashup within the tool community that is
later found by another user, who then edits a copy of it or
reuses it inside a new mashup, and finally shares the resulting
mashup back to the same community so that it can be further
modified and recursively embedded into other mashups.

Benefits: This method encourages reuse and sharing amongst
users. It also eliminates any chance of version or instance
conflicts, due to the fact that each different instance derived
from the same mashup is associated with a different user.
Challenges: Mashup instance duplication, i.e., storing mul-
tiple copies of the same mashup associated to different users,
should be prevented. Another challenge is that fork and edit-
based system inherently do not provide a straightforward way
to merge two or more mashups originated from the same
mashup into a single one.
Example: Yahoo! Pipes is an example of a collaborative
tool following the fork and edit/reuse method. The tools is
equipped with a large online community that offers mashup
sharing, search, and cloning features.

Alternative: Wiki
Collaborative mashup development can be enabled with the
use and adaptation of the wiki method, whose main features
include versioning, multi-author editing, and changelogs.
9http://www.ibm.com/software/info/mashup-center/

Benefits: The working copy of a mashup is always write-
able because all changes are local until committed. Moreover,
commits are atomic, i.e., either all or no changes are commit-
ted. Another clear benefit is the version history allowing a
user to track changes and revert back to earlier versions.
Challenges: Storing and keeping track of different versions
of a mashup created by a tool may require lots of space. The
challenge concerning users is that they may find it difficult to
avoid and resolve editing conflicts.
Example: Lively Wiki [33] is a collaborative mashup tool
based on the wiki method. It combines the wiki princi-
ples with a direct-manipulation user interface, through which
users can create and edit mashups.

Alternative: Blackboard
A blackboard-based environment manages collaborative de-
velopment in a realtime basis. All the involved users can ob-
serve changes to the mashup at the time they happen.

Benefits: The overall collaborative development process is
much faster, since changes made by users take effect immedi-
ately without requiring any intermediate action (e.g., commit,
or publish). As a result, conflicts are not encountered.
Challenges: The consistency and validity of the mashup need
to be ensured. It can be addressed by providing version-
ing and history tracking. Another technical challenge is also
to minimize the communication latency amongst the partici-
pants so as to ensure a real-time experience.
Example: Sqwelch [20] is a semantically-enabled mashup
tool that allows blackboard-like collaboration amongst its
users to create mashups. This mashup tool does not support
versioning and history tracking.

LANGUAGE-LEVEL DESIGN ISSUES

Design Issue: Interaction Technique
There have been a number of interaction techniques through
the use of which the barriers of programming can be lifted
from end-users [39]. We list below some representative tech-
niques which have been used by mashup tools. Some tools
are known for using multiple techniques in combination.

Alternative: Textual DSL
Domain Specific Languages (DSL [19]) are languages tar-
geted to address specific problems in a particular domain.
Textual DSLs define textual syntax, that may or may not re-
semble an existing general-purpose programming language.

Benefits: DSLs, particularly those built internally on top of a
general purpose programming language, usually offer a high
expressive power.
Challenges: In terms of learning barriers, textual DSLs are
similar to programming languages.
Example: Swashup [36] is a textual DSL for the mashup do-
main built on top of the Ruby on Rails framework.

Alternative: Visual Language
A visual programming language, as opposed to a textual pro-
gramming language, is any programming language that uses
visual symbols, syntax, and semantics [38].

215

http://www.ibm.com/software/info/mashup-center/

Benefits: If designed properly, a visual language offers a high
level of abstraction, thus better targeting the needs of end-
users. One of their strengths is their ability to support more
than one view at the same time [37], e.g. showing both the
design and runtime environments in the same screen.
Challenges: A potential challenge is to make the most of the
available screen space (i.e., visual scalability), as the ability
to layout diagrams in two dimensions can be outweighed by
the complexity and the size of the diagrams.
Example: SABRE [35] is based on a visual language corre-
sponding to Reo [2], a coordination language that is used to
define the logic of the mashup.

Alternative: What-You-See-Is-What-You-Get
In the context of mashups, WYSIWYG (What You See Is
What You Get) enables users to create and modify a mashup
on a graphical user interface which is similar to the one that
will appear when the mashup runs.

Benefits: Since users always see the resulting mashup, the
whole development process might be streamlined. Another
potential benefit is the increase of the tool directness. Users
place visual objects exactly in the places where they are
meant to be during the runtime.
Challenges: The application logic of a mashup such as data
filtering and conversion happens in the backend where is not
visible in the graphical user interface, and therefore is not di-
rectly accessible for modification using a WYSIWYG tool.
Example: ServFace Builder [42] is a WYSIWYG tool. End-
users can drag-drop-and-connect a set of boxes (widgets)
whose current visual positions are the same both in the de-
sign time and runtime.

Alternative: Programming by Demonstration
As opposed to direct programming, PbD (Programming by
Demonstration) suggests to teach a computer by example how
to accomplish a particular task [11].

Benefits: This is a powerful technique that helps remove
much of programming barriers. Users demonstrate what is
the mashup they want without worrying about how it should
be programmatically implemented.
Challenges: Termination conditions and branches are two
important artifacts in the design of a mashup control flow
graph—a graph that defines the execution order of compo-
nents and statements. These artifacts are not, however, feasi-
ble to be directly articulated by PbD technique [41].
Example: Karma [49] allows users to create data mashups
interactively by providing examples demonstrating the inte-
gration of data from different websites.

Alternative: Programming by Example Modification
Another powerful technique to remove the burden of pro-
gramming is to let users modify and change the behavior of
existing examples, instead of programming from scratch [34].

Benefits: Provided that adequate mashup examples are avail-
able, in most cases the modification of a mashup example or
the customization of a predefined mashup template requires a
small effort.

Challenges: Searching for appropriate example as a suit-
able starting point for the work is a challenging task for non-
programmers, as they are not familiar with any programming
languages. With the ever increasing number of Web APIs,
providing adequate mashup examples derived from all possi-
ble combinations of these APIs is not feasible.
Example: d.mix [23] allows users to sample elements of a
website, and then generates the corresponding source code
producing the selected elements. These source codes are
stored in a repository, where they can be discovered and
edited.

Alternative: Spreadsheets
Spreadsheets are one of the most popular and widely used
end-user programming approaches to store, manipulate, and
display complex data.

Benefits: Since the majority of mashups are about data inte-
gration, manipulation and visualization, spreadsheets can po-
tentially be used as a natural approach to this end.
Challenges: Spreadsheets can not be used to design the user
interface of a mashup.
Example: Husky10 is a spreadsheet-based service composi-
tion and mashup development tool. Each cell in the spread-
sheet represents a service or data source.

Alternative: Form-based
In form-based interaction, users are asked to fill out a form to
create a new or change the behavior of an existing object.

Benefits: Filling out online forms has nowadays become an
ordinary task for end-users on the Web. This can be inter-
preted as a proof for “naturalness” of form-based tools [48].
Challenges: Form-based tools cannot handle complex com-
position patterns for mashups [28].
Example: FeedRinse provides a form-based mechanism to
filter and aggregate Web feeds.

Design Issue: Visual Language
Visual programming languages proposed by existing mashup
tools fall into two main classes. The first class contains the
tools that are based on a visual wiring language. The second
consists of those incorporating an iconic visual language.

Alternative: Wiring
In a visual wiring language for mashups, activities are vi-
sualized as solid or form-based boxes that can be wired to
each other. Each activity can represent a mashup component
or a predefined operation like filtering, sorting, and merging.
Wires indicate the connection between these activities.

Benefits: In the realm of service composition, wiring lan-
guages can be considered one of the most explicit and popular
approaches to express a composite service, due to the one-to-
one relationship between the flow of control and data from
one activity to another and visual boxes wired to each other.
Challenges: Wiring languages can cause readability prob-
lems, when there are multiple crossing edges, or when the
visual graphs exceed the screen size. In the latter case, it is
essential for a tool to provide auto-layout features.

10http://www.husky.fer.hr/

216

 http://www.husky.fer.hr/

Example: The visual language incorporated by MashArt [12]
represents queries and processing tasks over data sources as
form-based boxes, which are able to connect to each other.

Alternative: Iconic
An iconic visual language represents objects to be handled
by the language as graphical icons. Sentences are made with
one or more icons that are related to each other according to
a predefined syntax.

Benefits: Properly designed icons are generally easily inter-
preted, understood and remembered by users.
Challenges: An iconic visual language requires to invest sig-
nificant effort and thought into icon design [31]. This is es-
sential to avoid any further changes to the appearance of the
icons, which causes confusion due to unexpected behavior.
Example: VikiBuilder [24] enables generation of visual wiki
instances by combining various data sources. The tool uses
iconic annotations to represent various predefined entities like
adapter, data source, and semantic extractor.

Design Issue: Control Flow
In a visual programming language, just like in any other pro-
gramming language, there should be a method with which
the user can define the program’s control flow. In case of
the wiring method, this can be achieved through the use of
either explicit methods or implicit methods.

Alternative: Explicit
The control flow is explicitly defined, for instance, by adding
directed arrows connecting the boxes, or putting the boxes in
a specific order (e.g., from left to right) that corresponds to
their execution order.

Benefits: This alternative gives much more control over the
development of the application logic of a mashup. Process-
oriented mashups, for example, often incorporate a relatively
complex application logic [50].
Challenges: Data flow and control flow graphs should be
defined separately, which poses extra barriers on the devel-
opment process. Additionally, representing a mashup with
more than one diagram, each corresponding to either data
flow graph or control flow graphs of the mashup, can impair
the understandability and readability of the language.
Example: JOpera supports explicit design of the control flow
graph. Each box in a control flow graph, represents an exe-
cutable task whose incoming and outgoing edges define the
control flow to and from the task.

Alternative: Implicit
In this case, the control flow of a mashup is derived from its
data flow graph. For instance, in the simplest case, the flow of
data/message from one activity to another suggests the same
flow of control between them.

Benefits: This method is lightweight and gives users a natural
way to represent parallel execution. They are only required to
design the flow of data/message between components, which
also declares a partial execution order between them.
Challenges: The shortcoming of this method is that it can
only be used to create mashups with simple control flow pat-
terns, such as those that do not contain branches and loops.

Example: Proto Financial11 is based on a visual wiring lan-
guage that allows integration of heterogeneous data sources
in an enterprise setting.

DISCUSSION
Table 1 summarizes the mashup tool design space as well as
the decisions made by the designers of each tool pertaining
each design issues we previously defined within this decision
space, which is mostly focused on the design of interactive
systems. Given the table, we attempt to (1) analyze the design
issues with respect to the evolution of the decisions made by
different tools over the last 6 years; (2) highlight and scruti-
nize the most and the least frequently chosen design alterna-
tives; and (3) present the impacts of design decisions on other
issues and alternatives within the space.

Regarding the issue of specificity, the first-generation mashup
tools are commonly general purpose, for instance, Ya-
hoo! Pipes and Dapper. Interestingly, the application of
mashups in various domains has resulted in an increase in
the number of specialized tools, which have started to appear
more recently. This, however, does not imply a trend shift-
ing from generic tools to specialized tools. Rather, the broad
and emerging application domains for mashups provide an
on-going demand for the design of tailored mashup tools tar-
geting different and specific domains of application.

Both generic and specialized mashup tools, in the majority
of cases, tend to target non-programmers. This is a safe
strategy especially for generic mashup tools, whose target
users’ population is large, unknown, and is dominated by
non-programmers. Conversely, the target users of a special-
ized tool can be determined through a technical skills assess-
ment process, for example.

After the end-user group targeted by a tool are assessed on
technical skills, an important decision to make concerns the
degree of the automation of the tool. Fully automatic tools
are commonly believed to best serve non-programmers [18].
However, the problem lies in how a user is supposed to com-
municate the requirements for the mashup to be built with
an automatic tool and also to give guidance and feedback to
the tool in order to iteratively converge on the desired out-
come. This may be done using an interaction technique as
complicated as, or even more complicated than the one used
to program a mashup with a semi-automatic tool. The risk of
a fully automatic tool becoming too difficult to use has possi-
bly led the design of most tools in our survey to abstain from
choosing the full automation design alternative.

The core design issue for a mashup tool is to select suitable
interaction techniques to let mashup developers communicate
the mashup composition logic and, in case of a fully auto-
matic tool, the goal and requirements of the mashup. To do
so, there is a pool of available interaction techniques, which
can also be combined in case of hybrid tool designs. Accord-
ing to the results of our survey, the majority of semi-automatic
tools facilitate multiple interaction techniques. The most pop-
ular combination of interaction techniques is visual language
and form-based programming, where tools typically offer a

11http://www.protosw.com/

217

http://www.protosw.com/

Name Pi
gg

y
B

an
k

[2
7]

(2
00

5)

Fe
ed

R
in

se
(2

00
6)

D
ap

pe
r(

20
06

)

Ja
ck

B
e

Pr
es

to
(2

00
6)

Sw
as

hu
p

[3
6]

(2
00

7)

d.
m

ix
[2

3]
(2

00
7)

JO
pe

ra
[4

5]
(2

00
7)

Y
ah

oo
!

Pi
pe

s
(2

00
7)

K
ar

m
a

(2
00

8)

SA
B

R
E

[3
5]

(2
00

8)

K
ap

o w
K

at
al

ys
t(

20
09

)

M
as

hA
rt

[1
2]

(2
00

9)

L
i v

el
y

W
ik

i[
33

](
20

09
)

R
oo

fT
op

[2
5]

(2
00

9)

IB
M

M
as

hu
p

C
en

te
r(

20
09

)

Se
rv

F a
ce

B
ui

ld
er

[4
2]

(2
01

0)

V
ik

iB
ui

ld
er

[2
4]

(2
01

0)

M
ic

ro
so

ft
V

is
io

[5
2]

(2
01

0)

H
us

ky
(2

01
1)

D
as

hM
as

h
[9

](
20

11
)

Pe
ta

ls
B

PM
(2

01
1)

Sq
w

el
ch

[2
0]

(2
01

1)

Specificity
Generic + + + + + + + + + + +
Specialized + + + + + + + + + + +

Target End-User
Local Developers + + +
Non-Programmers + + + + + + + + + + + + + + + + + +
Programmers +

Automation Degree
Full Automation +
Semi Automation +

Liveness
Level 1 +
Level 2 +
Level 3 + + + + + + + + + + + + + + + + +
Level 4 + + +

Online Community
Private + + +
Public + + +

Collaboration
Blackboard +
Fork and Edit + + +
Wiki +

Interaction Technique
Editable Example +
Form-based + + + + + + + + + +
PbD + +
Spreadsheets + +
Textual DSL + +
Visual Language + + + + + + + + + + +
WYSIWYG + + + + + +

Visual Language
Iconic + +
Wiring + + + + + + + + +

Control Flow
Explicit + + +
Implicit + + + + + +

Table 1. Summary of the mashup tool design decisions over the mashup design space

218

visual wiring language, in which graphical boxes represent-
ing data sources, processing operators, etc. either contain or
associated with a configuration form to specify and control
the configuration properties associated with the box.

In spite of the popularity of visual languages based on the
wiring paradigm, according to a study conducted by Namoun
et. al. [40], these languages in the context of mashups are
not “natural” to many non-programmers. In other words, a
diagram representing the flow of data and control is more
of a metaphor suitable for programmers rather than non-
programmers. Thereby, forcing users to explicitly define flow
of control in addition to flow of data in a mashup (i.e., explicit
control flow alternative) can end up adding even more cogni-
tive costs to learn how to interact with the mashup tool.

One of the most promising approaches to lower cognitive
costs and increase motivation is to facilitate collaborative de-
velopment [17]. In doing so, establishing an online com-
munity is crucial to effective collaboration as it brings to-
gether users with similar interests and common ground [51].
It should also be noted that the full potential of an online
community to this end is exploited only when it is internally
built upon the actual users of the tool (like in Yahoo! Pipes
and JackBe Presto), not externally in the form of a technical
blog or a fan page (like in FeedRinse and Kapow Katalyst).
Therefore, it is important to consider collaborative develop-
ment and internal communities designed for the sake of col-
laboration as important features to be implemented in next
generation mashup tools.

Liveness is also another important issue affecting the usability
of a tool. Interestingly, the vast majority of the tools already
support liveness at level 3 through a “run” button that takes
the users to the runtime environment where the mashup will
be deployed and executed. The assumption is that users are
capable to distinguish between the design-time modeling and
composition environment and its run-time version, where the
mashup execution occurs. A few tools (e.g., DashMash and
RoofTop) have begun to remove this artificial distinction, and
in the future we expect to witness the proliferation of mashup
tools supporting the highest level of liveness, possibly com-
bined with a WYSIWYG interface.

RELATED WORK
The field of mashup development has matured to a level
where some frequently used patterns for mashup design have
emerged (e.g., [44]). This paper makes a contribution towards
a design space for mashup tools design, focusing on a col-
lection of design issues which impact on usability aspects of
mashup tools, seen as a class of interactive systems.

Existing surveys on mashup tools have been published focus-
ing on different aspects, which can contribute together with
this paper to build an even larger design space. For exam-
ple, [18] classifies a small number of tools according to the
chosen programming technique. The result is that no sur-
veyed tool completely satisfies the needs for end-users. [13]
collect examples of an a specific kind of mashup tools, per-
forming integration at the business process level. A number
of domain-specific, enterprise mashup tools have been classi-

fied in 2008. The survey published in [32] aims at classify-
ing mashup tools according to a set of run-time deployment
issues (e.g., client-side vs. server-side deployment, or user in-
terface vs. data vs. process-level integration) which are com-
plementary to the ones collected in this paper.

CONCLUSION
In this paper, we have collected 9 design issues and 27
reusable design alternatives covering essential aspects of the
design space for mashup tools. To build this space, we have
reconstructed and analyzed the design decisions taken by the
creators of 22 contemporary mashup tools. The accumu-
lated architectural knowledge is a useful reference and survey
for engineering interactive systems for mashup composition.
First, tool designers can use this survey to foster innovation
during the design of next generation solutions. Second, the
comprehensive explanation of the heterogeneity of mashup
tools presented in this paper can provide researchers with a
novel design-centric view over the state of the art. All in all,
the goal of this survey is to promote the reuse of good design
solutions, thus improving both the quality and the efficiency
of the design process for next generation mashup tools.

ACKNOWLEDGEMENT
The work presented in this paper has been supported by the
Swiss National Science Foundation with the SOSOA project
(SINERGIA grant nr. CRSI22 127386) and CLAVOS project
(Grant Nr. 125337).

REFERENCES
1. Aghaee, S., and Pautasso, C. Mashup development with html5.

In Proc. of Mashups ’09/’10 (2010).
2. Arbab, F. Reo: a channel-based coordination model for

component composition. Mathematical. Structures in Comp.
Sci. 14 (2004), 329–366.

3. Babar, M. A., Dingsøyr, T., Lago, P., and van Vliet, H.
Software Architecture Knowledge Management - Theory and
Practice. Springer, 2009.

4. Banerjee, N., and Dasgupta, K. Telecom mashups: enabling
web 2.0 for telecom services. In Proc. of ICUIMC 2008 (2008).

5. Benslimane, D., Dustdar, S., and Sheth, A. Services mashups:
The new generation of web applications. IEEE Internet
Computing 12 (September 2008), 13–15.

6. Boehm, B., and Turner, R. Balancing Agility and Discipline: A
Guide for the Perplexed. Addison-Wesley, 2003.

7. Borchers, J. A Pattern Approach to Interaction Design. Wiley,
2001.

8. Cao, J., Riche, Y., Wiedenbeck, S., Burnett, M., and
Grigoreanu, V. End-user mashup programming: through the
design lens. In Proc. of CHI 2010 (2010).

9. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo,
D., and Francalanci, C. Dashmash: a mashup environment for
end user development. In Proc. of ICWE 2011 (2011).

10. Capuano, N., Pierri, A., Colace, F., Gaeta, M., and Mangione,
G. R. A mash-up authoring tool for e-learning based on
pedagogical templates. In Proc. of MTDL 2009 (2009).

11. Cypher, A., Halbert, D. C., Kurlander, D., Lieberman, H.,
Maulsby, D., Myers, B. A., and Turransky, A., Eds. Watch what
I do: programming by demonstration. The MIT Press, 1993.

12. Daniel, F., Casati, F., Benatallah, B., and Shan, M.-C. Hosted
universal composition: Models, languages and infrastructure in
mashart. In Proc. of ER 2009 (2009).

219

13. Daniel, F., Koschmider, A., Nestler, T., Roy, M., and Namoun,
A. Toward process mashups: key ingredients and open research
challenges. In Proc. of IWoWAaSM ’09/’10 (2010).

14. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., and
Saint-Paul, R. Understanding ui integration: A survey of
problems, technologies, and opportunities. IEEE Internet
Computing 11 (May 2007), 59–66.

15. Dewan, P., Agarwal, P., Shroff, G., and Hegde, R. Mixed-focus
collaboration without compromising individual or group work.
In Proc. of EICS 2010 (2010).

16. Eisenstadt, M. Does elearning have to be so awful? (time to
mashup or shutup). In Proc. of ICALT 2007 (2007).

17. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., and
Mehandjiev, N. Meta-design: a manifesto for end-user
development. Commun. ACM 47 (2004), 33–37.

18. Fischer, T., Bakalov, F., and Nauerz, A. An overview of current
approaches to mashup generation. In Proc. of WM 2009 (2009).

19. Fowler, M., and Parsons, R. Domain-specific languages.
Addison-Wesley, 2010.

20. Fox, R., Cooley, J., and Hauswirth, M. Collaborative
development of trusted mashups. In Proc. of iiWAS 2010
(2010).

21. Goble, C., and Stevens, R. State of the nation in data
integration for bioinformatics. J. of Biomedical Informatics 41
(2008), 687–693.

22. Grammel, L., and Storey, M.-A. An end user perspective on
mashup makers. Tech. Rep. DCS-324-IR, University of
Victoria, September 2008.

23. Hartmann, B., Wu, L., Collins, K., and Klemmer, S. R.
Programming by a sample: rapidly creating web applications
with d.mix. In Proc. of UIST 2007 (2007).

24. Hirsch, C., Hosking, J., and Grundy, J. Vikibuilder: end-user
specification and generation of visual wikis. In Proc. of ASE
2010 (2010).

25. Hoyer, V., Gilles, F., Janner, T., and Stanoevska-Slabeva, K.
Sap research rooftop marketplace: Putting a face on
service-oriented architectures. In Proc. of SERVICES 2009
(2009).

26. Hoyer, V., Stanoesvka-Slabeva, K., Janner, T., and Schroth, C.
Enterprise mashups: Design principles towards the long tail of
user needs. In Proc. of SCC 2008 (2008).

27. Huynh, D., Mazzocchi, S., and Karger, D. Piggy bank:
Experience the semantic web inside your web browser. Web
Semant. 5 (2007), 16–27.

28. Jeffries, R., and Rosenberg, J. Comparing a form-based and a
language-based user interface for instructing a mail program.
SIGCHI Bull. 18 (1986), 261–266.

29. Jhingran, A. Enterprise information mashups: integrating
information, simply. In Proc. of VLDB 2006 (2006).

30. Jones, M. C., Churchill, E. F., and Twidale, M. B. Mashing up
visual languages and web mash-ups. In Proc. of VL/HCC 2008
(2008).

31. Korfhage, R. R., and Korfhage, M. A. Criteria for iconic
languages. In Visual languages, Plenum Press (1986), 207–231.

32. Koschmider, A., Torres, V., and Pelechano, V. Elucidating the
mashup hype: Definition, challenges, methodical guide and
tools for mashups. In Proc. of MEM 2009 (2009).

33. Krahn, R., Ingalls, D., Hirschfeld, R., Lincke, J., and Palacz, K.
Lively wiki a development environment for creating and
sharing active web content. In Proc. of WikiSym 2009 (2009).

34. MacLean, A., Carter, K., Lövstrand, L., and Moran, T.
User-tailorable systems: pressing the issues with buttons. In
Proc. of CHI 1990 (1990).

35. Maraikar, Z., Lazovik, A., and Arbab, F. Building mashups for
the enterprise with sabre. In Proc. of ISOC 2008 (2008).

36. Maximilien, E. M., Wilkinson, H., Desai, N., and Tai, S. A
domain-specific language for web apis and services mashups.
In Proc. of ICSOC 2007 (2007).

37. Myers, B. A. Evaluation of visual programming and program
visualization. In Proc. of CHI 1989 (1989).

38. Myers, B. A. Taxonomies of visual programming and program
visualization. Journal of Visual Languages Computing 1
(1990), 97–123.

39. Myers, B. A., Ko, A. J., and Burnett, M. M. Invited research
overview: end-user programming. In Proc. of CHI EA 2006
(2006).

40. Namoun, A., Nestler, T., and Angeli, A. D. Service
composition for non-programmers: Prospects, problems, and
design recommendations. In Proc. of ECOWS 2010 (2010).

41. Nardi, B. A. A small matter of programming: perspectives on
end user computing. MIT Press, Cambridge, MA, USA, 1993.

42. Nestler, T., Feldmann, M., Hubsch, G., Preussner, A., and
Jugel, U. The ServFace builder - a wysiwyg approach for
building service-based applications. In Proc. of ICWE 2010
(2010).

43. Nowak, M., and Pautasso, C. Goals, questions and metrics for
architectural decision models. In Proc. of SHARK 2011 (2011).

44. Ogrinz, M. Mashup Patterns: Designs and Examples for the
Modern Enterprise. Addison-Wesley Professional, 2009.

45. Pautasso, C. Composing RESTful services with JOpera. In
Proc. of the International Conference on Software Composition
(SC 2009), vol. 5634 of LNCS. Springer, 2009.

46. Soi, S., and Baez, M. Domain-specific mashups: from all to all
you need. In Proc. of Current trends in web engineering (2010).

47. Tanimoto, S. L. Viva: A visual language for image processing.
J. Vis. Lang. Comput. 1, 2 (1990), 127–139.

48. Thomas, J. C., and Gould, J. D. A psychological study of query
by example. In Proc. of AFIPS 1975 (1975).

49. Tuchinda, R., Szekely, P., and Knoblock, C. A. Building
mashups by example. In Proc. of IUI 2008 (2008).

50. Vrieze, P. d., Xu, L., Bouguettaya, A., Yang, J., and Chen, J.
Process-oriented enterprise mashups. In Proc. of GPC 2009
(2009).

51. Wenger, E. Communities of practice: learning, meaning, and
identity. Cambridge University Press, 1998.

52. Wright, S. D., et al. Designing mashups with excel and visio.
In Expert SharePoint 2010 Practices. Apress, 2011, 513–539.

220

	Introduction
	Methodology
	Strategic Design Issues for Mashup Tools
	Design Issue: Specificity
	Alternative: Generic
	Alternative: Specialized

	Design Issue: Target End-user
	Alternative: Non-Programmers
	Alternative: Local Developers
	Alternative: Programmers

	Design Issue: Automation Degree
	Alternative: Full Automation
	Alternative: Semi Automation

	Environment-specific Design Issues
	Design Issue: Liveness
	Alternative: Level 1. Flowchart as ancillary description
	Alternative: Level 2. Executable flowchart
	Alternative: Level 3. Edit triggered updates
	Alternative: Level 4. Stream-driven updates

	Design Issue: Online Community
	Alternative: Public
	Alternative: Private

	Design Issue: Collaboration
	Alternative: Fork and Edit
	Alternative: Wiki
	Alternative: Blackboard

	Language-level Design Issues
	Design Issue: Interaction Technique
	Alternative: Textual DSL
	Alternative: Visual Language
	Alternative: What-You-See-Is-What-You-Get
	Alternative: Programming by Demonstration
	Alternative: Programming by Example Modification
	Alternative: Spreadsheets
	Alternative: Form-based

	Design Issue: Visual Language
	Alternative: Wiring
	Alternative: Iconic

	Design Issue: Control Flow
	Alternative: Explicit
	Alternative: Implicit

	Discussion
	Related Work
	Conclusion
	Acknowledgement
	REFERENCES

