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Šojić Merkulov, D.; Finčur, N.; Bognár,
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1 Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences,
University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
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Abstract: Currently, environmental pollution by various organic pollutants (e.g., organic dyes)
is a serious, emerging global issue. The aqueous environment is highly exposed to the harmful
effects of these organic compounds. Furthermore, the commonly applied conventional purification
techniques are not sufficient enough. Heterogeneous photocatalysis and the photo-Fenton process are
effective, low-cost and green alternatives for the removal of organic pollutants. In this study, different
iron(III) oxide/titanium(IV) oxide/polyvinyl chloride (Fe2O3/TiO2/PVC) nanocomposites in tablet
form were investigated in the photodegradation of methylene blue (MB) under simulated sunlight,
and their possible antibacterial effects were examined. The newly synthesized nanocomposites
were characterized by scanning electron microscope, X-ray diffraction, UV–Vis diffuse reflectance
spectroscopy, and Raman spectroscopy. The results showed a hematite crystal form in the case
of Fe2O3(2) and Fe2O3 samples, while the Fe2O3(1) sample showed a combination of hematite and
synthetic mineral akaganeite. The highest photocatalytic efficiency was achieved in the presence of
Fe2O3/TiO2/PVC, when 70.6% of MB was removed. In addition, the possible photo-cleaning and
reuse of the mentioned photocatalyst was also examined. Based on the results, it can be seen that the
activity did not decrease after five successive runs. Nanocomposites also exhibited mild antibacterial
effects against the two tested Gram-positive bacteria (S. aureus and B. cereus).

Keywords: methylene blue; Fe2O3/TiO2/PVC composites; photodegradation; photo-cleaning;
photo-Fenton process; photocatalyst reusing

1. Introduction

Many companies use dyes to color their products, which uses a lot of water. Con-
sequently, a sizable volume of effluent is created [1]. These aesthetically unappealing
water-soluble paints also consume dissolved oxygen and reduce the amount of radiation
that passes through the water’s surface. Based on the aforementioned impacts, these
pollutants harm aquatic life and have major negative consequences on the environment
that have an impact on human health [2]. This is because they are toxic and have cancer-
causing properties.

The thiazine color family includes the heterocyclic aromatic chemical methylene blue
(MB). It is dark blue when it is oxidized. It is frequently utilized in numerous photoreactions,
in the creation of photosensors, and for medicinal applications due to its antifungal impact
because of its exceptionally sensitive and uncommon features. It is a common industrial dye
that causes major health issues such as elevated heart rate, vomiting, diarrhea, and jaundice
at greater doses. Therefore, it is crucial to remove this contaminant from wastewater [3,4].
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Unfortunately, due to their photocatalytic stability and resistance to chemical oxida-
tion, the traditional biochemical and physicochemical water purification technologies are
unsuitable for the removal of textile dyes. These dangerous dyes have been eliminated
from aqueous environments using a variety of methods, including chemical precipitation,
sedimentation, adsorption onto large surface carriers [5], biological membranes, and ion
exchange processes. These techniques, however, have not shown to be as effective because
to their usual slowness, expensive equipment requirements, incomplete elimination of
contaminants, and requirement of additional procedures and energy for the complete
removal of the chemicals in question [6]. In order to breakdown the organic dyes more
effectively while using less energy, new removal techniques should be devised [7].

Advanced oxidation technologies (AOPs), which convert pollutants into less damag-
ing byproducts, offer promising substitutes for the removal of colors. Since photocatalytic
degradation is a sustainable, affordable, and ecologically beneficial technology, it is receiv-
ing a lot of attention these days. The limited usage of semiconductors as photocatalysts, for
instance, limits the practical application of this process and is one of the disadvantages of
this technology. The development of a photocatalyst with high photocatalytic efficiency,
recyclability, and high activity in sunlight should be prioritized [8]. In order to compare
the behavior and effectiveness of different studied photodegradation processes, MB has
frequently been used as a model compound for photocatalytic degradation. In addition,
this azo dye comparatively slows the photodegradation process, making it resistant to UV
exposure and easier to analyze. These are the main reasons why methylene blue was used
in this study [9].

The photocatalytic process, which results in an electron transfer from the occupied
valence band to the vacant conductor band, is often started by UV radiation interacting
with semiconductors. On the photocatalyst surface, negative electron (e−) and positive
hole (h+) pairs will consequently develop. The e−–h+ pairs are either engaged in redox
processes, mineralizing the organic contaminants, or are recombined, resulting in decreased
photocatalytic activity. Mineralization results from reactions between the target pollutant
and, for instance, peroxide and superoxide radicals, which are created when a positive hole
and electrons react with water and oxygen [10–13]. Nano-TiO2 has been regarded as one of
the most suitable catalysts in the degradation of many harmful organic pollutants [6] due
to its stable chemical structure, biocompatibility, great oxidizing power, non-toxicity, and
low cost [14,15].

Fast e−–h+ pair recombination and the activity being almost entirely restricted to the
UV range are two significant drawbacks of inorganic photocatalysts. In order to boost
future applications, much work has been put toward moving their absorption wavelengths
to the visible region. To enhance charge separation and increase the catalyst’s lifespan
during mineralization, transition metal elements such as Fe are frequently included [16–19].
The photocatalytic activity of titanium has improved due to characteristics such as the small
band gap energy of Fe3+ (1.9 eV), half-filled electronic configuration, and the similarity of
the ionic radius of Fe3+ (0.64 Å) with the coordinated Ti4+ (0.68 Å).

In addition to heterogeneous photocatalysis, the traditional homogeneous Fenton
method, which generates highly reactive hydroxyl radicals (•OH) by activating H2O2 with
Fe2+, is another AOP that has been effectively used [20,21]. The Fenton process has some
limitations that prevent it from being used in many situations, including: (i) a limited pH
working range (pH < 3), (ii) high iron concentrations in final effluents that request for costly
removal before discharging processes, and (iii) a high iron content in the sludge that takes
a significant amount of H2O2 [22]. Due to a heterogeneous Fenton process’ great efficiency,
high pH values, and durability, these shortcomings have been overcome [23].

It was established from previous studies using ESR analysis and different kind of
scavengers that •O2

− and •OH radicals are the main responsible species for the degradation
of MB. The created e− and h+ are transferred to the photocatalyst surface. The e− reduces
O2 to superoxide radical anions (•O2

−), while the h+ either oxidizes H2O to •OH or
directly oxidizes MB dye. These reactive species (•O2

−, •OH and h+) initiate the redox
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reactions and degrade MB dye into CO2, H2O, and inorganic ions. Thus, the MB dye
solution becomes colorless due to the degradation of aromatic rings. Additionally, it was
shown that the importance of the participation of certain species decreases in the following
order: (e−) > (•O2

−) > (•OH) > (h+) in the photocatalysis mechanism of composites under
SSR [24,25].

The contribution of this study is the synthesis of several TiO2-based catalysts immo-
bilized on PVC in the form of nanocomposite tablets. Additionally, a straightforward
composite preparation that only requires a few steps and does not include the use of
more expensive materials was realized. The removal of MB from aqueous solutions us-
ing newly synthesized nanocomposites (Fe2O3/PVC, Fe2O3/TiO2/PVC, Fe2O3(1)/PVC,
Fe2O3(1)/TiO2/PVC, Fe2O3(2)/PVC, and Fe2O3(2)/TiO2(1)/PVC) was also studied. These
composites’ photocatalytic effectiveness were examined with and without simulated solar
radiation (SSR). To more precisely assess the photodegradation effectiveness of the newly
created TiO2-based nanocomposite, a reusability test was also conducted.

2. Materials and Methods
2.1. Chemicals and Solutions

All chemicals were of reagent grade and used without purification. MB (C16H18ClN3S,
>97%) was manufactured by Kemika (Zagreb, Croatia); H2SO4 (95–97%) was provided
from Merck (Darmstadt, Germany); NaOH (ZorkaPharm, Šabac, Serbia); Fe2O3 (commer-
cial nanopowder, grain sizes <50 nm, Merck, Germany), Fe2O3(1) (synthesized hematite
nanoparticles by [26], Fe2O3(2) (synthesized hematite nanoparticles by [27]). Commercial
TiO2(1) (Hombikat, CAS No 13463-67-7, surface area 35–65 m2/g and 21 nm primary particle
size, anatase, Sigma-Aldrich Chemie GmbH, Steinheim, Germany) and TiO2 (Molar Chemi-
cals KFT, Halásztelek, Hungary) were also used for the synthesis of the nanocomposite. All
solutions were prepared using ultrapure water. The aqueous stock solution of MB had a
concentration of 2.45 × 10−2 mM.

2.2. Photocatalyst Preparation

For preparing Fe2O3/(TiO2)/PVC composites, a commercial patented formulation
of PVC and differently synthesized catalysts were used. In all Fe2O3/TiO2 materials, the
Fe content in relation to TiO2 was 7.2% w/w, and the percentage of composites in the final
sample with PVC was 2.5%. In our previous study, six materials using PVC were created,
with the following composite percentages: 1.0%, 1.75%, 2.5%, 3.75%, 5.0%, and 7.5%.
According to the results of the measurements, the removal of MB is best accomplished with
a composite content of 2.5% on PVC [25]. As a result, 2.5% of the composite was employed
in all experiments. The mixture was first made by physically mixing a few drops of
ultrapure water with equal mass ratios of Fe2O3/TiO2 (2.5%) catalyst in PVC. The mixture
was then drawn using a hand-held dough-making machine with stainless steel rollers into
thin sheets that were 2 mm thick. Afterward, a round cutter with a 5 mm diameter was
used to create composite tablets. The obtained tablets were put in a laboratory beaker filled
with water and boiled for 15 min. After being thoroughly cleaned with ultrapure water, the
tablets were solidified for 30 min at 140 ◦C in an oven. Using this procedure, six composites
with different contents of nanocatalysts: Fe2O3/PVC, Fe2O3/TiO2/PVC, Fe2O3(1)/PVC,
Fe2O3(1)/TiO2/PVC, Fe2O3(2)/PVC, and Fe2O3(2)/TiO2(1)/PVC were prepared. The same
procedure was used to prepare the PVC composite without adding nanocatalysts.

2.3. Characterization

Using a JSM-6460LV JIEL microscope, scanning electron microscopy (SEM) images
were obtained. The X-ray diffraction (XRD) was performed with a Rigaku MiniFlex 600
goniometer, using Cu Kα1,2 (secondary graphite monochromator) radiation at 15 mA
and 40 kV, and a step scan mode of 0.03◦ s−1, 2 s per step in a 2θ range from 3◦ to 80◦,
which allowed for successful profile fitting with PDXL and HighScore Plus (PANanalytical,
Malvern, UK) software (v3.0). The Centic MMS Raman spectrometer, which utilizes a
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charge-coupled device as a detector, was used to measure the samples. As the excitation
source, a 70 mW diode laser operating at 785 nm (1.58 eV) was applied. Using an Ocean
Optics QE65000 High-Sensitivity Fiber Optic Spectrometer (Dunedin, FL, USA), the diffuse
reflectance spectra were measured. Spectra Suite Ocean Optical software was then used
to estimate the Kubelka–Munk function. Each measurement was performed at room
temperature. Traditional sample preparation methods—grinding with MgO or KBr powder
and pressing—could not be used for the two optical measurements. In order to use them
for measurement, solid-prepared samples were recorded on their flat surfaces. While the
optical spectra obtained in this way do not alter in character, they cannot be taken as
absolute measurements. The samples’ reflection spectra were used to determine the band
characteristics because they are already opaque in the visible spectrum region.

2.4. Removal Activity Test

A batch reactor composed of Pyrex glass (Figure 1) was used for the experiments (total
volume of ca. 170 mL, solution depth of 65 mm). In the presence of SSR (IUV = 0.223 mW/cm2;
IVis = 208.5 mW/cm2), the potential removal of 30 mL of MB solution using nanocomposites
was examined. The halogen lamp was used as an SSR source (Philips, Amsterdam, The
Netherlands; type: MR16/50W/GU10/240V). Under the lens, the halogen lamp was
positioned. To 30 mL of aqueous solution, 29 tablets of Fe2O3/TiO2/PVC composite were
added. In our previous study, it was found that up to 10% of the MB was photodegraded
when the number of utilized tablets was 3, 7, and 14. The highest amount of MB was
photodegraded utilizing 29 tablets, with a photodegradation efficiency of 21.4% and a 57.7%
in overall removal efficiency. The efficiency of photodegradation decreases as the quantity
of tablets increases further. This is the reason for using 29 tablets in the experiments [25].
After that, the photoreactor was mounted on the lens so that the radiation could be focused
at the suspension. An overhead stirrer was used to mix the reactor’s contents continually.
The stirrer shaft had a diameter of 6 mm, and the propeller blades were 10 × 7 mm in size.
Three fans were used to cool the reactor, which had a 44 ◦C temperature.
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Figure 1. Schematic diagram of the photocatalytic reactor [25]. Reproduced with permission from [25].
Copyright Springer, 2022.

2.5. Photocatalyst Reuse and Photo-Cleaning

A magnetic stirring bar, 30 mL of ultrapure water, and 29 tablets of Fe2O3/TiO2/PVC
photocatalyst were placed inside a quartz balloon. After that, the quartz balloon was
sealed and placed on a magnetic stirrer in a photo-cleaning chamber constructed in the lab
(Figure 2), and the mixture was exposed to UVC radiation for 60 min. The UVC source con-
sisted of a group of four 6 W TUV germicidal fluorescent lamps (λmax = 253.7 nm, Philips,
The Netherlands, type: TUV 6 W). One pair of lamps was placed on either side of the quartz
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flask, sideways to it. The UVC radiation applied had an intensity of IUVC = 3.025 mW/cm2.
The hazardous UVC radiation byproducts were removed from the air by a fan.
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Using spectrophotometry, the photo-cleaning of the 29 used Fe2O3/TiO2/PVC pho-
tocatalyst tablets and the possibility of their reuse were analyzed. After 60 min of tablet
irradiation, the solution’s absorption spectra were recorded from 200 to 800 nm.

2.6. Antibacterial Activity Testing of Solid Samples

The agar diffusion method was used for testing the antibacterial activity of pho-
tocatalysts and was performed according to the standard EUCAST method [28] with a
modification of incubation temperature. An incubation temperature of 22 ◦C was used
instead of 37 ◦C to imitate the real conditions of catalyst application more closely. Briefly,
after 24 h of incubation, bacterial culture was used to prepare 0.5 MacFarland standard
suspensions of bacterial strains, corresponding to a bacterial count of 1 × 108 cells/mL.
The suspension was spread across the surface of Mueller Hinton agar plates and left to dry
for 5–10 min. Then, photocatalyst tablets were placed on the surface of the plate alongside
an antibiotic disk containing gentamicin, which was used as a control. Plates were then in-
cubated for 18 ± 2 h when inhibition zones around the disks were measured in millimeters.
Four different bacteria were tested: two Gram-positive bacteria (Staphylococcus aureus ATCC
25923 and Bacillus cereus ATCC 14579) and two Gram-negative bacteria (Escherichia coli
ATCC 25922 and Pseudomonas aeruginosa ATCC 35554). These bacteria were chosen, as they
are commonly used for testing of antibacterial properties of plastic and other materials.

2.7. Antibacterial Activity Testing of Treated Water Solutions and Cleaning Solutions

The antibacterial activity of treated water solutions and cleaning solutions was deter-
mined by the microdilution method and Pseudomonas putida growth inhibition test.

The microdilution method was performed according to the standard CLSI method [29]
with modification of incubation temperature as mentioned previously. Briefly, after 24 h of
incubation, bacterial culture was used to prepare 0.5 MacFarland standard suspension of
bacterial strains, corresponding to a bacterial count of 1 × 108 cells/mL. The suspension was
diluted 100 times and inoculated to microplate wells containing geometrical dilutions of
samples (final tested sample concentrations were 50, 25, 12.5, 6.25, 3.125, 1.56, 0.78%). Plates
were incubated for 18 ± 2 h, after which the growth of bacteria was monitored by reading
absorbance at 600 nm using a Multiskan GO (Thermo Scientific, Waltham, MA, USA)
microplate reader. The lowest sample concentration without detectable bacterial growth
was recorded as minimal inhibitory concentration (MIC). The lowest concentration that
killed at least 99.9% of bacteria was recorded as minimal bactericidal concentration (MBC).

The Pseudomonas putida growth inhibition test was performed according to the standard
method ISO 10712 [30]. Briefly, Pseudomonas putida culture was set to the absorbance of
0.065 at 600 nm in a preculture medium and incubated for 5 h at 150 rpm and 23 ◦C.
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Then, the suspension was diluted to an absorbance of 0.15 and mixed with an equal
amount of test medium. This mixture was mixed with liquid samples, resulting in a final
concentration of 80% of the sample. A standard solution of dichlorophenol was used as a
control. Growth control contained saline solution instead of samples. Microplates were
incubated 16 h at 23 ◦C. Bacterial growth was measured by the Multiskan GO (Thermo
Scientific, USA) microplate reader at the start and end of incubation. The percentage of
growth inhibition (I (%)) was determined based on starting and ending absorbance of
samples and growth control.

2.8. Presence of Fungal Contamination in Treated Water Solutions and Cleaning Solutions

Fungal contamination in liquid samples was detected by spread plating 100 µL of
samples onto Malt extract agar and incubating it for 7–14 days at 26 ◦C. If fungal growth
appeared, slides were prepared and observed by bright field microscopy on Olympus
BX-51 to identify the fungi.

3. Results and Discussion
3.1. Characterization of the Synthesized Photocatalyst
3.1.1. X-ray Diffraction Analysis of Fe2O3/(TiO2)/PVC Photocatalysts

XRD patterns of pure PVC, Fe2O3, and TiO2 from different manufacturers and modi-
fied Fe2O3/TiO2/PVC samples are presented. XRD spectrum of PVC (Figure S1) exhibits
clear Bragg diffraction peaks that confirm the predominantly crystalline character of the
sample. Our previous research also found a somewhat unexpected result for the poly-
mer [25]. The technological procedure of polymer synthesis should be held responsible for
the observed considerable changes in polymer crystallinity with variations in molar mass
and sample preparation.

Figure S2 shows the XRD spectra of Fe2O3. The XRD pattern of samples labeled
Fe2O3(2)-III and Fe2O3-I exhibits the hexagonal crystal form of Fe2O3—hematite, with lattice
parameters a= 0.5038 nm and c= 1.3772 nm (JCPDS Card No. 24-72). On the other hand, the
sample labeled Fe2O3(1)-II is a combination of hematite and synthetic mineral akaganeite, i.e.,
a tetragonal form of iron oxide hydroxide, β-Fe(OH) (a = 1.0535 nm, c = 0.303 nm; JCPDS
Card No. 34-1266) or orthorhombic form of iron oxide hydrate, β-Fe2O3·H2O (a = 1.026 nm,
b = 1.058 nm, c = 0.304 nm; JCPDS Card No. 08-0093).

Figure S3 shows the XRD spectra of TiO2. Obtained data based on the diffractogram
indicate that the sample marked TiO2(1)-III is a mineral anatase (JCPDS Card No. 21-1272),
while the sample marked TiO2-II is a combination of two minerals TiO2: anatase and rutile
(JCPDS Card No. 21-1276).

Fe2O3/TiO2-doped PVC sample diffraction patterns are essentially identical to those
of pure PVC (Figure S4). Namely, in all obtained spectra, the diffraction maxima of the
crystalline PVC dominate, and only in traces can the presence of TiO2 in anatase form be
observed (peaks at 2θ = 25.07; 47.50; 63.14 deg). This only shows that the concentration of
titanium and iron oxides is below the detection threshold of the instrument.

3.1.2. SEM Imaging of Fe2O3/(TiO2)/PVC Photocatalysts

The difference in the morphology of the unsupported Fe2O3 and synthesized com-
posites is quite apparent and is shown in Figure 3. A distinct structure is seen in the case
of unmodified Fe2O3 particles (Figure 3a,d,g), and their sizes range from 50 to 180 nm.
On the contrary, the differences between synthesized materials are almost unobservable
(Figure 3b,c,e,f,h,i). The generation of holes with sizes ranging from 0.94 to 6.1 µm is visible
in all synthetic materials. Furthermore, it was found that the presence of TiO2 in the most
efficient Fe2O3/TiO2/PVC material causes the holes to increase in size in contrast to the
other composites, where the presence of TiO2 in the Fe2O3/PVC causes the holes to shrink.
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(h) Fe2O3(2)/PVC and (i) Fe2O3(2)/TiO2(1)/PVC.

3.1.3. Raman Analysis of Fe2O3/(TiO2)/PVC Photocatalysts

Figures S5–S7 show recorded Raman spectra of components (PVC, Fe2O3 and TiO2)
and prepared samples. For such a low impurity concentration, only the most intense peak
of TiO2 (at the wavenumber around 634 cm−1) is noticeable on the obtained samples in
addition to the structural spectrum of PVC [25,31]. Other peaks of TiO2 as well as Fe2O3
peaks are incorporated in the spectrum of PVC. In the spectra of pure Fe2O3 components, a
wider band at wavenumbers 660–690 cm−1 is observed on the sample Fe2O3(1)/TiO2/PVC,
which does not exist in the other samples. This band most likely belongs to the variant
of akaganeite, which is in accordance with the results obtained in XRD measurements
(Figure S2).

3.1.4. UV–Vis DRS of Fe2O3/TiO2/PVC Photocatalysts

The reflection spectra of the samples, together with the spectrum of PVC, are shown in
Figure S8. On these spectra, a significant shift in the reflection spectra toward longer wave-
lengths is observed, i.e., significant changes in the energy gap in the energy diagram due to
the presence of impurities (addition) in PVC. The difference in the reflection spectrum of the
mixtures from PVC shows the absorption of electromagnetic radiation in samples, which
can be attributed to the impurities in PVC. For all three samples, this absorbance is similar
and can be deconvoluted (a Gaussian line profile is taken) into three bands (in Figure S9
marked with B1, B2, and B3). The solid lines in the figure are the absorbances based on
the measured value, while the dashed lines are the results of calculations (convolution of
the three bands). The same figure also shows the bands obtained by deconvolution on the
Fe2O3(1)/TiO2/PVC sample (curves B1, B2, and B3). These absorption bands in all three
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samples are in the visible area, almost at the same place (Table 1), with little variation in
their intensity and width.

Table 1. Experimental data of absorption bands for samplesFe2O3/TiO2/PVC (FWHM—full width
at half maximum, shown in nm).

Sample
B1 B2 B3

λmax
(nm) FWHM I λmax

(nm) FWHM I λmax
(nm) FWHM I

Fe2O3/TiO2/PVC 448 90 8.98 537 158 14.1 657 203 13.9
Fe2O3(1)/TiO2/PVC 450 128 26.5 544 129 37.7 690 314 22.1
Fe2O3(2)/TiO2(1)/PVC 443 67 19.4 533 88 29.6 651 77 6.01

Using the Kubelka–Munk function F(R) = (1−R)2/2R, the optical band gap was
calculated from observed diffuse reflectance (R) spectra of prepared samples [32]. Optical
bandgap energies were obtained as the energy of onset at the low-energy side of the plot
(F(R)hν)2 from photon energy (Figure S10) for all bands separately. These obtained energy
values are found in Table 2 and show the position of the additional levels located in the
energy gap of the carrier (PVC). The positions of these levels are quite similar (the values
in brackets are determined with a large error due to the shape of the reflection curves). In
the magnified graphic of the PVC in Figure S10, it is clearly seen that Band B2 belongs to
the PVC itself. In the same picture, in the case of the Fe2O3/TiO2/PVC sample, another
smaller band is visible below band B1, somewhere at 3.15 eV.

Table 2. Energy positions of additional levels in Fe2O3/TiO2/PVC samples within the forbidden
zone of PVC.

Sample
Eg (eV)

B1 B2 B3

Fe2O3/TiO2/PVC 3.22
3.15 (~2.6) 2.08

Fe2O3(1)/TiO2/PVC 3.26 (~2.6) 2.12
Fe2O3(2)/TiO2(1)/PVC (~3.3) 2.72 2.16

3.2. Results of Photocatalytic Experiments on MB Degradation
3.2.1. Study of MB Removal Efficiency Using Fe2O3/TiO2/PVC Photocatalysts

Prior to examining the photodegradation efficiency on the overall MB removal, the
adsorption rate was determined for each composite, in dark (Figure 4 and Figure S11).
As can be shown, all synthetic materials demonstrated a considerable MB adsorption
efficiency after 60 min, ranging from 26.5% for Fe2O3(1)/PVC composites to 33.4% for PVC
supports. The increased adsorption level could be explained by two factors. Firstly, as the
metal oxide content increased, the increasing surface area of the adsorbent provided more
binding sites for MB [33]. Furthermore, the metal oxidized surface was negatively charged
at higher pH [34], which facilitates interaction with cationic MB. Besides the adsorption,
the efficiency of photocatalytic degradation under SSR was also examined in the removal
of MB (Figure 4 and Figure S11). Comparing the removal efficiency after 60 min of irradi-
ation to the same period of adsorption in the dark, there was a noticeable improvement.
Namely, the following MB removal percentages were achieved: 42.7% for PVC support,
38.7% for Fe2O3/PVC, 41.8% for Fe2O3/TiO2/PVC, 31.7% for Fe2O3(1)/PVC, 33.3% for
Fe2O3(1)/TiO2/PVC, 41.7% for Fe2O3(2)/PVC, and 40.9% for Fe2O3(2)/TiO2(1)/PVC. The
acquired data indicate that the presence of SSR has a beneficial influence on the overall
effectiveness of MB removal for all composites under consideration, with PVC supports
and Fe2O3/TiO2/PVC composites exhibiting the highest activity. The overall removal
efficiency of MB, considering both the adsorption and photodegradation, was 76.2% for
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PVC, 68.8% for Fe2O3/PVC, 70.6% for Fe2O3/TiO2/PVC, 58.2% for Fe2O3(1)/PVC, 62.4%
for Fe2O3(1)/TiO2/PVC, 68.7% for Fe2O3(2)/PVC, and 68.6% for Fe2O3(2)/TiO2(1)/PVC. The
presence of SSR is also noticeable in Figure 5 which shows the appearance of the tablets
after 180 min of removal. The irradiated tablets had lighter color than the non-irradiated
ones, indicating that along with adsorption, the photodegradation process also occurred
in the presence of radiation. Figure 4 shows that after 60 min of irradiation, the overall
MB removal efficiency in the presence of SSR for all studied composites was higher than
direct photolysis (24.61%). It is also observed that the contribution of photodegradation
in the presence of SSR for all studied composites was higher than the efficiency of direct
photolysis. According to the thorough systematics of the results, for all composites under
study, the contribution of photodegradation to the overall effectiveness of MB removal was
much higher than the contribution of the adsorption process.
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Figure 4. Contribution of adsorption and photodegradation under SSR (calculated after 60 min
of processes) for MB removal efficiency (c0 = 2.45·10−2 mM) in the presence of 29 tablets of
Fe2O3/TiO2/PVC nanocomposites at a stirring rate of 490 rpm.

3.2.2. Effect of H2O2 Concentration and pH on MB Degradation Efficiency

Hydrogen peroxide can increase the pollutant removal efficiency by creating additional
hydroxyl radicals in the presence of Fe2O3 (Fenton process) [35]. The effect of H2O2
concentration on the efficiency of MB degradation was studied in the range of 6.5–196.5 mM.
Figure 6 illustrates that the Fe2O3/TiO2/PVC composite had the highest MB removal
effectiveness (99.7%) after 180 min of irradiation in the presence of 13.1 mM hydrogen
peroxide. On the other hand, the lowest MB removal efficiency was obtained for the PVC
composite (97.2%) and H2O2 without the presence of photocatalysts (68.5%). Based on
the presented results, the Fe2O3/TiO2/PVC composite was chosen for the study of the
influence of H2O2 concentration on the MB removal efficiency.

For each hydrogen peroxide concentration, adsorption effectiveness in the dark was
determined (Figure 7 and Figure S12). Figure 7 illustrates the considerable MB removal
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effectiveness of the Fe2O3/TiO2/PVC composite by adsorption in the presence or absence
of H2O2, with the lowest value without H2O2 (28.8%) and the greatest value using 26.2 mM
H2O2 (39.1%). Figure 7 and Figure S12 suggest that increasing the concentration of H2O2 to
196.5 mM also increases the MB removal efficiency (98.2%), while the efficiency decreases
slightly at higher doses (above 98.2 mM). The first increase in H2O2 concentration enhanced
the degradation efficiency due to the effect of the produced •OH radicals. However, at
higher doses, H2O2 acts as a potential •OH scavenger. Therefore, adding H2O2 above
its optimal concentration can lead to the formation of hydroperoxyl radicals (•H2O2),
which are much less reactive and do not contribute to the oxidative degradation of organic
compounds [36].
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Figure 7. Contribution of adsorption and photodegradation under SSR (calculated after 60 min
of processes) for MB removal efficiency (c0 = 2.45·10−2 mM) in the presence of 29 tablets of
Fe2O3/TiO2/PVC composites and different H2O2 concentrations at a stirring rate of 490 rpm.

The initial pH value was investigated regarding the effectiveness of removing MB in
the presence of Fe2O3(2)/TiO2(1)/PVC composites and 13.1 mM H2O2. Figure 8a indicates
the modest differences in MB removal efficiency between the system with no pH adjustment
(pH 5.8) compared to the one with HCl present, where the initial pH was 2.1. The initial
pH of the solution after the addition of NaOH was 11.8, and at this pH, when MB is in
its colorless leucomorphic form, it is unable to observe the removal of MB at 660 nm [37].
The pH of the solution was monitored while the MB was being removed. Despite the
divergence of the initial pH value, after 60 min of treatment, the pH stabilized and did not
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change: the pH value for the hydrogen peroxide/hydrochloric acid system was 6.0, and
the pH value for the sodium hydroxide/hydrogen peroxide system was 8.3. (Figure 8b).
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Figure 8. Influence of the initial value of pH solution on the removal efficiency of MB
(c0 = 2.45·10−2 mM) in the presence of 29 tablets of Fe2O3(2)/TiO2(1)/PVC composites and 13.1 mM
H2O2 at a stirring rate of 490 rpm: (a) kinetic curve and (b) change in pH value during removal
process under SSR.

3.2.3. MB Removal with the Reused Fe2O3/TiO2/PVC Photocatalyst

Technology for water treatment depends on the ability to regenerate a photocatalyst
so that it can keep its photocatalytic activity without altering its original chemical composi-
tion [38]. For the purpose of investigating the viability of photo-cleaning and reuse, the
Fe2O3/TiO2/PVC/SSR system was selected. Figure 9 shows that the composites nearly
totally regained their original appearance following the initial photo-cleaning, losing the
blue color impurities that resulted from the adsorbed MB. The absorption spectrum of
ultrapure water remaining after the photo-cleaning of composites (Figure S13), which
shows that after the first photo-cleaning, the least organic matter, and after the fifth time,
the most organic matter, remained in ultrapure water, further supports the effectiveness of
photo-cleaning. This tendency might be explained by the degradation of more adsorbed
MB and/or the decomposition of the composites themselves as a result of repeated use.
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This photo-cleaning method’s distinctive advantage is underlined by the fact that
it consumes less energy (germicidal UVC fluorescent lamps) while also causing residual
organic matter in utilized water to be decomposed during photo-cleaning tablets. On the
other hand, PVC would degrade if the temperature were increased, a method frequently
employed for catalyst regeneration [27]. Another benefit of this method is that no additional
chemicals are employed, and the purification is carried out in a sustainable manner.
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In addition to the effectiveness of photo-cleaning composites, the potential for their
reuse was investigated. It is evident that each reuse caused MB to decompose into different
intermediates from the absorption spectra of MB at the beginning and after removal with
purified Fe2O3/TiO2/PVC composites in the presence of SSR (Figure S14). Additionally,
Figure 10 shows that even after five consecutive applications, the removal effectiveness of
MB using Fe2O3/TiO2/PVC composites remains unchanged.
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Figure 10. Kinetic curves for the reuse of 29 tablets of Fe2O3/TiO2/PVC composites in the case of
MB (c0 = 2.45·10−2 mM) removal under SSR, at a stirring rate of 490 rpm.

3.3. Antibacterial Activity of Nanocomposites, Treated Water Solutions and Cleaning Solutions

The antibacterial activity determined by the agar diffusion method showed that Gram-
negative bacteria were insensitive to tested composites, whereas a mild inhibitory effect
was observed against Gram-positive bacteria (Table 3, Figure S15). Specifically, B. cereus
was inhibited by PVC and Fe2O3/PVC composites, while all three composite samples
inhibited S. aureus. An antibiotic disk with gentamicin was used as a control and gave
expected diameters of inhibition.

Table 3. Antibacterial activity of photocatalysts determined by agar diffusion method.

Sample
Zone of Inhibition Diameter (mm)

E. coli P. aeruginosa B. cereus S. aureus

Fe2O3/TiO2/PVC 0 0 0 6
PVC 0 0 6 8

Fe2O3/PVC 0 0 6 8
Gentamicin (control) 19 17 22 20

Antibacterial activity of treated water solutions and cleaning solutions was also tested.
Microdilution assay revealed that E. coli, P. aeruginosa and B. cereus were not inhibited by
any of the samples, while the growth of S. aureus was inhibited by dye solution of MB and
dye solution after photolysis (samples 1 and 2) (Table 4). The concentration of 12.5% of
sample 1 and 25% of sample 2 was enough to inhibit the further growth of S. aureus. MBC
was not detected for samples 1 and 2, indicating that they only stop further multiplication
of bacterial cells (they have an inhibitory effect on bacteria), but do not kill already present
bacterial cells (they do not have a bactericidal effect).
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Table 4. The antibacterial activity of treated water solutions and cleaning solutions determined as
minimal inhibitory concentration (MIC) by microdilution method and inhibition percentage I (%) by
Pseudomonas putida growth inhibition test.

Sample No. Sample Description
MIC (%)*

I (%) **
E. coli P. aeruginosa B. cereus S. aureus

1 Dye solution of MB

No inhibition No inhibition No inhibition

12.5 Nd ***

2 Dye solution
after photolysis 25 Nd ***

3 PVC/SSR

No inhibition

18.77

4 1st removal
Fe2O3/TiO2/PVC/SSR 17.07

5 2nd removal
Fe2O3/TiO2/PVC/SSR 10.68

6 3rd removal
Fe2O3/TiO2/PVC/SSR 12.38

7 4th removal
Fe2O3/TiO2/PVC/SSR 23.03

8 5th removal
Fe2O3/TiO2/PVC/SSR 18.28

9 1st run cleaning 17.48
10 2nd run cleaning 20.26
11 3rd run cleaning 17.62
12 4th run cleaning 15.98
13 5th run cleaning 15.22

* Minimal inhibitory concentration determined by microdilution method for Escherichia coli ATCC 25922,
Pseudomonas aeruginosa ATCC 35554, Bacillus cereus ATCC 14579 and Staphylococcus aureus ATCC 25923;
** growth inhibition in the presence of 80% of the sample determined by Pseudomonas putida growth inhibition test;
*** not determined.

Pseudomonas putida growth inhibition test showed that liquid samples in a concentra-
tion of 80% exert mild growth inhibition in the range of 10.68 to 23.03%. For samples 1 and
2, standard methods could not be applied because of their intensive coloration.

Fungal contamination of liquid samples was noted after prolonged storage of samples.
Namely, Fusarium sp. was detected in samples 2 and 3, while Penicillium sp. was noted
in sample 4. Other samples had no fungal contamination. These fungi are common
aerocontaminants of various samples and have probably contaminated samples during the
experimental procedures and processing.

4. Conclusions

In this research, the efficiency of six newly synthesized nanocomposite tablets in the
photocatalytic removal of MB was investigated. Furthermore, their possible antibacterial
effect was examined.

XRD analysis showed a hexagonal hematite crystal form in the case of Fe2O3(2) and
Fe2O3 samples, while the Fe2O3(1) sample is a combination of hematite and synthetic mineral
akaganeite. The Raman spectroscopy measurements also proved the mentioned form, since a
wider band at wavenumbers 660–690 cm−1 is observed on the sample Fe2O3(1)/TiO2/PVC,
which most likely belongs to the variant of akaganite.

Based on the obtained photocatalytic experiments, it can be concluded that all newly
synthesized composites had higher MB degradation efficiency compared to direct photoly-
sis after 60 min of SSR. The highest activity was observed in the case of the Fe2O3/TiO2/PVC
composite. Our findings also showed that the degradation efficiency of the investigated
composites was improved in the presence of H2O2, due to the photo-Fenton process, while
the initial pH did not have a significant effect on the photocatalytic activity. The possible
photo-cleaning process and reuse of Fe2O3/TiO2/PVC tablets were also examined. The
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obtained results showed that the photocatalytic activity of the tablets did not decrease even
after the fifth successive run.

Furthermore, the antibacterial studies determined that PVC, Fe2O3/PVC and Fe2O3/
TiO2/PVC inhibited S. aureus, while PVC and Fe2O3/PVC composites inhibited B. cereus.

Our findings showed that Fe2O3/TiO2/PVC can be an appropriate candidate for the
eco-friendly treatment of wastewater. Namely, heterogeneous photocatalysis harvests sun-
light, which is a free and renewable source of energy, and the high activity of the mentioned
composite under simulated sunlight additionally reduces the operation costs, since there is
no need for an artificial irradiation source. Furthermore, the tablet form and high reusabil-
ity of Fe2O3/TiO2/PVC also add up to the advantages of these nanocomposites, due to
the easier separation from the aqueous environment, which makes the whole treatment
process more accessible. On the other hand, further experiments should be carried out
regarding the possible degradation mechanism pathways. By doing this, we could obtain a
detailed image about the degradation intermediates of MB and could additionally improve
the photocatalytic efficiency of the mentioned nanocomposite in order to reach complete
mineralization. Even though the synthesis does not require harmful chemicals, expen-
sive materials and use of high temperatures, various eco-inspired, plant-based synthesis
techniques should also be developed in order to reduce our ecological footprint in nature.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13030460/s1, Figure S1: XRD pattern of PVC samples;
Figure S2: XRD pattern of Fe2O3; Figure S3: XRD pattern of TiO2; Figure S4: XRD pattern of
Fe2O3/TiO2/PVC; Figure S5: Raman spectra of Fe2O3/TiO2/PVC at room temperature; Figure S6: Ra-
man spectra of Fe2O3(1)/TiO2/PVC at room temperature; Figure S7: Raman spectra of Fe2O3(2)/TiO2(1)
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deconvoluated bands for Fe2O3(1)/TiO2/PVC sample); Figure S10: Energy plot of Fe2O3/TiO2/PVC
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(c0 = 2.45·10−2 mM) in the presence of 29 tablets of Fe2O3/TiO2/PVC nanocomposites at a stirring
rate of 490 rpm; Figure S12: Adsorption and photodegradation kinetic curves for MB removal
efficiency (c0 = 2.45·10−2 mM) in the presence of 29 tablets of Fe2O3/TiO2/PVC composites and
different H2O2 concentrations at a stirring rate of 490 rpm; Figure S13:Absorption spectra of ul-
trapure water left after each photo-cleaning of 29 tablets of Fe2O3/TiO2/PVC composites used in
the MB (c0 = 2.45·10−2 mM) removal under the influence of UVC irradiation for 60 min; Figure S14:
Absorption spectra of MB (c0 = 2.45·10−2 mM) at the beginning and after 180 min of SSR irradia-
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D—Staphylococcus aureus.
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