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Abstract

Garbled circuits, introduced by Yao in the mid 80s, allow computing a function f on an input x
without leaking anything about f or x besides f(x). Garbled circuits found numerous applications, but
every known construction suffers from one limitation: it offers no security if used on multiple inputs x.
In this paper, we construct for the first time reusable garbled circuits. The key building block is a new
succinct single-key functional encryption scheme.

Functional encryption is an ambitious primitive: given an encryption Enc(x) of a value x, and a secret
key skf for a function f , anyone can compute f(x) without learning any other information about x. We
construct, for the first time, a succinct functional encryption scheme for any polynomial-time function
f where succinctness means that the ciphertext size does not grow with the size of the circuit for f , but
only with its depth. The security of our construction is based on the intractability of the Learning with
Errors (LWE) problem and holds as long as an adversary has access to a single key skf (or even an a priori
bounded number of keys for different functions).

Building on our succinct single-key functional encryption scheme, we show several new applications
in addition to reusable garbled circuits, such as a paradigm for general function obfuscation which we call
token-based obfuscation, homomorphic encryption for a class of Turing machines where the evaluation
runs in input-specific time rather than worst-case time, and a scheme for delegating computation which is
publicly verifiable and maintains the privacy of the computation.



Contents

1 Introduction 3
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Main Application: Reusable Garbled Circuits . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Token-Based Obfuscation: a New Way to Circumvent Obfuscation Impossibility

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Computing on Encrypted Data in Input-Specific Time . . . . . . . . . . . . . . . . 7
1.1.4 Publicly Verifiable Delegation with Secrecy . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Technique Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 11
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Background on Learning With Errors (LWE) . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Fully Homomorphic Encryption (FHE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Background on Garbled Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Attribute-Based Encryption (ABE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Two-Outcome Attribute-Based Encryption . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Functional Encryption (FE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 Security of Functional Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Our Functional Encryption Scheme 20
3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Reusable Garbled Circuits 29
4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Impossibility of Public-Key Reusable Garbled Circuits . . . . . . . . . . . . . . . . . . . . 35

5 Token-Based Obfuscation 36
5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Computing on Encrypted Data in Input-Specific Time 38
6.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Input-Dependent Output Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A Detailed Background on Learning With Errors (LWE) 46

B Construction of Two-Outcome Attribute-Based Encryption 47

C Homomorphic Encryption for Turing Machines: Definitions and Proofs 49
C.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2



1 Introduction

Breaches of confidential data are commonplace: personal information of millions of people, such as financial,
medical, customer, and employee data, is disclosed every year [Pri12, Ver]. These disclosures often happen
because untrustworthy systems handle confidential data. As applications move to cloud computing platforms,
ensuring data confidentiality on third-party servers that may be untrustworthy becomes a top concern [Dav12].

A powerful technique for preventing data disclosures without having to ensure the server is trustworthy is
to encrypt the data provided to the server and then compute on the encrypted data. Thus, if the server does
not have access to the plaintext or to the decryption key, it will be unable to disclose confidential data. The
big leap of the last decade towards computing over encrypted data has been fully homomorphic encryption
(FHE) [Gen09, DGHV10, SS10b, BV11b, BV11a, Vai11, BGV12, GHS12a, GHS12b, LTV12, Bra12].

A fundamental question with this approach is: who can decrypt the results of computations on encrypted
data? If data is encrypted using FHE, anyone can perform a computation on it (with knowledge of the public
key), while the result of the computation can be decrypted only using the secret key. However, the secret
key allows decrypting all data encrypted under the corresponding public key. This model suffices for certain
applications, but it rules out a large class of applications in which the party computing on the encrypted data
needs to determine the computation result on its own. For example, spam filters should be able to determine
if an encrypted email is spam and discard it, without learning anything else about the email’s content. With
FHE, the spam filter can run the spam detection algorithm homomorphically on an encrypted email and
obtain an encrypted result; however, it cannot tell if the algorithm deems the email spam or not. Having the
data owner provide the decryption key to the spam filter is not a solution: the spam filter can now decrypt all
the emails as well!

A promising approach to this problem is functional encryption [SW05, GPSW06, KSW08, LOS+10,
OT10, O’N10, BSW]. In functional encryption, anyone can encrypt data with a master public key mpk
and the holder of the master secret key can provide keys for functions, for example skf for function f .
Anyone with access to a key skf and a ciphertext c for x can obtain the result of the computation in plaintext
form: f(x). The security of FE requires that the adversary does not learn anything about x, other than the
computation result f(x). It is easy to see, for example, how to solve the above spam filter problem with a
functional encryption scheme. A user Alice publishes her public key online and gives the spam filter a key for
the filtering function. Users sending email to Alice will encrypt the email with her public key. The spam filter
can now determine by itself, for each email, whether to store it in Alice’s mailbox or to discard it as spam,
without learning anything about Alice’s email (except for whether it was deemed spam or not).

The recent impossibility result of Agrawal, Gorbunov, Vaikuntanathan and Wee [AGVW12] says that
functional encryption schemes where an adversary can receive an arbitrary number of keys for general
functions are impossible for a natural simulation-based security definition;1 stated differently, any functional
encryption scheme that can securely provide q keys for general functions must have ciphertexts growing
linearly in q. Since any scheme that can securely provide a single key yields a scheme that can securely
provide q keys by repetition, the question becomes if one can construct a functional encryption scheme that
can securely provide a single key for a general function under this simulation-based security definition. Such
a single-key functional encryption scheme is a powerful tool, enabling the applications we will discuss.

In this paper, we construct the first single-key functional encryption scheme for a general function that
is succinct: the size of the ciphertext grows with the depth d of the circuit computing the function and is

1This impossibility result holds for non-adaptive simulation-based security, which is weaker than some existing simulation-based
definitions such as adaptive security. Nevertheless, this result does not carry over to indistinguishability-based definitions, for which
possibility or impossibility is currently an open question. In this paper, we are interested in achieving the simulation-based definition.
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independent of the size of the circuit. Up until our work, the known constructions of functional encryption
were quite limited. First, the works of Boneh and Waters [BW07], Katz, Sahai and Waters [KSW08], Agrawal,
Freeman and Vaikuntanathan [AFV11], and Shen, Shi and Waters [SSW09] show functional encryption
schemes (based on different assumptions) for a very simple function: the inner product function fy (or a
variant of it), that on input x outputs 1 if and only if ⟨x, y⟩ = 0.2 These works do not shed light on how to
extend beyond inner products. Second, Sahai and Seyalioglu [SS10a] and Gorbunov, Vaikuntanathan and
Wee [GVW12] provide a construction for single-key functional encryption for one general function with a
non-succinct ciphertext size (at least the size of a universal circuit computing the functions allowed by the
scheme3). [SS10a] was the first to introduce the idea of single-key functional encryption and [GVW12] also
extends it to allow the adversary to see secret keys for q functions of his choice, by increasing the size of
the ciphertexts linearly with q where q is known in advance.4 We emphasize that the non-succinctness of
these schemes is particularly undesirable and it precludes many useful applications of functional encryption
(e.g., delegation, reusable garbled circuits, FHE for Turing machines), which we achieve. For example, in
the setting of delegation, a data owner wants to delegate her computation to a cloud, but the mere effort
of encrypting the data is greater than computing the circuit directly, so the owner is better off doing the
computation herself.

We remark that functional encryption (FE) arises from, and generalizes, a beautiful sequence of papers on
attribute-based encryption (including [SW05, GPSW06, BSW07, GJPS08, LOS+10, Wat11, Wat12, LW12]),
and more generally predicate encryption (including [BW07, KSW08, OT09]). We denote by attribute-based
encryption (ABE) an encryption scheme where each ciphertext c of an underlying plaintext message m
is tagged with a public attribute x. Each secret key skf is associated with a predicate f . Given a key skf
and a ciphertext c = Enc(x,m), the message m can be recovered if and only if f(x) is true. Whether the
message gets recovered or not, the attribute x is always public; in other words, the input to the computation
of f , x, leaks with attribute-based encryption, whereas with functional encryption, nothing leaks about x
other than f(x). Therefore, attribute-based encryption offers qualitatively weaker security than functional
encryption. Attribute-based encryption schemes were also called public-index predicate encryption schemes
in the literature [BSW]. Boneh and Waters [BW07] introduced the idea of not leaking the attribute as in
functional encryption (also called private-index functional encryption).

Very recently, the landscape of attribute-based encryption has significantly improved with the works of
Gorbunov, Vaikuntanathan and Wee [GVW13], and Sahai and Waters [SW12], who construct attribute-based
encryption schemes for general functions, and are a building block for our results.

1.1 Our Results

Our main result is the construction of a succinct single-key functional encryption scheme for general functions.
We demonstrate the power of this result by showing that it can be used to address the long-standing open
problem in cryptography of reusing garbled circuits, as well as making progress on other open problems.

We can state our main result as a reduction from any attribute-based encryption and any fully
homomorphic encryption scheme. In particular, we show how to construct a (single-key and succinct)
functional encryption scheme for any class of functions F by using a homomorphic encryption scheme
which can do homomorphic evaluations for any function in F and an attribute-based encryption scheme for a

2These inner-product schemes allow an arbitrary number of keys.
3A universal circuit F is a circuit that takes as input a description of a circuit f and an input string x, runs f on x and outputs f(x).
4Namely, parameter q (the maximum number of keys allowed) is fixed during setup, and the ciphertexts size grows linearly

with q.
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“slightly larger” class of functions F ′; F ′ is the class of functions such that for any function f ∈ F , the class
F ′ contains the function computing the i-th bit of the FHE evaluation of f .

Theorem 1.1 (Informal). There is a single-key functional encryption scheme with succinct ciphertexts
(independent of circuit size) for the class of functions F assuming the existence of

• a fully homomorphic encryption scheme for the class of functions F , and

• a (single-key) attribute-based encryption scheme for a class of predicates F ′ (as above).

The literature has considered two types of security for ABE and FE: selective and full security (see
Sec. 2.6). We show that if the underlying ABE scheme is selectively or fully secure, our resulting FE scheme
is selectively or fully secure, respectively.

Two very recent results achieve attribute-based encryption for general functions. Gorbunov, Vaikun-
tanathan and Wee [GVW13] achieve ABE for general circuits of bounded depth based on the subexponential
Learning With Errors (LWE) intractability assumption. Sahai and Waters [SW12] achieve ABE for general
circuits under the less standard k-Multilinear Decisional Diffie-Hellman (see [SW12] for more details);
however, when instantiated with the only construction of multilinear maps currently known [GGH12], they
also achieve ABE for general circuits of bounded depth. Our scheme can be instantiated with any of these
schemes because our result is a reduction.

When coupling our theorem with the ABE result of [GVW13] and the FHE scheme of [BV11a, BGV12],
we obtain:

Corollary 1.2 (Informal). Under the subexponential LWE assumption, for any depth d, there is a single-key
functional encryption scheme for general functions computable by circuits of depth d. The scheme has
succinct ciphertexts: their size is polynomial in the depth d (and does not depend on the circuit size).

This corollary holds for both selective and full security definitions, since [GVW13] constructs both
selectively secure and fully secure ABE schemes. However, the parameters of the LWE assumption are
different in the two cases (Sec. 2.3).

Another corollary of our theorem is that, given a universal ABE scheme (the scheme is for all classes of
circuits, independent of depth) and any fully homomorphic encryption scheme, there is a universal functional
encryption scheme whose ciphertext size does not depend on the circuit’s size or even the circuit’s depth.

As mentioned, extending our scheme to be secure against an adversary who receives q keys is
straightforward. The basic idea is simply to repeat the scheme q times in parallel. This strategy results in the
ciphertext size growing linearly with q, which is unavoidable for the simulation-based security definition
we consider, because of the discussed impossibility result [AGVW12]. Stated in these terms, our scheme is
also a q-collusion-resistant functional encryption scheme like [GVW12], but our scheme’s ciphertexts are
succinct, whereas [GVW12]’s are proportional to the circuit size.

From now on, we restrict our attention to the single-key case, which is the essence of the new scheme.
In the body of the paper we often omit the single-key or succinct adjectives and whenever we refer to a
functional encryption scheme, we mean a succinct single-key functional encryption scheme.

We next show how to use our main theorem to make significant progress on some of the most intriguing
open questions in cryptography today: the reusability of garbled circuits, a new paradigm for general function
obfuscation, as well as applications to fully homomorphic encryption with evaluation running in input-specific
time rather than in worst-case time, and to publicly verifiable delegation. Succinctness plays a central role in
these applications and they would not be possible without it.
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1.1.1 Main Application: Reusable Garbled Circuits

A circuit garbling scheme, which has been one of the most useful primitives in modern cryptography, is a
construction originally suggested by Yao in the 80s in the context of secure two-party computation [Yao82].
This construction relies on the existence of a one-way function to encode an arbitrary circuit C (“garbling”
the circuit) and then encode any input x to the circuit (where the size of the encoding is short, namely, it does
not grow with the size of the circuit C); a party given the garbling of C and the encoding of x can run the
garbled circuit on the encoded x and obtain C(x). The most basic properties of garbled circuits are circuit
and input privacy: an adversary learns nothing about the circuit C or the input x other than the result C(x).

Over the years, garbled circuits and variants thereof have found many applications: two party
secure protocols [Yao86], multi-party secure protocols [GMW87], one-time programs [GKR08], KDM-
security [BHHI10], verifiable computation [GGP10], homomorphic computations [GHV10] and others.
However, a basic limitation of the original construction remains: it offers only one-time usage. Specifically,
providing an encoding of more than one input compromises the secrecy of the circuit. Thus, evaluating the
circuit C on any new input requires an entirely new garbling of the circuit.

The problem of reusing garbled circuits has been open for 30 years. Using our newly constructed succinct
functional encryption scheme we are now able to build reusable garbled circuits that achieve circuit and
input privacy: a garbled circuit for any computation of depth d (where the parameters of the scheme depend
on d), which can be run on any polynomial number of inputs without compromising the privacy of the circuit
or the input. More generally, we prove the following:

Theorem 1.3 (Informal). There exists a polynomial p, such that for any depth function d, there is a reusable
circuit garbling scheme for the class of all arithmetic circuits of depth d, assuming there is a single-key
functional encryption scheme for all arithmetic circuits of depth p(d).5

Corollary 1.4 (Informal). Under the subexponential LWE assumption, for any depth function d, there exists
a reusable circuit garbling scheme with circuit and input privacy for all arithmetic circuits of depth d.

Reusability of garbled circuits (for depth-bounded computations) implies a multitude of applications
as evidenced by the research on garbled circuits over the last 30 years. We note that for many of these
applications, depth-bounded computation suffices. We also note that some applications do not require circuit
privacy. In that situation, our succinct single-key functional encryption scheme already provides reusable
garbled circuits with input-privacy and, moreover, the encoding of the input is a public-key algorithm.

We remark that [GVW13] gives a restricted form of reusable circuit garbling: it provides authenticity of
the circuit output, but does not provide input privacy or circuit privacy, as we do here. Informally, authenticity
means that an adversary cannot obtain a different yet legitimate result from a garbled circuit. We note that
most of the original garbling circuit applications (e.g., two party secure protocols [Yao86], multi-party secure
protocols [GMW87]) rely on the privacy of the input or of the circuit.

One of the more intriguing applications of reusable garbled circuits pertains to a new model for program
obfuscation, token-based obfuscation, which we discuss next.

1.1.2 Token-Based Obfuscation: a New Way to Circumvent Obfuscation Impossibility Results

Program obfuscation is the process of taking a program as input, and producing a functionally equivalent but
different program, so that the new program reveals no information to a computationally bounded adversary

5For this application we need to assume that the underlying functional encryption scheme is fully secure (as opposed to only
selectively secure).
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about the original program, beyond what “black box access” to the program reveals. Whereas ad-hoc program
obfuscators are built routinely, and are used in practice as the main software-based technique to fight reverse
engineering of programs, in 2000 Barak et al. [BGI+01], followed by Goldwasser and Kalai [GK05], proved
that program obfuscation for general functions is impossible using software alone, with respect to several
strong but natural definitions of obfuscation.

The results of [BGI+01, GK05] mean that there exist functions which cannot be obfuscated. Still, the need
to obfuscate or “garble” programs remains. A long array of works attempts to circumvent the impossibility
results in various ways, including adding secure hardware components [GKR08, GIS+10, BCG+11], relaxing
the definition of security [GR07], or considering only specific functions [Wee05, CKVW10].

The problem of obfuscation seems intimately related to the “garbled circuit” problem where given a
garbling of a circuit C and an encoding for an input x, one can learn the result of C(x) but nothing else. One
cannot help but wonder whether the new reusable garbling scheme would immediately imply a solution for
the obfuscation problem (which we know is impossible). Consider an example illustrating this intuition: a
vendor obfuscates her program (circuit) by garbling it and then gives the garbled circuit to a customer. In
order to run the program on (multiple) inputs xi, the customer simply encodes the inputs according to the
garbling scheme and thus is able to compute C(xi). Unfortunately, although close, this scenario does not
work with reusable garbled circuits. The key observation is that encoding x requires knowledge of a secret
key! Thus, an adversary cannot produce encoded inputs on its own, and needs to obtain “tokens” in the form
of encrypted inputs from the data owner.

Instead, we propose a new token-based model for obfuscation. The idea is for a vendor to obfuscate an
arbitrary program as well as provide tokens representing rights to run this program on specific inputs. For
example, consider that some researchers want to obtain statistics out of an obfuscated database containing
sensitive information (the obfuscated program is the program running queries with the secret database
hardcoded in it). Whenever the researchers want to input a query x to this program, they need to obtain
a token for x from the program owner. To produce each token, the program owner does little work. The
researchers perform the bulk of the computation by themselves using the token and obtain the computation
result without further interaction with the owner.

Claim 1.5. Assuming a reusable garbling scheme for a class of circuits, there is a token-based obfuscation
scheme for the same class of circuits.

Corollary 1.6 (Informal). Under the subexponential LWE assumption, for any depth function d, there exists
a token-based obfuscation scheme for all arithmetic circuits of depth d.

It is worthwhile to compare the token-based obfuscation model with previous work addressing obfuscation
using trusted-hardware components such as [GIS+10, BCG+11]. In these schemes, after a user finishes
executing the obfuscated program on an input, the user needs to interact with the trusted hardware to obtain
the decryption of the result; in comparison, in our scheme, the user needs to obtain only a token before the
computation begins, and can then run the computation and obtain the decrypted result by herself.

1.1.3 Computing on Encrypted Data in Input-Specific Time

All current FHE constructions work according to the following template. For a fixed input size, a program is
transformed into an arithmetic circuit; homomorphic evaluation happens gate by gate on this circuit. The
size of the circuit reflects the worst-case running time of the program: for example, every loop is unfolded
into the maximum number of steps corresponding to the worst-case input, and each function is called the
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maximum number of times possible. Such a circuit can be potentially very large, despite the fact that there
could be many inputs on which the execution is short.

A fascinating open question has been whether it is possible to perform FHE following a Turing-machine-
like template: the computation time is input-specific and can terminate earlier depending on the input at hand.
Of course, to compute in input-specific time, the running time must unavoidably leak to the evaluator, but
such leakage is acceptable in certain applications and the efficiency gains can be significant; therefore, such a
scheme provides weaker security than fully homomorphic encryption (namely, nothing other than the running
time leaks about the input), at the increase of efficiency.

Using our functional encryption scheme, we show how to achieve this goal. The idea is to use the scheme
to test when an encrypted circuit computation has terminated, so the computation can stop earlier on certain
inputs. We overview our technique in Sec. 1.2.

Because the ciphertexts in our functional encryption scheme grow with the depth of the circuits, such a
scheme is useful only for Turing machines that can be expressed as circuits of depth at most d(n) for inputs
of size n. We refer to such Turing machines as d-depth-bounded and define them in Sec. 6.

Theorem 1.7. There is a scheme for evaluating Turing machines on encrypted inputs in input-specific time
for any class of d-depth-bounded Turing machines, assuming the existence of a succinct single-key functional
encryption scheme for circuits of depth d,6 and a fully homomorphic encryption scheme for circuits of depth
d.

Corollary 1.8. Under the subexponential LWE assumption, for any depth d, there is a scheme for evaluating
Turing machines on encrypted data in input-specific time for any class of d-depth-bounded Turing machines.

1.1.4 Publicly Verifiable Delegation with Secrecy

Recently, Parno, Raykova and Vaikuntanathan [PRV12] showed how to construct a 2-message delegation
scheme that is publicly verifiable, in the preprocessing model, from any attribute-based encryption scheme.
This reduction can be combined with [GVW13]’s ABE scheme to achieve such a delegation scheme.

However, this scheme does not provide secrecy of the inputs: the prover can learn the inputs. By replacing
the ABE scheme in the construction of [PRV12] with our new functional encryption scheme, we add secrecy
to the scheme; namely, we obtain a delegation scheme which is both publicly verifiable as in [PRV12] (anyone
can verify that a transcript is accepting using only public information) and secret (the prover does not learn
anything about the input of the function being delegated).7 More specifically, we construct a 2-message
delegation scheme in the preprocessing model that is based on the subexponential LWE assumption, and is
for general depth-bounded circuits, where the verifier works in time that depends on the depth of the circuit
being delegated, but is independent of the size of the circuit, and the prover works in time dependent on the
size of the circuit.

1.2 Technique Outline

Our functional encryption scheme. We first describe the ideas behind our main technical result: a reduction
from attribute-based encryption (ABE) and fully homomorphic encryption (FHE) to functional encryption
(FE).

6As in previous applications, we need to assume that the underlying functional encryption scheme is fully secure (as opposed to
only selectively secure).

7We note that secrecy can be easily obtained by using an FHE scheme, however, this destroys public-verifiability.

8



Compute on encrypted data with FHE. A natural starting point is FHE because it enables computation on
encrypted data, which is needed with functional encryption. Using FHE, the FE encryption of an input x
consists of an FHE encryption of x, denoted x̂, while the secret key for a function f is simply f itself. The
semantic security of FHE provides the desired security (and more) because nothing leaks about x; however,
using FHE evaluation, the evaluator obtains an encrypted computation result, f̂(x), instead of the decrypted
value f(x). Giving the evaluator the FHE decryption key is not an option because the evaluator can use it to
decrypt x as well.

Attempt to decrypt using a Yao garbled circuit. We would like the evaluator to decrypt the FHE ciphertext
f̂(x), but not be able to decrypt anything else. An idea is for the owner to give the evaluator a Yao garbled
circuit for the FHE decryption function FHE.Dec with the FHE secret key hsk hardcoded in it, namely a
garbled circuit for FHE.Dechsk. When the owner garbles FHE.Dechsk, the owner also obtains a set of garbled
circuit labels {Li

0, L
i
1}i. The evaluator must only receive the input labels corresponding to f̂(x): namely, the

labels {Li
bi
}i where bi is the i-th bit of f̂(x). But this is not possible because the owner does not know a

priori f̂(x) which is determined only after the FHE evaluation; furthermore, after providing more than one
set of labels (which happens when encrypting another input x′), the security of the garbled circuit (and hence
of the FHE secret key) is compromised. One idea is to have the owner and the evaluator interact, but the
syntax of functional encryption does not allow interaction. Therefore, the evaluator needs to determine the set
of labels corresponding to f̂(x) by herself, and should not obtain any other labels.

Constraining decryption using ABE. It turns out that what we need here is very close to what ABE
provides. Consider the following variant of ABE (called ABE2)that can be constructed easily from a standard
ABE scheme. One encrypts a value y together with two messages m0,m1 and obtains a ciphertext c ←
ABE2.Enc(y,m0,m1). Then, one generates a key for a predicate g: skg ← ABE2.KeyGen(g). The decryption
algorithm on input c and skg outputs m0 if g(y) = 0 or outputs m1 if g(y) = 1.

Now consider using ABE2 multiple times, once for every i ∈ {1, . . . , size of f̂(x)}. For the i-th
invocation of ABE2.Enc, let m0,m1 be the garbled labels Li

0, L
i
1, and let y be x̂: ABE2.Enc(x̂, L

i
0, L

i
1).

Next, for the i-th invocation of ABE2.KeyGen, let g be FHE.Evalif (the predicate returning the i-th bit of the
evaluation of f on an input ciphertext): ABE2.KeyGen(FHE.Eval

i
f ). Then, the evaluator can use ABE2.Dec

to obtain the needed label: Li
bi

where bi is the i-th bit of f̂(x). Armed with these labels and the garbled circuit,
the evaluator decrypts f(x).

The security of the ABE scheme ensures the evaluator cannot decrypt any other labels, so the evaluator
cannot learn more than f(x). Finally, note that the one-time aspect of garbled circuits does not restrict the
number of encryptions with our FE scheme because the encryption algorithm generates a new garbled circuit
every time; since the garbled circuit is for the FHE decryption algorithm (which is a fixed algorithm), the size
of the ciphertexts remains independent of the size of f .

We now explain how to use this result to obtain the aforementioned applications.
From FE to reusable garbled circuits. The goal of garbled circuits is to hide the input and the circuit C.
Our succinct single-key FE already provides a reusable garbling scheme with input privacy (the single key
corresponds to the circuit to garble). To obtain circuit privacy, the insight is to leverage the secrecy of the
inputs to hide the circuit. The first idea that comes to mind is to generate a key for the universal circuit instead
of C, and include C in the ciphertext when encrypting an input. However, this approach will yield large
ciphertexts, as large as the circuit size.

Instead, the insight is to garble C by using a semantically secure encryption scheme E.Enc together with
our FE scheme: the garbling of C will be an FE secret key for a circuit U that contains E.Encsk(C); on
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input (sk, x), U uses sk to decrypt C and then runs C on the input x. The token for an input x will be an FE
encryption of (sk, x). Now, even if the FE scheme does not hide E.Encsk(C), the security of the encryption
scheme E hides C.
Computing on encrypted data in input-specific time. We now summarize our approach to evaluating a
Turing machine (TM) M homomorphically over encrypted data without running in worst-case time on all
inputs. Sec. 6 presents the scheme formally.

Our idea is to use our functional encryption scheme to enable the evaluator to determine at various
intermediary steps in the evaluation whether the computation finished or not. For each intermediary step, the
client provides a secret key for a function that returns a bit indicating whether the computation finished or not.
However, if the client provides a key for every computation step, then the amount of keys corresponds to the
worst-case running time. Thus, instead, we choose intermediary points spaced at exponentially increasing
intervals. In this way, the client generates only a logarithmic number of keys, namely for functions indicating
if the computation finishes in 1, 2, 4, . . . , 2i, . . . , 2⌈log tmax⌉ steps, where tmax is the worst-case running time
of M on all inputs of a certain size.

Because of the single-key aspect of our FE scheme, the client cannot provide keys for an arbitrary number
of TMs to the evaluator. However, this does not mean that the evaluator can run only an a priori fixed
number of TMs on the encrypted data. The reason is that the client can provide keys for the universal TMs
U0, . . . , U⌈log tmax⌉, where TM Ui is the TM that on input a TM M and a value x, runs M on x for 2i steps
and outputs whether M finished.

Therefore, in an offline preprocessing phase, the client provides 1 + ⌈log tmax⌉ keys where the i-th key is
for a circuit corresponding to Ui, each key being generated with a different master secret key. The work of
the client in this phase is at least tmax which is costly, but this work happens only once and is amortized over
all subsequent inputs in the online phase.

In an online phase, the client receives an input x and wants the evaluator to compute M(x) for her. The
client provides FE encryptions of (M,x) to the evaluator together with an FHE ciphertext (M̂, x̂) for (M,x)
to be used for a separate FHE evaluation. The evaluator tries each key skUi from the preprocessing phase and
learns the smallest i for which the computation of M on x stops in 2i steps. The evaluator then computes a
universal circuit of size Õ(2i) and evaluates it homomorphically over (M̂, x̂), obtaining the FHE encryption
of M(x). Thus, we can see that the evaluator runs in time polynomial in the runtime of M on x.
Publicly Verifiable Delegation with Secrecy. Delegation schemes aim to enable a weak verifier to delegate
computation of a function f on an input x to a prover who can then prove to the verifier that he computed the
function correctly. We now show that our single-key functional encryption scheme provides an improvement
to publicly verifiable delegation by adding secrecy. We present this improvement only informally, because we
prefer to focus on the other applications.

We now briefly recall the scheme of [PRV12] and then discuss how to modify it; we refer the reader
to Section 2.6 for formal definitions of ABE and FE. There are two phases in the delegation scheme: the
preprocessing phase when the verifier prepares the computation f , and an online phase repeating many times,
in which the verifier gives x to the prover who computes f(x) and proves the computation was correct.

In the preprocessing phase, the verifier generates two pairs of master secret and public keys (msk1,mpk1)
and (msk2,mpk2) for the underlying attribute-based encryption scheme. If f is the function to delegate,
the verifier uses msk1 to generate a key for f denoted skf , and msk2 to generate a key for the negation of
f , f̄(x) := 1− f(x), denoted skf̄ . The verifier then sends both (mpk1,mpk2) and (skf , skf̄ ) to the prover.
Generating skf and skf̄ takes time that is proportional to the size of the circuit computing f , and thus is a
costly operation. However, this is done only once in the preprocessing phase.

Whenever the verifier wants the prover to compute f on an input x, he chooses two random messages
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m1,m2 and sends the prover the encryptions of (x,m∗) under the two keys: (Enc(mpk1, x,m1) and
Enc(mpk2, x,m2)). The properties of the attribute-based encryption scheme guarantees that, if f(x) = 1,
the prover obtains m1 using skf and ⊥ using skf̄ so no information about m0, and vice versa if f(x) = 0.
Therefore, the fact that the prover provides m1 to the verifier is a proof that f(x) was 1.

Importantly, this delegation scheme can be made to have the desired property of being publicly verifiable,
meaning that the verifier can produce a “verification key” with which anyone can check the prover’s work.
This is done by having the verifier also send two point function obfuscations, one of the point m1 and the
other of the point m2.

This reduction from ABE to publicly verifiable delegation can be combined with the recent result
of [GVW13] providing ABE schemes for any depth circuit: the result is a publicly verifiable 2-message
delegation scheme in the preprocessing model for any depth d circuit with verifier’s work being proportional
to the depth d and the prover’s work proportional to the circuit size.

Note however, that this scheme is not secret because ABE does not hide the input x from the prover. It is
well known that x can be made secret by encrypting everything using a fully homomorphic encryption scheme.
However, this comes at the cost of losing the public verifiability property. Our idea is to replace the ABE
scheme with our functional encryption scheme in the protocol above; now the ciphertexts Enc(mpk1, x,m1)
and Enc(mpk2, x,m2) hide x and the scheme provides secrecy because the prover learns nothing about x
other than f(x). The public verifiability of the scheme remains the same.

We remark that we could provide a stronger version of secrecy by also hiding the result f(x) from the
prover; such stronger secrecy is non-standard for delegation, so we do not delve on it. (The idea is for the
client to concatenate a random bit to each input x and have the function f output the opposite result when the
bit is set. In this way, the prover does not learn anything from seeing which ciphertext decrypts to non-⊥.)

2 Preliminaries

2.1 Notation

Let κ denote the security parameter throughout this paper. For a distribution D, we say x← D when x is
sampled from the distribution D. If S is a finite set, by x ← S we mean x is sampled from the uniform
distribution over the set S. We use p(·) to denote that p is a function that takes one input. Similarly, p(·, ·)
denotes a function p that takes two inputs.

We say that a function f is negligible in an input parameter κ, if for all d > 0, there exists K such that
for all κ > K, f(κ) < k−d. For brevity, we write: for all sufficiently large κ, f(κ) = negl(κ). We say
that a function f is polynomial in an input parameter κ, if there exists a polynomial p such that for all κ,
f(κ) ≤ p(κ). We write f(κ) = poly(κ). A similar definition holds for polylog(κ).

Let [n] denote the set {1, . . . , n} for n ∈ N∗. When saying that a Turing machine A is p.p.t. we mean
that A is a non-uniform probabilistic polynomial-time machine.

In this paper, we only work with arithmetic circuits over GF(2). These circuits have two types of gates: +
mod 2 and × mod 2. Unless the context specifies otherwise, we consider circuits with one bit of output (also
called boolean).

Two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N, are said to be computationally indistinguishable
(and denoted {Xκ}κ∈N

c
≈ {Yκ}κ∈N) if for every probabilistic polynomial-time algorithm D,

|Pr[D(Xκ, 1
κ) = 1]− Pr[D(Yκ, 1

κ) = 1]| = negl(κ).

In our security definitions, we will define probabilistic experiments and denote by random variables their
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outputs. For example, ExprealE,A(1
κ) denotes the random variable representing the output of the real experiment

for scheme E with adversary A on security parameter κ. Moreover, {ExprealE,A(1
κ)}κ∈N denotes the ensemble

of such random variables indexed by κ ∈ N.

2.2 Background on Learning With Errors (LWE)

The security of our results will be based on the Learning with Errors (LWE) assumption, first introduced
by Regev [Reg05]. Regev showed that solving the LWE problem on average is (quantumly) as hard as
solving the approximate version of several standard lattice problems, such as gapSVP in the worst case.
Peikert [Pei09] later removed the quantum assumption from a variant of this reduction. Given this connection,
we state all our results under worst-case lattice assumptions, and in particular, under (a variant of) the gapSVP
assumption. We refer the reader to [Reg05, Pei09] for details about the worst-case/average-case connection.

The best known algorithms to solve these lattice problems with an approximation factor 2ℓ
ϵ

in ℓ-
dimensional lattices run in time 2Õ(ℓ1−ϵ) [AKS01, MV10] for any constant 0 < ϵ < 1. Specifically, given the
current state-of-the-art on lattice algorithms, it is quite plausible that achieving approximation factors 2ℓ

ϵ
for

these lattice problems is hard for polynomial time algorithms.
Appendix A provides more detailed background information on LWE.

2.3 Fully Homomorphic Encryption (FHE)

The notion of fully homomorphic encryption was first proposed by Rivest, Adleman and Dertouzos [RAD78]
in 1978. The first fully homomorphic encryption scheme was proposed in a breakthrough work by Gentry in
2009 [Gen09]. A history and recent developments on fully homomorphic encryption is surveyed in [Vai11].
We recall the definitions and semantic security of fully homomorphic encryption; the definitions below are
based on [Vai11] with some adaptations.

Definition 2.1. A homomorphic (public-key) encryption scheme FHE is a quadruple of polynomial time
algorithms (FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval) as follows:

• FHE.KeyGen(1κ) is a probabilistic algorithm that takes as input the security parameter 1κ and outputs
a public key pk and a secret key sk.

• FHE.Enc(pk, x ∈ {0, 1}) is a probabilistic algorithm that takes as input the public key pk and an input
bit x and outputs a ciphertext ψ.

• FHE.Dec(sk, ψ) is a deterministic algorithm that takes as input the secret key sk and a ciphertext ψ
and outputs a message x∗ ∈ {0, 1}.

• FHE.Eval(pk, C, ψ1, ψ2, . . . , ψn) is a deterministic algorithm that takes as input the public key pk,
some circuit C that takes n bits as input and outputs one bit, as well as n ciphertexts ψ1, . . . , ψn. It
outputs a ciphertext ψC .

Compactness: For all security parameters κ, there exists a polynomial p(·) such that for all input sizes n, for
all x1 . . . xn, for all C, the output length of FHE.Eval is at most p(n) bits long.

Definition 2.2 (C-homomorphism). Let C = {Cn}n∈N be a class of boolean circuits, where Cn is a set of
boolean circuits taking n bits as input. A scheme FHE is C-homomorphic if for every polynomial n(·), for
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every sufficiently large security parameter κ, for every circuit C ∈ Cn, and for every input bit sequence
x1, . . . , xn, where n = n(κ),

Pr[(pk, sk)← FHE.KeyGen(1κ);

ψi ← FHE.Enc(pk, xi) for i = 1 . . . n;

ψ ← FHE.Eval(pk, C, ψ1, . . . , ψn) :

FHE.Dec(sk, ψ) ̸= C(x1, . . . xn)] = negl(κ).

where the probability is over the coin tosses of FHE.KeyGen and FHE.Enc.

Definition 2.3 (Fully homomorphic encryption). A scheme FHE is fully homomorphic if it is homomorphic
for the class of all arithmetic circuits over GF(2).

Definition 2.4 (Leveled fully homomorphic encryption). A leveled fully homomorphic encryption scheme
is a homomorphic scheme where FHE.KeyGen receives an additional input 1d and the resulting scheme is
homomorphic for all depth-d arithmetic circuits over GF(2).

Definition 2.5 (IND-CPA security). A scheme FHE is IND-CPA secure if for any p.p.t. adversary A,∣∣Pr[(pk, sk)← FHE.KeyGen(1κ) : A(pk,FHE.Enc(pk, 0)) = 1]−
Pr[(pk, sk)← FHE.KeyGen(1κ) : A(pk,FHE.Enc(pk, 1)) = 1]

∣∣ = negl(κ).

We now state the result of Brakerski, Gentry and Vaikuntanathan [BGV12] that shows a leveled fully
homomorphic encryption scheme based on the LWE assumption:

Theorem 2.1 ([BV11a, BGV12]). Assume that there is a constant 0 < ϵ < 1 such that for every sufficiently
large ℓ, the approximate shortest vector problem gapSVP in ℓ dimensions is hard to approximate to within
a 2O(ℓϵ) factor in the worst case. Then, for every n and every polynomial d = d(n), there is an IND-CPA
secure d-leveled fully homomorphic encryption scheme where encrypting n bits produces ciphertexts of length
poly(n, κ, d1/ϵ), the size of the circuit for homomorphic evaluation of a function f is size(Cf )·poly(n, κ, d1/ϵ)
and its depth is depth(Cf ) · poly(log n, log d).

All known fully homomorphic encryption schemes (as opposed to merely leveled schemes) require an
additional assumption related to circular security of the associated encryption schemes. However, we do
not need to make such an assumption in this work because we only use a leveled homomorphic encryption
scheme in our constructions.

2.4 Background on Garbled Circuits

We will now define garbled circuits. Initially, garbled circuits were presented by Yao [Yao82] in the context
of secure two-party computation and later, they were then proven secure by Lindell and Pinkas [LP09]. Very
recently, the notion has been formalized by Bellare et al. [BHR12]. For simplicity, we present more concise
definitions of garbled circuits than in [BHR12].

Definition 2.6 (Garbling scheme). A garbling scheme for a family of circuits C = {Cn}n∈N with Cn a set
of boolean circuits taking as input n bits, is a tuple of p.p.t. algorithms Gb = (Gb.Garble,Gb.Enc,Gb.Eval)
such that

13



• Gb.Garble(1κ, C) takes as input the security parameter κ and a circuit C ∈ Cn for some n, and outputs
the garbled circuit Γ and a secret key sk.

• Gb.Enc(sk, x) takes as input x ∈ {0, 1}∗ and outputs an encoding c.

• Gb.Eval(Γ, c) takes as input a garbled circuit Γ, an encoding c and outputs a value y which should be
C(x).

Correctness. For any polynomial n(·), for all sufficiently large security parameters κ, for n = n(κ), for
all circuits C ∈ Cn and all x ∈ {0, 1}n,

Pr[(Γ, sk)← Gb.Garble(1κ, C); c← Gb.Enc(sk, x); y ← Gb.Eval(Γ, c) : C(x) = y] = 1− negl(κ).

Efficiency. There exists a universal polynomial p = p(κ, n) (p is the same for all classes of circuits C)
such that for all input sizes n, security parameters κ, for all boolean circuits C of with n bits of input, for all
x ∈ {0, 1}n,

Pr[(Γ, sk)← Gb.Garble(1κ, C) : |sk| ≤ p(κ, n) and runtime(Gb.Enc(sk, x)) ≤ p(κ, n)] = 1.

Note that since Gb.Enc is a p.p.t. algorithm, it suffices to ensure that |sk| ≤ p(κ, n) and obtain that
Gb.Enc’s runtime is also at most a polynomial. We prefer to keep the runtime of Gb.Enc in the definition as
well for clarity.

Remark 2.2 (Remark on the efficiency property). Intuitively, a garbling scheme is efficient if the time to
encode is shorter than the time to run the circuit. This requirement can be formalized in a few ways. A first
definition is as provided above in Def. 2.6. Another definition is to allow |sk| and the runtime of Gb.Enc to
also depend on the depth of the circuits in C, but require that it does not depend on their size.

Yao garbled circuits. The garbled circuits presented by Yao have a specific property of the encoding scheme
that is useful in various secure function evaluation protocols and in our construction as well. The secret key is
of the form sk = {L0

i , L
1
i }ni=1 and the encoding of an input x of n bits is of the form c = (Lx1

1 , . . . , L
xn
n ),

where xi is the i-th bit of x.
Two security guarantees are of interest: input privacy (the input to the garbled circuit does not leak to the

adversary), and circuit privacy (the circuit does not leak to the adversary). All these properties hold only for
one-time evaluation of the circuit: the adversary can receive at most one encoding of an input to use with a
garbled circuit; obtaining more than one encoding breaks these security guarantees.

Bellare et al. [BHR12] also present a third property which they call authenticity; informally, this requires
that an adversary should not be able to come up with a different result of the garbled circuit that could be
“de-garbled” into a valid value. We do not present this property here because it is straightforward to show
that a garbling scheme with input and circuit privacy as we define them below implies a different garbling
scheme with the authenticity property and we would need to provide a slightly more complicated syntax for
the definition of garbled circuits (with an additional “de-garbling” algorithm).

We now present the one-time security of garbling circuits. The security definition for reusable garbled
will be presented later, in Sec. 4.

Definition 2.7 (Input and circuit privacy). A garbling scheme Gb for a family of circuits {Cn}n∈N is input
and circuit private if there exists a p.p.t. simulator SimGarble, such that for every p.p.t. adversaries A and D,
for all sufficiently large security parameters κ,
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| Pr[(x,C, α)← A(1κ); (Γ, sk)← Gb.Garble(1κ, C); c← Gb.Enc(sk, x) : D(α, x, C,Γ, c) = 1]−
Pr[(x,C, α)← A(1κ); (Γ̃, c̃)← SimGarble(1

κ, C(x), 1|C|, 1|x|) : D(α, x, C, Γ̃, c̃) = 1]| = negl(κ),

where we consider only A such that for some n, x ∈ {0, 1}n and C ∈ Cn.

Intuitively, this definition says that, for any circuit or input chosen adversarially, one can simulate in
polynomial time the garbled circuit and the encoding solely based on the computation result (and relevant
sizes). The variable α represents any state that A may want to convey to D.

A few variants of Yao garbling schemes exist (for example, [BHR12]) that provide both input and circuit
privacy under the basic one-way function assumption. Any such construction is suitable for our scheme.

Theorem 2.3 ([Yao82, LP09]). Assuming one-way functions exist, there exists a Yao (one-time) garbling
scheme that is input- and circuit-private for all circuits over GF(2).

2.5 Attribute-Based Encryption (ABE)

We now provide the definition of attribute-based encryption from the literature (e.g., [GPSW06, LOS+10,
GVW13]).

Definition 2.8 (Attribute-Based Encryption). An attribute-based encryption scheme (ABE) for a class of
predicates P = {Pn}n∈N represented as boolean circuits with n input bits and one output bit and an
associated message spaceM is a tuple of algorithms (ABE.Setup, ABE.KeyGen, ABE.Enc, ABE.Dec) as
follows:

• ABE.Setup(1κ): Takes as input a security parameter 1κ and outputs a public master key fmpk and a
master secret key fmsk.

• ABE.KeyGen(fmsk, P ): Given a master secret key fmsk and a predicate P ∈ Pn, for some n, outputs
a key fskP corresponding to P .

• ABE.Enc(fmpk, x,M): Takes as input the public key fmpk, an attribute x ∈ {0, 1}n, for some n, and
a message M ∈M and outputs a ciphertext c.

• ABE.Dec(fskP , c): Takes as input a secret key for a predicate and a ciphertext and outputs M∗ ∈M.

Correctness. For any polynomial n(·), for every sufficiently large security parameter κ, if n = n(κ), for all
predicates P ∈ Pn, attributes x ∈ {0, 1}n, and messages M ∈M:

Pr


(fmpk, fmsk)← ABE.Setup(1κ);
fskP ← ABE.KeyGen(fmsk, P );
c← ABE.Enc(fmpk, x,M) :

ABE.Dec(fskP , c) =

{
M, if P (x) = 1,

⊥, otherwise.

 = 1− negl(κ).

The space {0, 1}n is referred to as the attribute space (with an attribute size of n) andM is referred to as
the message space.

Intuitively, the security of ABE is that M is revealed only if P (x) = 1. Regarding the attribute x, ABE’s
security does not require any secrecy of the attribute, so x may leak no matter what is the value of P (x).
Many ABE schemes have been proven secure under indistinguishability-based definitions. Despite being
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weaker than simulation-based definitions, such definitions suffice for the security of our construction, so
we present them here. Two notions of security have been used in previous work: full and selective security.
Full security allows the adversary to provide the challenge ciphertext after seeing the public key, whereas
in selective security, the adversary must provide the challenge ciphertext before seeing the public key. We
present both in the full security and selective security cases, because the ABE primitive we use [GVW13]
achieves them with different parameters of the gapSVP assumption. We only provide the security definition
for the case when the adversary can ask for a single key because this is all we need for our results.

Definition 2.9 (Attribute-based encryption security). Let ABE be an attribute-based encryption scheme for
a class of predicates P = {Pn}n∈N, and an associated message spaceM, and let A = (A1, A2, A3) be a
triple of p.p.t. adversaries. Consider the following experiment.

ExpABE(1
κ):

1: (fmpk, fmsk)← ABE.Setup(1κ)
2: (P, state1)← A1(fmpk)
3: fskP ← ABE.KeyGen(fmsk, P )
4: (M0,M1, x, state2)← A2(state1, fskP )
5: Choose a bit b at random and let c← ABE.Enc(fmpk, x,Mb).
6: b′ ← A3(state2, c). If |M0| = |M1|, P (x) = 0, and b = b′, output 1, else output 0.

We say that the scheme is a single-key fully-secure attribute-based encryption if for all p.p.t. adversaries
A, and for all sufficiently large κ:

Pr[ExpABE,A(1
κ) = 1] ≤ 1/2 + negl(κ).

We say that the scheme is single-key selectively secure if the same statement holds for a slightly modified
game in which A provides x before receiving fmpk.

Attribute-based encryption schemes have been constructed for the class of Boolean formulas [GPSW06,
LOS+10] and most recently for the class of all polynomial-size circuits: Gorbunov, Vaikuntanathan and
Wee [GVW13] based on the subexponential Learning With Errors (LWE) intractability assumption, and Sahai
and Waters [SW12] based on the k-Multilinear Decisional Diffie-Hellman (see [SW12] for more details). Our
reduction can start from any of these schemes, but in this paper, we choose [GVW13] because it is based on
LWE, which is a more standard assumption and is also the assumption for our other building block, FHE.

Before we state the results of Gorbunov, Vaikuntanathan and Wee [GVW13], we will set up some notation.
Let d and p be two univariate polynomials. Define Cn,d(n),p(n) to be the class of all boolean circuits on n
inputs of depth at most d(n) and size at most p(n). Let Cn,d(n) :=

⋃
polynomial p Cn,d(n),p(n). An attribute-based

encryption or functional encryption scheme that supports circuits in Cn,d(n) is called a d-leveled attribute-
based encryption or functional encryption scheme, respectively. We also refer to an ABE or FE scheme as
leveled, if it is d-leveled for some d. We are now ready to state the theorem of [GVW13].

Theorem 2.4 ([GVW13]). Assume that there is a constant 0 < ϵ < 1 such that for every sufficiently large ℓ,
the approximate shortest vector problem gapSVP in ℓ dimensions is hard to approximate by a polynomial
algorithm to within a 2O(ℓϵ) factor in the worst case. Then, for every n and every polynomial d = d(n),
there is a selectively secure d-leveled attribute-based encryption scheme where encrypting n bits produces
ciphertexts of length poly(n, κ, d1/ϵ).
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Furthermore, assuming that gapSVP in ℓ dimensions is hard to approximate to within a 2O(ℓϵ) factor in
time 2O(ℓϵ), the scheme is fully secure with ciphertexts of length poly(n, κ, d1/ϵ

2
).

In either case, the scheme is secure with polynomially many secret-key queries.

2.5.1 Two-Outcome Attribute-Based Encryption

We use an attribute-based encryption scheme with a slightly modified definition. The setup and key generation
algorithms are the same as in previous schemes. The difference is in the encryption and decryption algorithms:
instead of encrypting one message M in one ciphertext, we encrypt two messages M0 and M1 in the same
ciphertext such that M0 is revealed if the predicate evaluates to zero on the attribute, and M1 is revealed if
the predicate evaluates to one. Since there are two possible outcomes of the decryption algorithm, we call the
modified scheme a two-outcome attribute-based encryption scheme. Such a variant of ABE has been used for
other purposes by [PRV12].

Definition 2.10 (Two-Outcome Attribute-Based Encryption). A two-outcome attribute-based encryption
scheme (ABE2) for a class of predicates P = {Pn}n∈N represented as boolean circuits with n input bits,
and a message spaceM is a tuple of algorithms (ABE2.Setup, ABE2.KeyGen, ABE2.Enc, ABE2.Dec) as
follows:

• ABE2.Setup(1
κ): Takes as input a security parameter 1κ and outputs a public master key fmpk and a

master secret key fmsk.

• ABE2.KeyGen(fmsk, P ): Given a master secret key fmsk and a predicate P ∈ P , outputs a key fskP
corresponding to P .

• ABE2.Enc(fmpk, x,M0,M1): Takes as input the public key fmpk, an attribute x ∈ {0, 1}n, for some
n, and two messages M0,M1 ∈M and outputs a ciphertext c.

• ABE2.Dec(fskP , c): Takes as input a secret key for a predicate and a ciphertext and outputs M∗ ∈M.

Correctness. For any polynomial n(·), for every sufficiently large security parameter κ, if n = n(κ), for all
predicates P ∈ Pn, attributes x ∈ {0, 1}n, messages M0,M1 ∈M:

Pr


(fmpk, fmsk)← ABE2.Setup(1

κ);
fskP ← ABE2.KeyGen(fmsk, P );
c← ABE2.Enc(fmpk, x,M0,M1);
M∗ ← ABE2.Dec(fskP , c) :
M∗ =MP (x)

 = 1− negl(κ).

We now define the security for single-key two-outcome attribute-based encryption. Intuitively, the security
definition requires that, using a token for a predicate P , an adversary can decrypt one of the two messages
encrypted in C based on the evaluation of P on the attribute, but does not learn anything about the other
message.

Definition 2.11 (Two-outcome attribute-based encryption security). Let ABE2 be a two-outcome attribute-
based encryption scheme for the class of predicates P = {Pn}n∈N and associated message spaceM and let
A = (A1, A2, A3) be a triple of p.p.t. adversaries. Consider the following experiment.
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ExpABE2
(1κ):

1: (fmpk, fmsk)← ABE2.Setup(1
κ)

2: (P, state1)← A1(fmpk)
3: skP ← ABE2.KeyGen(fmsk, P )
4: (M,M0,M1, x, state2)← A2(state1, skP )
5: Choose a bit b at random. Then, let

c =

{
ABE2.Enc(fmpk, x,M,Mb), if P (x) = 0,

ABE2.Enc(fmpk, x,Mb,M), otherwise.

6: b′ ← A3(state2, c). If b = b′, ∃ n such that, for all P ∈ Pn, messages M,M0,M1 ∈M, |M0| = |M1|,
x ∈ {0, 1}n, output 1, else output 0.

We say that the scheme is a fully-secure single-key two-outcome ABE if for all p.p.t. adversaries A, and
for all sufficiently large security parameters κ:

Pr[ExpABE2,A(1
κ) = 1] ≤ 1/2 + negl(κ).

The scheme is single-key selectively secure if A needs to provide x before receiving fmpk.

As before, we need only a single-key ABE2 scheme for our construction.
A class of predicates {Pn}n is closed under negation if for all input sizes n and for all predicates p ∈ Pn,

we have p̄ ∈ Pn; p̄ is the negation of p, namely p̄(y) = 1− p(y) for all y.

Claim 2.5. Assuming there is an ABE scheme for a class of predicates closed under negation, there exists a
two-outcome ABE scheme for the same class of predicates.

The proof of this claim is immediate and we present it in Appendix B, for completeness.

2.6 Functional Encryption (FE)

We recall the functional encryption definition from the literature [KSW08, BSW, GVW12] with some
notational changes.

Definition 2.12 (Functional Encryption). A functional encryption scheme FE for a class of functions F =
{Fn}n∈N represented as boolean circuits with an n-bit input, is a tuple of four p.p.t. algorithms (FE.Setup,
FE.KeyGen, FE.Enc, FE.Dec) such that:

• FE.Setup(1κ) takes as input the security parameter 1κ and outputs a master public key fmpk and a
master secret key fmsk.

• FE.KeyGen(fmsk, f) takes as input the master secret key fmsk and a function f ∈ F and outputs a
key fskf .

• FE.Enc(fmpk, x) takes as input the master public key fmpk and an input x ∈ {0, 1}∗ and outputs a
ciphertext c.

• FE.Dec(fskf , c) takes as input a key fskf and a ciphertext c and outputs a value y.
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Correctness. For any polynomial n(·), for every sufficiently large security parameter κ, for n = n(κ), for all
f ∈ Fn, and all x ∈ {0, 1}n,

Pr[(fmpk, fmsk)← FE.Setup(1κ); fskf ← FE.KeyGen(fmsk, f); c← FE.Enc(fmpk, x) :

FE.Dec(fskf , c) = f(x)] = 1− negl(κ).

2.6.1 Security of Functional Encryption

Intuitively, the security of functional encryption requires that an adversary should not learn anything about
the input x other than the computation result C(x), for some circuit C for which a key was issued (the
adversary can learn the circuit C). As mentioned, two notions of security have been used in previous work:
full and selective security, with the same meaning as for ABE. We present both definitions because we achieve
them with different parameters of the gapSVP assumption. Our definitions are simulation-based: the security
definition states that whatever information an adversary is able to learn from the ciphertext and the function
keys can be simulated given only the function keys and the output of the function on the inputs.

Definition 2.13. (FULL-SIM-Security ) Let FE be a functional encryption scheme for the family of functions
F = {Fn}n∈N. For every p.p.t. adversary A = (A1, A2) and p.p.t. simulator S, consider the following two
experiments:

ExprealFE,A(1
κ): ExpidealFE,A,S(1

κ):

1: (fmpk, fmsk)← FE.Setup(1κ)
2: (f, stateA)← A1(fmpk)
3: fskf ← FE.KeyGen(fmsk, f)
4: (x, state′A)← A2(stateA, fskf )

5: c← FE.Enc(fmpk, x)
6: Output (state′A, c)

5: c̃← S(fmpk, fskf , f, f(x), 1
|x|)

6: Output (state′A, c̃)

The scheme is said to be (single-key) FULL-SIM−secure if there exists a p.p.t. simulator S such that
for all pairs of p.p.t. adversaries (A1, A2), the outcomes of the two experiments are computationally
indistinguishable: {

ExprealFE,A(1
κ)

}
κ∈N

c
≈

{
ExpidealFE,A,S(1

κ)

}
κ∈N

.

We now define selective security, which is a weakening of full security, by requiring the adversary to
provide the challenge input x before seeing the public key or any other information besides the security
parameter. We simply specify the difference from full security.

Definition 2.14 (SEL-SIM-Security). The same as Def. 2.13, but modify the game so that the first step
consists of A specifying the challenge input x given only the security parameter.

It is easy to see that the full simulation definition (FULL-SIM-security) implies the selective definition
(SEL-SIM-security).

The literature [BSW, AGVW12] has considered another classification for simulation-based definitions:
adaptive versus non-adaptive security. In the adaptive case, the adversary is allowed to ask for a function
f after seeing the ciphertext c for an input x. In the non-adaptive case, the adversary must first provide f
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and only then ask for encryptions of inputs x. Our definition falls in the non-adaptive category. Boneh et
al. [BSW] have shown that adaptive simulation-based security is unachievable even for single-key functional
encryption for the simple functionality of identity-based encryption. As such, the adaptive definition appears
too strong and is unachievable for general functionalities, so we use non-adaptive security.

Remark 2.6. Attribute-based encryption can be viewed as functional encryption for a specific class of
functionalities, where the additional information leaked is part of the output to the function. Namely, consider
a class of functions F whose plaintext space consists of pairs of values from {0, 1}n ×M, where {0, 1}n
is the attribute space (with an attribute size of n) andM is the message space. The class of functions for
ABE is more specific: there exists an associated predicate class P = {Pn}n∈N to F such that for every n, for
every f ∈ Fn, there is an associated predicate P ∈ Pn to f such that

f(x,M) =

{
(x,M), if P (x) = 1,

(x,⊥), otherwise.

Since the attribute x is in the output of the function no matter what P is, x leaks from the scheme no matter
what (x is public). Therefore, this functionality leads to weaker security guarantees than functional encryption
in a conceptual way: the value to be computed on, x, leaks with ABE (whereas the value M on which P does
not compute remains secret when P (x) = 0), whereas the input x to the computation is hidden with FE.

3 Our Functional Encryption Scheme

In this section, we present our main result: the construction of a functional encryption scheme FE. We refer
the reader to the introduction (Sec. 1.2) for an overview of our approach, and we proceed directly with the
construction here.

We use three building blocks in our construction: a (leveled) fully homomorphic encryption scheme FHE,
a (leveled) two-outcome attribute-based encryption scheme ABE2, and a Yao garbling scheme Gb.

We let FHE.Evalf (hpk, ψ̄) denote the circuit that performs homomorphic evaluation of the function f
on the vector of ciphertexts ψ̄ := (ψ1, . . . , ψn) using the public key hpk, and we will let FHE.Evalif (hpk, ψ)
denote the predicate that computes the i-th output bit of FHE.Evalf (hpk, ψ̄). Namely,

FHE.Evalf (hpk, ψ̄) =
(
FHE.Eval1f (hpk, ψ̄), . . . ,FHE.Eval

λ
f (hpk, ψ̄)

)
,

where λ = λ(κ) =
∣∣FHE.Evalf (hpk, ψ̄)∣∣. Our main theorem then says:

Theorem 3.1. There is a (fully/selectively secure) single-key functional encryption scheme FE =
(FE.Setup,FE.KeyGen, FE.Enc,FE.Dec) for any class of circuits C that take n bits of input and produce a
one-bit output, assuming the existence of the following primitives:

• an IND-CPA-secure C-homomorphic encryption scheme FHE = (FHE.KeyGen, FHE.Enc, FHE.Eval,
FHE.Dec);

• a (fully/selectively secure) single-key attribute-based encryption scheme ABE = (ABE.Setup,
ABE.KeyGen,ABE.Enc,ABE.Dec) for the class of predicates P = PC,FHE where

PC,FHE = {FHE.EvaliC , 1− FHE.EvaliC : C ∈ C and i ∈ {1, . . . , λ}}; and
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• a Yao garbling scheme Gb = (Gb.Garble,Gb.Enc,Gb.Eval) that is input- and circuit-private.

The succinctness property of the functional encryption scheme is summarized as follows: the size of the
ciphertexts ctsizeFE(n) in the resulting scheme for n bits of input is

2 · ctsizeFHE ·
[
ctsizeABE(n · ctsizeFHE + pksizeFHE)

]
+ poly(κ, ctsizeFHE, sksizeFHE).

where ctsizeABE(k) denotes the size of the ciphertexts in the attribute-based encryption scheme for a k-bit
attribute and a poly(κ)-bit message, ctsizeFHE denotes the size of the ciphertexts in the fully homomorphic
encryption scheme for a single-bit message and pksizeFHE (resp. sksizeFHE) denotes the size of the public key
(resp. secret key) in the fully homomorphic encryption scheme.

Since garbling schemes can be constructed from one-way functions, our theorem says that we can move
from attribute-based encryption, in which the part of the input that the function computes on leaks, to a
functional encryption scheme, in which no part of the input leaks using fully homomorphic encryption and
Yao garbled circuits.

We can see that if the ciphertext size in the ABE scheme and the fully homomorphic encryption scheme
does not depend on the circuit size (and thus, those schemes are by themselves succinct), then neither will the
resulting ciphertexts of the FE scheme depend on the circuit size; namely, the reduction does not blow up the
ciphertexts and is “succinctness-preserving”. We know of both a leveled FHE scheme and a leveled ABE
scheme ([GVW13]) with ciphertext lengths independent of the size of the circuits to evaluate; the ciphertext
size in these schemes just depends on the depth of the circuits.

We note that fully homomorphic encryption schemes with succinct ciphertexts that are also independent
of depth are known, albeit under the stronger assumption of circular security of the underlying schemes. Thus,
if the result of [GVW13] can be improved to remove the depth dependency of the ciphertexts in the ABE
scheme, one automatically obtains a corresponding result for ABE using our reduction.

Our theorem needs the ABE scheme to be secure only with a single key, even though the recent
constructions [GVW13] and [SW12] can tolerate an arbitrary number of keys.

Our main theorem is thus a reduction, which has a number of useful corollaries. The first and perhaps
the most important one shows how to combine the leveled fully homomorphic encryption scheme from
[BV11a, BGV12] with the recent construction of a leveled attribute-based encryption scheme from [GVW13]
to obtain a leveled functional encryption scheme based solely on the hardness of LWE. In other words, the
corollary says that for every depth d, there is a functional encryption scheme for the class of all Boolean
circuits of (arbitrary) polynomial size and depth at most d. The size of the ciphertexts in the scheme grows
with d, and is of course independent of the size of the circuits it supports.

Let d and p be polynomial functions. Define Cn,d(n),p(n) to be the class of all Boolean circuits on n inputs
of depth at most d(n) and size at most p(n). Let Cn,d(n) :=

⋃
polynomial p Cn,d(n),p(n).

Corollary 3.2 (The LWE Instantiation). We have the following two constructions of functional encryption
based on the worst-case hardness of lattice problems:

• Assume that there is a constant 0 < ϵ < 1 such that for every sufficiently large ℓ, the approximate
shortest vector problem gapSVP in ℓ dimensions is hard to approximate to within a 2O(ℓϵ) factor
(in polynomial time) in the worst case. Then, for every n and every polynomial d = d(n), there is
a selectively-secure (succinct single-key) functional encryption scheme for the class Cn,d(n) where
encrypting n bits produces ciphertexts of length poly(n, κ, d1/ϵ).
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• Assume that there is a constant 0 < ϵ < 1 such that for every sufficiently large ℓ, the approximate
shortest vector problem gapSVP in ℓ dimensions is hard to approximate to within a 2O(ℓϵ) factor
in time 2O(ℓϵ) in the worst case. Then, for every n and every polynomial d = d(n), there is a fully-
secure (succinct single-key) functional encryption scheme for the class Cn,d(n) where encrypting n bits
produces ciphertexts of length poly(n1/ϵ, κ, d1/ϵ

2
).

The corollary follows directly from Theorem 3.1, by invoking the leveled fully homomorphic encryption
scheme of [BV11a] (see Theorem 2.1) and the leveled attribute-based encryption scheme of [GVW13] (see
Theorem 2.4). The concrete constructions and proofs in fact go through the learning with errors (LWE)
problem; we refer to [BV11a, GVW13] for the concrete setting of parameters.

Letting universal attribute-based encryption or functional encryption denote a single attribute-based
encryption or functional encryption scheme scheme, respectively, that supports the class of all polynomial-size
circuits, we have the following corollary:

Corollary 3.3 (Universal Functional Encryption). Assuming that fully homomorphic encryption schemes exist
and universal single-key attribute-based encryption schemes exist, there is a universal single-key functional
encryption scheme.

Of the two prerequisites mentioned above, we know that fully homomorphic encryption schemes exist
(albeit under stronger assumptions than merely LWE). Thus, the corollary provides a way to immediately
translate any universal attribute-based encryption scheme into a functional encryption scheme. We point out
that universal functional encryption schemes, by definition, have succinct ciphertexts.

A recent result of Gorbunov, Vaikuntanathan and Wee [GVW12] shows how to generically convert
single-key functional encryption schemes into q-keys functional encryption schemes for any bounded q,
where the latter provide security against an attacker that can obtain secret keys of up to q functions of her
choice. The size of the ciphertexts in the q-keys scheme grows polynomially with q.

Corollary 3.4 (Many queries, using [GVW12]). For every q = q(κ), there is a (fully/selectively-secure)
q-keys succinct functional encryption scheme for any class of circuits C that take n bits of input and produce a
one-bit output, assuming the existence of primitives as in Theorem 3.1. The size of the ciphertexts ctsizeFE(n)
in the resulting scheme is q times as large as in Theorem 3.1.

Finally, a functional encryption scheme for circuits that output multiple bits can be constructed by
thinking of the circuit as many circuits each with one-bit output, and modifying the key generation procedure
to produce keys for each of them. This gives us the following corollary although we remark that more efficient
methods of achieving this directly are possible using homomorphic encryption schemes that pack multiple
bits into a single ciphertext [SV11, BGV12, GHS12a].

Corollary 3.5 (Many queries, many output bits). For every q = q(κ) and k = k(n), there is a
(fully/selectively secure) q-keys functional encryption scheme for any class of circuits C that take n bits of
input and produce k bits of output, assuming the existence of primitives as in Theorem 3.1. The size of the
ciphertexts ctsizeFE(n) in the resulting scheme is qk times as large as in Theorem 3.1.

Remark 3.6 (On the necessity of single-key security). We note that even though the work of [GVW13]
provides an attribute-based scheme that is secure even if the adversary obtains secret keys for polynomially
many functions, our theorem gives us only a single-key secure scheme. Indeed, this is inherent by the
impossibility result of [AGVW12] if we ask for (even a very weak notion of) simulation security, as we do
here. Corollary 3.4 gives us a way to get (simulation-)security with q queries for any a priori bounded q,
albeit at the expense of the ciphertext growing as a function of q.
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Remark 3.7 (On composing our functional encryption scheme). One might wonder if chaining is possible
with our FE scheme. Namely, one could try to generate keys for a function f that computes another function
f1 on an input x and then outputs f1(x) together with a new encryption of x under a different public key for
the FE scheme. The new encryption of x could be used to compute a second function f2(x) and an encryption
of x under yet another public key. This chain could potentially repeat and its benefit is that it allows us to
compute multiple functions on x (and overcome the single-key property). However, this approach allows only
a very small number of iterations because, in order to produce one bit of output from FE.Dec, the ciphertexts
output by FE.Enc are polynomial in κ. To obtain an FE ciphertext as result of FE.Dec, one needs to have
started with ciphertexts of size quadratic in the first polynomial. If we want to chain the scheme q times, the
original ciphertext must have been exponential in q.

3.1 Construction

For simplicity, we construct FE for functions outputting one bit; functions with larger outputs can be handled
by repeating our scheme below for every output bit.

From Claim 2.5, the existence of a secure single-key ABE scheme implies the existence of a two-outcome
single-key ABE scheme, which we denote ABE2. Let λ = λ(κ) be the length of the ciphertexts in the FHE
scheme (both from encryption and evaluation). The construction of FE = (FE.Setup, FE.KeyGen, FE.Enc,
FE.Dec) proceeds as follows.
Setup FE.Setup(1κ): Run the setup algorithm for the two-outcome ABE scheme λ times:

(fmpki, fmski)← ABE2.Setup(1
κ) for i ∈ [λ].

Output as master public key and secret key:

MPK = (fmpk1, . . . , fmpkλ) and MSK = (fmsk1, . . . , fmskλ).

Key Generation FE.KeyGen(MSK, f): Let n be the number of bits in the input to the circuit f . If hpk is
an FHE public key and ψ1, . . . , ψn are FHE ciphertexts, recall that FHE.Evalif (hpk, ψ1, . . . , ψn) is the i-th
bit of the homomorphic evaluation of f on ψ1, . . . , ψn (FHE.Eval(hpk, f, ψ1, . . . , ψn)), where i ∈ [λ]. Thus,
FHE.Evalif : {0, 1}|hpk| × {0, 1}nλ → {0, 1}.

1. Run the key generation algorithm of ABE2 for the functions FHE.Evalif (under the different master
secret keys) to construct secret keys:

fski ← ABE2.KeyGen(fmski,FHE.Eval
i
f ) for i ∈ [λ].

2. Output the tuple fskf := (fsk1, . . . , fskλ) as the secret key for the function f .

Encryption FE.Enc(MPK, x): Let n be the number of bits of x, namely x = x1 . . . xn. Encryption proceeds
in three steps.

1. Generate a fresh key pair (hpk, hsk) ← FHE.KeyGen(1κ) for the (leveled) fully homomorphic
encryption scheme. Encrypt each bit of x homomorphically: ψi ← FHE.Enc(hpk, xi). Let ψ :=
(ψ1, . . . , ψn) be the encryption of the input x.
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2. Run the Yao garbled circuit generation algorithm to produce a garbled circuit for the FHE decryption
algorithm FHE.Dec(hsk, ·) : {0, 1}λ → {0, 1} together with 2λ labels Lb

i for i ∈ [λ] and b ∈ {0, 1}.
Namely, (

Γ, {L0
i , L

1
i }λi=1

)
← Gb.Garble(1κ,FHE.Dec(hsk, ·)),

where Γ is the garbled circuit and the Lb
i are the input labels.

3. Produce encryptions c1, . . . , cλ using the ABE2 scheme:

ci ← ABE2.Enc
(
fmpki, (hpk, ψ), L

0
i , L

1
i

)
for i ∈ [λ],

where (hpk, ψ) comes from the first step, and the labels (L0
i , L

1
i ) come from the second step.

4. Output the ciphertext c = (c1, . . . , cλ,Γ).

Decryption FE.Dec(fskf , c):

1. Run the ABE2 decryption algorithm on the ciphertexts c1, . . . , cλ to recover the labels for the garbled
circuit. In particular, let

Ldi
i ← ABE2.Dec(fski, ci) for i ∈ [λ],

where di is equal to FHE.Evalif (hpk, ψ).

2. Now, armed with the garbled circuit Γ and the labels Ldi
i , run the garbled circuit evaluation algorithm

to compute
Gb.Eval(Γ, Ld1

1 , . . . , L
dλ
λ ) = FHE.Dec(hsk, d1d2 . . . dλ) = f(x).

3.2 Proof

We now proceed to prove Theorem 3.1 by proving that the theorem holds for our construction above.

Proof of Theorem 3.1. We first argue correctness.

Claim 3.8. The above scheme is a correct functional encryption scheme (Def. 2.12).

Proof. Let us examine the values we obtain in FE.Dec(fskf , c1, . . . , cλ,Γ). In Step (1), by the correctness of
the ABE2 scheme used, di is the i-th bit of FHE.Evalf (hpk, ψ).

Therefore, the inputs to the garbled circuit Γ in Step (2) are the labels corresponding to FHE.Evalf (hpk, ψ).
By the correctness of the FHE scheme, decrypting FHE.Evalf (hpk, ψ) results in f(x). Finally, by the
correctness of the garbling scheme, the FHE ciphertext gets decrypted correctly, yielding f(x) as the output
of FE.Dec.

We now prove the succinctness property which follows directly from our construction. The output of
FE.Enc consists of λ ABE2 ciphertexts and a garbled circuit. First, λ equals ctsizeFHE. Second, each ABE2

ciphertext consists of two ABE ciphertexts generated by ABE.Enc on input nctsizeFHE + pksizeFHE bits. The
labels of the garbled circuit are poly(κ) in size. Third, the garbled circuit is the output of Gb.Garble so its
size is polynomial in the size of the input circuit, which in turn is polynomial in sksizeFHE and ctsizeFHE.
Therefore, overall, we obtain 2ctsizeFHE·ctsizeABE(n ctsizeFHE+pksizeFHE)+poly(κ, sksizeFHE, ctsizeFHE).
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We can thus see that if FHE and ABE produce ciphertexts independent of the circuit size, then so will our
functional encryption scheme.

We focus on the full security case: namely, assuming ABE2 is fully secure, we show that the resulting FE
scheme is fully secure. We then discuss the proof for the selective case.

For full security, we construct a p.p.t. simulator S that achieves Def. 2.13. S receives as input
(MPK, fskf , f, f(x), 1

n) and must output c̃ such that the real and ideal experiments in Def. 2.13 are
computationally indistinguishable. Intuitively, S runs a modified version of FE.Enc to mask the fact that it
does not know x.
Simulator S on input (MPK, fskf , f, f(x), 1

n):

1. Choose a key pair (hpk, hsk)← FHE.KeyGen(1κ) for the homomorphic encryption scheme (where S
can derive the security parameter κ from the sizes of the inputs it gets). Encrypt 0n (n zero bits) with
FHE by encrypting each bit individually and denote the ciphertext 0̂ := (0̂1 ← FHE.Enc(hpk, 0),. . .,
0̂n ← FHE.Enc(hpk, 0)).

2. Let SimGarble be the simulator for the Yao garbling scheme (described in Def. 2.7) for the class of
circuits corresponding to FHE.Dec(hsk, ·). Run SimGarble to produce a simulated garbled circuit Γ̃
for the FHE decryption algorithm FHE.Dec(hsk, ·) : {0, 1}λ → {0, 1} together with the simulated
encoding consisting of one set of λ labels L̃i for i = 1 . . . λ. Namely,(

Γ̃, {L̃i}λi=1

)
← SimGarble(1

κ, f(x), 1|FHE.Dec(hsk,·)|, 1λ).

The simulator S can invoke SimGarble because it knows f(x), and can compute the size of the
FHE.Dec(hsk, ·) circuit, and λ from the sizes of the input parameters.

3. Produce encryptions c̃1, . . . , c̃λ under the ABE2 scheme in the following way. Let

c̃i ← ABE2.Enc
(
fmpki, (hpk, 0̂), L̃i, L̃i

)
,

where S uses each simulated label L̃i twice.

4. Output c̃ = (c̃1, . . . , c̃λ, Γ̃).

To prove indistinguishability of the real and ideal experiments (Def. 2.13), we define a sequence of hybrid
experiments, and then invoke the security definitions of the underlying schemes (FHE, garbled circuit, and
ABE2 respectively) to show that the outcome of the hybrid experiments are computationally indistinguishable.
Hybrid 0 is the output of the ideal experiment from Def. 2.13 for our FE construction with simulator S. We
denote it ExpH0

FE,A (= ExpidealFE,A,S).
Hybrid 1 (ExpH1

FE,A) is the same as Hybrid 0, except that the simulated ciphertext for Hybrid 1 (which we
denote c̃(1)), changes. Let c̃(1) be the ciphertext obtained by running the algorithm of S, except that in Step (3),
encrypt x instead of 0, namely:

c̃
(1)
i ← ABE2.Enc

(
fmpki, (hpk, ψ), L̃i, L̃i

)
,

where ψ ← (FHE.Enc(hpk, x1), . . . ,FHE.Enc(hpk, xn)). Let

c̃(1) = (c̃
(1)
1 , . . . , c̃

(1)
λ , Γ̃).
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Hybrid 2 (ExpH2
FE,A) is the same as Hybrid 1, except that in Step (2), the ciphertext contains a real garbled

circuit (
Γ, {L0

i , L
1
i }λi=1

)
← Gb.Garble(FHE.Dec(hsk, ·)).

Let di = FHE.Evalif (hpk, ψ). In Step (3), include Ldi twice in the ABE encryption; namely:

c̃
(2)
i ← ABE2.Enc

(
fmpki, (hpk, ψ), L

di
i , L

di
i

)
, and

c̃(2) = (c̃
(2)
1 , . . . , c̃

(2)
λ ,Γ).

Hybrid 3 (ExpH3
FE,A) is the output of the real experiment from Def. 2.13 for our FE construction.

We prove each pair of consecutive hybrids to be computationally indistinguishable in the following three
lemmas, Lemmas 3.9, 3.10, and 3.11.

Lemma 3.9. Assuming FHE is IND-CPA–secure, Hybrid 0 and Hybrid 1 are computationally indistinguish-
able.

Proof. We proceed by contradiction. We assume that there exist p.p.t. adversaries A = (A1, A2) and a p.p.t.
distinguisher D such that D (with A) can distinguish between Hybrid 0 and Hybrid 1 above. Namely, there
exists a polynomial p(·) such that, for infinitely many κ,

|Pr[D(ExpH0
FE,A(1

κ)) = 1]− Pr[D(ExpH1
FE,A(1

κ)) = 1]| ≥ 1/p(κ). (1)

We construct a p.p.t. adversary R = (R1, R2) that can break the semantic security of FHE. Adversary R1

outputs an n-bit value x for some n, and adversary R2 receives as input either homomorphic encryption of
x or of 0n, and it will distinguish between these two. Distinguishing successfully implies that there is an
adversary that can distinguish successfully in Def. 2.5, by a standard hybrid argument.

To determine x, adversary R1 works as follows:

1. Run ExpidealFE,A,S(1
κ) (Def. 2.13) from Step (1) to Step (4) and let x be the output of A2 in Step (4).

2. Output x.

To distinguish between encryption of x or 0n, adversary R2 receives input hpk∗, the FHE public key, and
an encryption E∗ of x or 0n and works as follows:

1. Run a modified algorithm of S by using hpk∗ instead of generating fresh FHE keys and using E∗

instead of encrypting 0n. Namely:

(a) Generate
(
Γ̃, {L̃i}λi=1

)
as in Step (2) of S.

(b) Output c∗ = (c∗1, . . . , c
∗
λ) for c∗i = ABE2.Enc(fmpki, ((hpk

∗, E∗), L̃i, L̃i)).

2. Feed (c∗, Γ̃) to D and output the decision of D.

Notice that if E∗ is encryption of 0n, R2 simulates Hybrid 0 perfectly; when E∗ is encryption of x, R2

simulates Hybrid 1 perfectly. Therefore, D must have a probability of distinguishing between the two cases of
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at least 1/p(κ) (Eq. (1)); moreover, whenever D distinguishes correctly, R also outputs the correct decision.
Therefore:

|Pr[x← R1(1
κ); (hsk∗, hpk∗)← FHE.KeyGen(1κ) : R2(hpk

∗,FHE.Enc(hpk∗, x)) = 1]−
Pr[(hsk∗, hpk∗)← FHE.KeyGen(1κ) : R2(hpk

∗,FHE.Enc(hpk∗, 0n)) = 1]| =
|Pr[D(ExpH0

FE,A(1
κ)) = 1]− Pr[D(ExpH1

FE,A(1
κ)) = 1]| ≥ 1/p(κ),

which contradicts the IND-CPA security of the FHE scheme.

Lemma 3.10. Assuming the garbled circuit is circuit- and input-private (Def. 2.7), Hybrid 1 and Hybrid 2
are computationally indistinguishable.

Proof. We proceed by contradiction. Assume there exist p.p.t. adversaries A = (A1, A2) and a p.p.t.
distinguisher D such that D (with A) can distinguish Hybrid 1 and Hybrid 2 above. Namely, there exists a
polynomial p such that, for infinitely many κ,

|Pr[D(ExpH1
FE,A(1

κ)) = 1]− Pr[D(ExpH2
FE,A(1

κ)) = 1]| ≥ 1/p(κ). (2)

We construct a stateful p.p.t. adversary R = (R.A,R.D) that can break the security of the garbling
scheme from Def. 2.7. The adversary R.A has to provide a circuit G and an input I and then R.D needs to
distinguish between the simulated and the real garbled circuits and input encodings.

The adversary R.A computes I and G as follows.

1. Run Steps (1)–(4) from Def. 2.13, which are the same in Hybrid 1 and Hybrid 2 and obtain f from A1

and x from A2.

2. Generate (hsk, hpk)← FHE.KeyGen(1κ) and let ψ ← FHE.Enc(hpk, x).

3. Output G(·) := FHE.Dec(hsk, ·) and I := FHE.Evalf (hpk, ψ) and the following state for R.D:
α = (ψ, fmpki, hpk).

The adversary R.D receives as input a garbled circuit Γ∗ and a set of labels, one for each i: {L∗
i }λi=1.

These could be outputs of either SimGarble or of Gb.Garble/Gb.Enc and R.D decides which is an output of
as follows:

1. Compute c∗ =
(
{ABE2.Enc(fmpki, ((hpk, ψ), L

∗
i , L

∗
i ))}λi=1,Γ

∗).
2. Run D on c∗ and output what D outputs.

Notice that if (Γ∗, {L∗
i }λi=1) are outputs of SimGarble,R simulates Hybrid 1 perfectly; when (Γ∗, {L∗

i }λi=1)
are outputs of the real garbling scheme, R simulates Hybrid 2 perfectly. Therefore, the probability that D
distinguishes between the two cases at least is 1/p(κ) (Eq. (2)); moreover, wheneverD distinguishes correctly,
R also outputs the correct decision. Therefore:

|Pr[(G, I)← R.A(1κ) : R.D(Γ̃, {L̃i}λi=1) = 1]− Pr[(G, I)← R.A(1κ) : R.D(Γ, {Li}λi=1) = 1]| =
|Pr[D(ExpH1

FE,A(1
κ)) = 1]− Pr[D(ExpH2

FE,A(1
κ)) = 1]| ≥ 1/p(κ),

where, (Γ̃, {L̃i}λi=1) are outputs of SimGarble and (Γ, {Li}λi=1) are outputs of Gb.Garble/Gb.Enc. This relation
contradicts the security of the garbling scheme Def. 2.7.
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Lemma 3.11. Assuming the underlying ABE2 scheme is fully secure, Hybrid 2 and Hybrid 3 in the fully
secure setting above are computationally indistinguishable.

Proof. In Hybrid 2 and Hybrid 3, there are λ ABE2 encryptions, each with a pair of independent ABE2 keys.
First, we would like to prove that if Hybrid 2 and Hybrid 3 are computationally indistinguishable with only
one of these encryptions, then they are computationally indistinguishable with λ encryptions. This would
enable us to focus on only one ABE2 ciphertext for the proof.

The argument proceeds in a standard way with a set of sub-hybrids, one for each index i = 0 . . . λ. The
argument is straightforward because c̃i and c̃j (for i ̸= j) use independently generated keys and the values
encrypted with these keys are known to R. Hence, we present the hybrid argument briefly. Sub-hybrid 0
corresponds to Hybrid 2 and sub-hybrid λ corresponds to Hybrid 3. Sub-hybrid i has the first i ciphertexts as
in Hybrid 2 and the rest λ− i as in Hybrid 3.

If an adversary A can distinguish between sub-hybrids i− 1 and i, for some i, then he can distinguish
Hybrid 2 and Hybrid 3 for only one pair of ciphertexts (c2i , c

3
i ); the reason is that we can build an adversary

B: B places the challenge ciphertext in slot i of the challenge to A and produces the ciphertexts for all other
slots j ̸= i with the correct distribution; B can do so because these ciphertexts are encrypted with fresh ABE2

keys and B has all the information it needs to generate them correctly.
Now we are left to prove that Hybrid 2 and Hybrid 3 are indistinguishable when there is only one

ciphertext, say the ℓ-th ciphertext. Namely, we need to prove that:{
(state′A, c̃

(2)
ℓ )← ExpH2

FE,A(1
κ)

}
c
≈

{
(state′A, c̃

(3)
ℓ )← ExpH3

FE,A(1
κ)

}
. (3)

We prove this statement by contradiction. Assume there exist p.p.t. adversaries A = (A1, A2) and
distinguisher D that can distinguish the distributions in (3); namely, there exists a polynomial p(·) such that,
for infinitely many κ,

|Pr[D(ExpH2
FE,A(1

κ)) = 1]− Pr[D(ExpH3
FE,A(1

κ)) = 1]| ≥ 1/p(κ). (4)

We construct a p.p.t. adversary R = (R1, R2, R3) that breaks the security of ABE2 from Def. 2.11. R1,
R2 and R3 send state to each other as in Def. 2.11, but for simplicity we will not denote this explicitly. R3

aims to guess b in this definition.
Intuition. A and D can distinguish between Hybrid 2 and Hybrid 3. The only difference between these
hybrids is that c̃ℓ contains encryption of (Ldℓ

ℓ , L
dℓ
ℓ ) versus (Ldℓ

ℓ , L
1−dℓ
ℓ ). However, the ABE2 scheme does not

decrypt L1−dℓ
ℓ by the definition of dℓ, so its security hides the value of L1−dℓ

ℓ . Since A and D can distinguish
between these hybrids, they must be breaking the security of ABE2. Therefore, R will use Lℓ

ℓ and L1−ℓ
ℓ as

part of its answers to C and then use D to distinguish its challenge.
Specifically, the adversary R1 receives as input fmpk∗ in Step 2 of Def. 2.11 and computes P as follows:

1. Interact with adversary A1 by running Steps (1)–(2) from Defs. 2.13 as follows.

(a) Let fmpkℓ := fmpk∗. Generate the rest of ABE2 keys using the ABE2.Setup algorithm:
(fmpki, fmski)← ABE2.Setup(1

κ) for i ̸= ℓ.

(b) Receive f from A1 and output P := FHE.Evalℓf .

Adversary R2 receives sk∗P in Step 4 of Def. 2.11 and computes M,M0,M1, xc as follows:
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1. Continue interaction withA2. To provide fskf toA2, compute fski ← ABE2.KeyGen(fmski,FHE.Eval
i
f )

for i ̸= ℓ, and let fskℓ := sk∗P .

2. Receive x from A2.

3. Run the real garbled circuit generation as in Hybrid 2 and 3. Let Ldℓ
ℓ be defined as in Hybrid 2. Provide

M := Ldℓ
ℓ , M0 := Ldℓ

ℓ and M1 := L1−dℓ
ℓ .

4. Let xc := (hpk, ψ) where ψ ← (FHE.Enc(hpk, x1), . . . ,FHE.Enc(hpk, xn)), the bitwise FHE
encryption of x.

5. Output (M,M0,M1, xc).

Adversary R3 receives as input a challenge ciphertext c∗ and decides if it corresponds to M0 or to M1 as
follows:

1. Let c̃ℓ := c∗ and provide (state′A, c̃ℓ) to D.

2. Output D’s guess.

In order for D to distinguish (as in Eq. (4)), the input distribution to A must be the one from Hybrid 2 or
3. We can see that this is the case: if b = 0, R simulates Hybrid 2 perfectly, and if b = 1, R simulates Hybrid
3 perfectly. Moreover, whenever D distinguishes correctly, R also outputs the correct decision. Therefore, by
a simple calculation, we can see that

Pr[ExpABE2,R(1
κ) = 1] ≥ 1/2 + 1/2p(κ),

which contradicts the security of the ABE2 scheme, Def. 2.11.

Returning to the proof of our theorem, by transitivity of computational indistinguishability, we showed
that Hybrid 0 (the ideal experiment) is equivalent to Hybrid 3 (the real experiment), thus concluding our
proof.
Selective security. The proof for the selective case follows similarly. The simulator S and the four hybrids
are the same. Lemmas 3.9 and 3.10 proceed similarly, except that R now interacts with A as in the selective
FE definition Def. 2.14 rather than Def. 2.13. The argument of Lemma 3.11 is the same, except that the
order of some operations changes. This lemma makes the resulting FE scheme selective if one starts from a
selective ABE2 scheme.

4 Reusable Garbled Circuits

In this section, we show how to construct garbled circuits that can be reused; namely, a garbled circuit that
can run on an arbitrary number of encoded inputs without compromising the privacy of the circuit or of the
input. For this goal, we build on top of our functional encryption scheme.

The syntax and correctness of the reusable garbling schemes remains the same as the one for one-time
garbling schemes (Def. 2.6). In Sec. 2.4, we provided the one-time security definition for circuit and input
privacy, Def. 2.7. We begin by defining security for more than one-time usage.
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Definition 4.1 (Input and circuit privacy with reusability). Let RGb be a garbling scheme for a family of
circuits C =

{
Cn

}
n∈N. For a pair of p.p.t. algorithms A = (A1, A2) and a p.p.t. simulator S = (S1, S2),

consider the following two experiments:

ExprealRGb,A(1
κ): ExpidealRGb,A,S(1

κ):

1: (C, stateA)← A1(1
κ)

2: (gsk,Γ)← RGb.Garble(1κ, C)

3: α← A
RGb.Enc(gsk,·)
2 (C,Γ, stateA)

4: Output α

1: (C, stateA)← A1(1
κ)

2: (Γ̃, stateS)← S1(1
κ, 1|C|)

3: α← A
O(·,C)[[stateS ]]
2 (C, Γ̃, stateA)

4: Output α

In the above, O(·, C)[[stateS ]] is an oracle that on input x from A2, runs S2 with inputs C(x), 1|x|, and
the latest state of S; it returns the output of S2 (storing the new simulator state for the next invocation).

We say that the garbling scheme RGb is input- and circuit-private with reusability if there exists a p.p.t.
simulator S such that for all pairs of p.p.t. adversaries A = (A1, A2), the following two distributions are
computationally indistinguishable:{

ExprealRGb,A(1
κ)

}
κ∈N

c
≈

{
ExpidealRGb,A,S(1

κ)

}
κ∈N

.

We can see that this security definition enables reusability of the garbled circuit: A2 is allowed to make
as many queries for input encodings as it wants.

From now on, by reusable garbling scheme, we will implicitly refer to a garbling scheme that has input
and circuit privacy with reusability as in the definition above, Def. 4.1.

Remark 4.1. We can provide an alternate syntax for a reusable garbling scheme, and we can also construct
a scheme with this syntax (and a similar security definition) from our functional encryption scheme. This
syntax has an additional setup algorithm (separate from the garble algorithm) that produces the secret key
necessary for encoding and for circuit garbling; such a syntax would allow the garbled circuit to be generated
after the encodings.

Remark 4.2. We do not provide a definition of authenticity because it is a straightforward extension of our
scheme and is already achieved by [GVW13]. We focus on circuit and input privacy, which have not been
achieved by previous work.

Recall the class of circuits Cn,d(n) defined for Corollary 3.2.

Theorem 4.3. There exists a polynomial p, such that for every depth d = d(n) function of the input size n,
there is a reusable garbling scheme for any class of boolean circuits {Cn,d}n∈N, assuming there is a fully
secure single-key functional encryption scheme for any class of boolean circuits {Cn,p(d)}n∈N.

Corollary 4.4 (The LWE Instantiation). For every integer n ∈ N, polynomial function d = d(n), there is a
reusable garbling scheme for the class Cn,d(n), under the following assumption: there is a constant 0 < ϵ < 1
such that for every sufficiently large ℓ, the approximate shortest vector problem gapSVP in ℓ dimensions is
hard to approximate to within a 2O(ℓϵ) factor in time 2O(ℓϵ) in the worst case.

The proof of this corollary follows from Theorem 4.3 when instantiating the functional encryption scheme
with the one from Corollary 3.2.

Denote by universal reusable garbling scheme, a reusable garbling scheme for the class of all polynomial-
sized circuits. Then, the following corollary follows directly from Theorem 4.3:
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Corollary 4.5 (Universal reusable garbled circuits). If there is a universal single-key fully secure functional
encryption scheme, there is a universal reusable garbling scheme.

Notice that our functional encryption tool (FE) already gives reusable garbled circuits with input privacy
but no circuit privacy: the garbling of C is FE.KeyGen(fmsk, C), whereas the encoding of the input x is
FE.Enc(fmpk, x). The fact that our scheme is single-key does not pose a limitation because the single-key
corresponds to the circuit to garble (and any input encoding need only work with one garbled circuit). Since
the single-key for one function works with an arbitrary number of encrypted inputs, the resulting garbled
circuit is reusable.

However, the problem is that FE does not hide the circuit C, which is a required property of garbling
schemes. The insight in achieving circuit privacy is to use the input-hiding property of the FE scheme to hide
the circuit as well. The first idea that comes to mind is to hide C by including it in the ciphertext together
with the input x. Specifically, instead of providing a key for circuit C, the encryptor runs FE.KeyGen on a
universal circuit U that on input (C, x) computes C(x). Notice that U can be public because it carries no
information about C other than its size. Now the encryption of x consists of an encryption of (C, x) using
FE.Enc. In this way, we can see that the resulting garbled circuit satisfies the correctness property. Moreover,
for security, FE hides the input (C, x) so it would hide the circuit C as well.

Nevertheless, this approach is not useful because the encoding is as large as the circuit C (in particular,
RGb.Enc no longer satisfies the efficiency property in Def. 2.6). Moreover, in this case, the standard one-time
garbling schemes would be enough because one could produce a fresh garbled circuit with each ciphertext.

To overcome this problem, the idea is to provide, together with the ciphertext of x, the ability to decrypt C
rather than the entire description ofC. Specifically, letE be the encryption of the circuitC with a semantically
secure symmetric encryption scheme under a secret key sk. The garbling of C consists of running the key
generation FE.KeyGen on a circuit UE that includes E and works as follows. On input (x, sk) the circuit UE

decrypts E to obtain C, and outputs the result of running C on x. Even though FE.KeyGen(fmsk, UE) does
not hide UE , the description of UE does not leak C because C is encrypted. An encoding by RGb.Enc of x
thus consists of running the encryption algorithm FE.Enc on (x, sk).

4.1 Construction

We construct a reusable garbling scheme RGb = (RGb.Garble, RGb.Enc, RGb.Eval) as follows. Let E =
(E.KeyGen, E.Enc, E.Dec) be a semantically secure symmetric-key encryption scheme.
Garbling RGb.Garble(1κ, C):

1. Generate FE keys (fmpk, fmsk)← FE.Setup(1κ) and a secret key sk← E.KeyGen(1κ).

2. Let E := E.Enc(sk, C).

3. Define UE to be the following universal circuit:

UE takes as input a secret key sk and a
value x:

(a) Compute C := E.Dec(sk, E).

(b) Run C on x.

4. Let Γ← FE.KeyGen(fmsk, UE) be the reusable garbled circuit.
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5. Output gsk := (fmpk, sk) as the secret key and Γ as the garbling of C.

Encoding RGb.Enc(gsk, x): Compute cx← FE.Enc(fmpk, (sk, x)) and output cx.
Evaluation RGb.Eval(Γ, cx): Compute and output FE.Dec(Γ, cx).

The existence of a semantically secure encryption scheme does not introduce new assumptions because
the FE scheme itself is a semantically secure encryption scheme if no key (computed by FE.KeyGen) is ever
provided to an adversary.
Tightness of the scheme. The astute reader may have observed that the resulting scheme requires that the
encodings be generated in the secret key setting because the encoding of x includes sk. It turns out that
generating encodings privately is in fact necessary; if the encodings were publicly generated, the power of the
adversary would be the same as in traditional obfuscation, which was shown impossible [BGI+01, GK05]
(see discussion in Sec. 1.1.2).

One might wonder though, whether a reusable garbling scheme exists where the encoding generation
is secret key, but RGb.Garble is public key. We prove in Sec. 4.3 that this is also not possible based on the
impossibility result of [AGVW12]; hence, with regard to public versus private key, our reusable garbling
result is tight.

4.2 Proof

Proof of Theorem 4.3. We first argue the scheme satisfies the correctness and efficiency properties in Def. 2.6.

Claim 4.6. The above scheme RGb is a correct and efficient garbling scheme.

Proof. We can easily see correctness of RGb.Eval:

RGb.Eval(Γ, cx) = FE.Dec(Γ, cx) (by the definition of RGb.Eval)

= UE(sk, x) (by the correctness of FE)

= C(x) (by the definition of UE).

The efficiency of RGb depends on the efficiency of the FE.Enc algorithm and the length of gsk depends on the
FE.Setup. If the runtime of FE.Enc does not depend on the class of circuits to be computed at all, the same
holds for RGb.Enc’s efficiency. If FE.Enc and FE.Setup depend on the depth of the circuits to be computed,
as is the case in our LWE instantiation, RGb.Enc’s runtime and |gsk| also depend on the depth of the circuits,
but still remain independent of the size of the circuits, which could potentially be much larger.

We can see that to obtain a RGb scheme for circuits of depth d, we need a FE scheme for polynomially
deeper circuits: the overhead comes from the fact that U is universal and it also needs to perform decryption
of E to obtain C.

To prove security, we need to construct a simulator S = (S1, S2) satisfying Def. 4.1, assuming there is a
simulator SimFE that satisfies Def. 2.13.

To produce a simulated garbled circuit Γ̃, S1 on input (1κ, 1|C|) runs:

1. Generate fresh fmpk, fmsk, and sk as in RGb.Garble.

2. Compute Ẽ := E.Enc(sk, 0|C|). (The reason for encrypting 0|C| is that S1 does not know C).

3. Compute and output Γ̃← FE.KeyGen(fmsk, UẼ).
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S2 receives queries for values x1, . . . , xt ∈ {0, 1}∗ for some t and needs to output a simulated encoding
for each of these. To produce a simulated encoding for xi, S2 receives inputs (C(xi), 1|xi|, and the latest
simulator’s state) and invokes the simulator SimFE of the FE scheme and outputs

c̃x := SimFE(fmpk, fskUẼ
, UẼ , C(x), 1

|sk|+|xi|).

A potentially alarming aspect of this simulation is that S generates a key for the circuit 0|C|. Whatever
circuit 0|C| may represent, it may happen that there is no input x to 0|C| that results in the value C(x). The
concern may then be that SimFE may not simulate correctly. However, this is not a problem because, by
semantic security, E and Ẽ are computationally indistinguishable so SimFE must work correctly, otherwise it
breaks semantic security of the encryption scheme E.

We now prove formally that the simulation satisfies Def. 4.1 for any adversary A = (A1, A2).
Let us assume that the α output of A2 is its view, namely, all the information A2 receives in the
protocol, (C, stateA,Γ, {xi, cxi}ti=1). If the outcome of the real and ideal experiments are computationally
indistinguishable in this case, then they are computationally indistinguishable for any other output strategy of
A2 because D can always run A2 on its view since A2 is p.p.t.. Therefore, we would like to show that:{

(C, stateA,Γ, {xi, cxi}ti=1)← ExprealRGb,A(1
κ)

}
κ

c
≈{

(C, stateA, Γ̃, {xi, c̃xi}ti=1)← ExpidealRGb,A,S(1
κ)

}
κ

.

Game 0: The ideal game of Def. 4.1 with simulator S; we recall that the output distribution in this case is(
C, stateA,FE.KeyGen(fmsk, UẼ), {xi,SimFE(fmpk, fskUẼ

, UẼ , C(xi), 1
|xi|+|sk|)}ti=1

)
.

Game 1: The same as Game 0, but Ẽ is replaced with E = E.Enc(sk, C). That is, the output distribution is(
C, stateA,Γ, {xi, SimFE(fmpk, fskUE

, UE , C(xi), 1
|xi|+|sk|)}ti=1

)
.

Game 2: The real game with our construction for RGb. It consists of the output distribution(
C, stateA,Γ, {xi, cxi}ti=1

)
.

First, let us argue that the distributions output by Game 0 and Game 1 are computationally
indistinguishable. Note that these two distributions differ only in E and Ẽ. Since these distributions do not
contain sk or any other function of sk other than E/Ẽ, by semantic security of the encryption scheme, we
can show these two distributions are computationally indistinguishable. Finally, Lemma 4.7 proves that the
outputs of Game 1 and Game 2 are also computationally indistinguishable, which concludes our proof.

Lemma 4.7. Assuming FE is FULL-SIM-secure, the outputs of Game 1 and Game 2 are computationally
indistinguishable.

Proof. The proof of the lemma is by contradiction. We assume there exist p.p.t. adversaries A = (A1, A2)
and p.p.t. distinguisher D such that D with A can distinguish Game 1 and Game 2. Namely, there exists a
polynomial p(·) such that, for infinitely many κ,

|Pr[D(ExpGame1
FE,A (1κ)) = 1]− Pr[D(ExpGame2

FE,A (1κ)) = 1]| ≥ 1/p(κ). (5)
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We construct adversaries that break the full security of the functional encryption scheme Def. 2.13. We
call these adversaries AFE = (AFE

1 , AFE
2 ) and DFE using the “FE” superscript to differentiate them from

the adversaries distinguishing Game 1 and 2. In fact, we construct adversaries AFE and DFE that break a
modified version of Def. 2.13: the modification is that AFE can repeat Steps (4–5) as many times as it wishes
and adaptively; more precisely, for the i-th repetition of Steps (4–5), AFE

2 can ask for an encryption of an
input xi where xi could be determined based on the previous values and encryptions of x1, . . . , xi−1; AFE

2

receives either a real encryption or a simulated encryption as in Step (5), but either all encryptions are real or
all are simulated. We can see that if AFE and DFE break this modified definition, then they must break the
original definition (with a polynomially smaller advantage): this implication follows from a standard hybrid
argument possible because the encryption of xi is public key.

On input fmpk, adversary AFE
1 works as follows:

1. Run A1 on input 1κ and obtain C and stateA.

2. Choose sk← E.KeyGen(1κ), encrypt E ← E.Enc(sk, C), and let UE be the circuit described above.

3. Output function UE and stateFEA := (sk, UE , stateA).

On input (fskUE
, stateFEA ), adversary AFE

2 works as follows:

1. Let Γ := fskUE
.

2. Run A2 on UE , Γ and stateA by answering to its oracle queries as follows.

(a) Consider the i-th oracle query (xi, stateA). Output (xi, sk).

(b) Receive as input CTi which is either the real ciphertext ci ← FE.Enc(fmpk, (xi, sk)) or
the simulated ciphertext c̃i ← SimFE(fmpk,Γ, UE , C(xi), 1

|xi|+|sk|). Respond to A2 with
(CTi, stateA).

(c) Repeat these steps until A2 finishes querying for encodings, and outputs α.

3. Output α.

Adversary DFE is the same as D.
When the encodings CTi are the ideal ciphertexts, we can see that (AFE

1 , AFE
2 ) simulate perfectly Game

1; hence
Pr[DFE(ExpidealFE,AFE(1

κ)) = 1] = Pr[D(ExpGame 1
FE,A (1κ)) = 1].

When the encodings CTi are the real ciphertexts, (AFE
1 , AFE

2 ) simulate perfectly Game 2 and thus

Pr[DFE(ExprealFE,AFE(1
κ)) = 1] = Pr[D(ExpGame 2

FE,A (1κ)) = 1].

By Eq. (5), we have

|Pr[DFE(ExpidealFE,AFE(1
κ)) = 1]− Pr[DFE(ExprealFE,AFE(1

κ)) = 1]| ≥ 1/p(κ),

which contradicts FULL-SIM-security of FE.

Having proved that Game 0 and Game 1 are computationally indistinguishable, and that Game 1 and
Game 2 are computationally indistinguishable, we conclude that Game 0 and Game 2 are computationally
indistinguishable, and therefore that garbling scheme RGb is input- and circuit-private with reusability.
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4.3 Impossibility of Public-Key Reusable Garbled Circuits

In this section, we show that a public-key reusable garbling scheme is impossible. Our argument is at a high
level because it follows from existing results straightforwardly.

A public-key reusable garbling scheme would have the following syntax:

Definition 4.2 (Public-key garbling scheme). A public-key garbling scheme PubGb for the class of circuits
{Cn}n∈N, with Cn a set of boolean circuits taking n bits as input, is a tuple of p.p.t. algorithms (PubGb.Setup,
PubGb.Garble, PubGb.Enc, PubGb.Eval) such that

• PubGb.Setup(1κ): Takes as input the security parameter 1κ and outputs a secret key gsk and a public
key gpk.

• PubGb.Garble(gpk, C): Takes as input a public key gpk and a circuit C, and outputs the garbled
circuit Γ of the circuit C.

• PubGb.Enc(gsk, x): Takes as input the secret key gsk and an input x, and outputs an encoding cx.

• PubGb.Eval(Γ, cx): Takes as input a garbled circuit Γ and an encoding cx and outputs a value y.

Correctness. For all polynomials n(·), for all sufficiently large security parameters κ, for n = n(κ), for all
circuits C ∈ Cn, and for all x ∈ {0, 1}n,

Pr[(gsk, gpk)← PubGb.Setup(1κ); Γ← PubGb.Garble(gpk, C); cx ← PubGb.Enc(gsk, x) :

PubGb.Eval(Γ, cx) = C(x)] = 1− negl(κ).

The natural security definition of circuit-private definition of this new scheme is similar in flavor to
Def. 2.13, but we do not elaborate. (In fact, this definition can be relaxed to not require input privacy for the
impossibility result to still hold.)

The first step in the impossibility argument is to note that the syntax and correctness of a public-
key garbling scheme is the same as the syntax of a functional encryption scheme (Def. 2.12) with the
following correspondence of algorithms: PubGb.Setup corresponds to FE.Setup, PubGb.Garble corresponds
to the encryption algorithm FE.Enc, PubGb.Enc corresponds to FE.KeyGen and PubGb.Eval corresponds
to FE.Dec. Note that PubGb.Enc does not correspond to FE.Enc but to FE.KeyGen because PubGb.Enc is
a secret key algorithm and FE.Enc is a public-key algorithm. Therefore, an encoding of an input x in the
reusable garbling scheme corresponds to a secret key for a function fx in the functional encryption scheme.

Moreover, considering this mapping, it is straightforward to show that a circuit-private public-key garbling
scheme implies a secure functional encryption scheme. Since the reusable garbling scheme allows an arbitrary
number of inputs being encoded, it implies that the functional encryption scheme can generate an arbitrary
number of secret function keys skfx ; furthermore, in this functional encryption scheme, the size of the
ciphertexts does not depend on the number of keys generated (because this number if nowhere provided as
input in the syntax of the scheme). This conclusion directly contradicts the recent impossibility result of
Agrawal et al. [AGVW12]: they show that any functional encryption scheme that can securely provide q
keys must have the size of the ciphertexts grow in q; therefore, a reusable circuit-private public-key garbling
scheme is unachievable.
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5 Token-Based Obfuscation

Following the discussion of obfuscation in Sec. 1.1.2, the purpose of this section is to cast reusable garbled
circuits in the form of obfuscation and to show that this provides a new model for obfuscation, namely
token-based obfuscation.

Reusable garbled circuits come close to obfuscation: a reusable garbled circuit hides the circuit while
permitting circuit evaluation on an arbitrary number of inputs. While they come close, reusable garbled
circuits do not provide obfuscation, because the encoding of each input requires knowledge of the secret
key: namely, to run an obfuscated program on an input, one needs to obtain a token for the input from the
obfuscator. This requirement of our scheme is in fact necessary: as argued in the tightness discussion in
Sec. 4, a scheme in which one can publicly encode inputs is impossible because it falls directly onto known
impossibility results for obfuscation.

Therefore, we propose a new token-based model for obfuscation. The idea is for a program vendor to
obfuscate his program and provide tokens representing rights to run this program on specific inputs. For
example, consider the case when some researchers want to compute statistics on a database with sensitive
information. The program to be obfuscated consists of the database service program with the secret database
hardcoded in it, UDB. When researchers want to compute statistics x, they request a token for x from the
database owner. Using the obfuscated program and the token, the researchers can compute UDB(x), the
statistics result by themselves without having to contact the owner again. It is crucial that the time to compute
the token for x is much smaller than the time to compute UDB on x, so that the owner does not have to do a
lot of work. We also note, that in certain cases, one has to anyways request such a token from the owner for
other reasons: for example, the database owner can check that the statistics the researchers want to compute
is not too revealing and grant a token only if this is the case.

Let us compare the token-based obfuscation model with the obfuscation model resulting from using FHE.
With FHE, the obfuscation of a program is the FHE encryption of the program. When the client wants to feed
an input to the obfuscated program, the client can encrypt this input by herself using the FHE public-key and
does not need to obtain a token from the obfuscator. To run the program, the client performs FHE evaluation
of a universal circuit on the encrypted program and the encrypted input, thus obtaining an encrypted result.
The client cannot decrypt the result by herself and thus needs to contact the obfuscator for this decryption –
this process consists of two messages. In our token-based model, if the obfuscator knows a priori the inputs
for which to send tokens to the client (e.g., when distributing permissions for certain computations), the
whole protocol consists of one message only because the client can compute and decrypt the result by herself.
Another difference between these two obfuscation models is that, in the token-based model, the obfuscator
needs to be available only at the beginning of the computation (when giving out tokens), whereas in the FHE
model, the obfuscator has to be online at the end of the computation to decrypt the result.

5.1 Definition

We now provide the definition for token-based obfuscation and the desired simulation security. These
definitions are very similar to the definitions for reusable garbled circuits (Def. 2.6 and Def. 4.1): the syntax,
correctness and efficiency are the same except that garbling schemes have an additional Eval algorithm.

Definition 5.1 (Token-based Obfuscation). A token-based obfuscation scheme for the class of circuits
{Cn}n∈N with Cn : {0, 1}n → {0, 1} is a pair of p.p.t. algorithms (tOB.Obfuscate, tOB.Token) such that

• tOB.Obfuscate(1κ, C): Takes as input the security parameter 1κ, and a circuit C ∈ Cn, and outputs a
secret key osk and the obfuscation O of the circuit C.
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• tOB.Token(osk, x): Takes as input the secret key osk and some input x ∈ {0, 1}n, and outputs tkx.

Efficiency. The running time of tOB.Token is independent of the size of C.

Correctness. For all polynomials n(·), for all sufficiently large security parameters κ, if n = n(κ), for all
circuits C ∈ Cn, and for all x ∈ {0, 1}n,

Pr[(osk, O)← tOB.Obfuscate(1κ, C); tkx ← tOB.Token(osk, x) : O(tkx) = C(x)] = 1− negl(κ).

Remark 5.1. We could use an alternative definition of token-based obfuscation that separates the generation
of osk (in an additional tOB.Setup algorithm with input the security parameter) from the tOB.Obfuscate
algorithm. Such a formulation would force osk and thus the token computation tOB.Token(osk, x) to be
independent of the circuit obfuscated; moreover, C could be chosen later, even after all inputs x have been
encrypted with tOB.Token.

Our construction satisfies this definition as well because it generates the secret key osk independent of C.
However, we did not choose such a formulation because we wanted to be consistent with the definition of

obfuscation, which does not have a separate setup phase.

Intuitively, in a secure token-based obfuscation scheme, an adversary does not learn anything about the
circuit C other than C(x) and the size of C.

Definition 5.2 (Secure token-based obfuscation). Let tOB be a token-based obfuscation scheme for a family
of circuits C =

{
Cn

}
n∈N. For A = (A1, A2) and S = (S1, S2), pairs of p.p.t. algorithms, consider the

following two experiments:

ExprealtOB,A(1
κ): ExpidealtOB,A,S(1

κ):

1: (C, stateA)← A1(1
κ)

2: (osk, O)← tOB.Obfuscate(1κ, C)

3: α← A
tOB.Token(osk,·)
2 (C,O, stateA)

4: Output α

1: (C, stateA)← A1(1
κ)

2: (Õ, stateS)← S1(1
κ, 1|C|)

3: α← A
OS(·,C)[[stateS ]]
2 (C, Õ, stateA)

4: Output α

In the above, OS(·, C)[[stateS ]] is an oracle that on input x from A2, runs S2 with inputs C(x), 1|x|, and
the current state of S, stateS . S2 responds with tkx and a new state state′S which OS will feed to S2 on the
next call. OS returns tkx to A2.

We say that the token-based obfuscation tOB is secure if there exists a pair of p.p.t. simulators S =
(S1, S2) such that for all pairs of p.p.t. adversaries A = (A1, A2), the following two distributions are
computationally indistinguishable:{

ExprealtOB,A(1
κ)

}
κ∈N

c
≈

{
ExpidealtOB,A,S(1

κ)

}
κ∈N

.

Note that, in this security definition, a token tkx hides x as well because S2 never receives x. This is
usually not required of obfuscation, but we achieve this property for free.

5.2 Scheme

The construction of a token-based obfuscation scheme is very similar to the construction of reusable
garbled circuits, the technical difference being minor: we need to specify how to construct the algo-
rithm tOB.Obfuscate from RGb.Garble and RGb.Eval. We construct a token-based obfuscation tOB =
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(tOB.Obfuscate, tOB.Token) as follows based on a reusable garbled scheme RGb = (RGb.Garble, RGb.Enc,
RGb.Eval). The token algorithm tOB.Token is the same as RGb.Enc.
Obfuscation tOB.Obfuscate(1κ, C ∈ Cn):

1. Let (Γ, sk)← RGb.Garble(1κ, C).

2. Construct the circuit O (the obfuscation of C) as follows. The circuit O has Γ hardcoded. It takes as
input a token tkx, computes RGb.Eval(Γ, tkx), and outputs the result.

3. Output sk as the secret key, and the description of O as the obfuscation of C.

Since the construction is essentially the same as the one of reusable garbled circuits and the security is
the same, the same claims and proofs as for reusable garbled circuits hold here, based on Theorem 4.3 and
Corollary 4.4. We state them here for completeness.

Claim 5.2. Assuming a reusable garbling scheme for the class of circuits C, there is a token-based obfuscation
scheme for C.

Recall the class of circuits Cn,d(n) defined for Corollary 3.2.

Corollary 5.3 (The LWE Instantiation). For every integer n ∈ N, polynomial function d = d(n), there is a
token-based obfuscation scheme for the class Cn,d(n), under the following assumption: there is a constant
0 < ϵ < 1 such that for every sufficiently large ℓ, the approximate shortest vector problem gapSVP in ℓ
dimensions is hard to approximate to within a 2O(ℓϵ) factor in time 2O(ℓϵ) in the worst case.

Denote by universal token-based obfuscation scheme, a token-based obfuscation scheme for the class of
all polynomial-sized circuits. Then,

Corollary 5.4 (Universal token-based obfuscation). If there is a universal fully secure single-key functional
encryption scheme, there is a universal token-based obfuscation scheme.

6 Computing on Encrypted Data in Input-Specific Time

We initiate the study of fully homomorphic encryption where the runtime of the homomorphic evaluation is
input-specific rather than worst-case time. We show how to use our functional encryption scheme to evaluate
Turing machines on encrypted data in input-specific time.

Let us recall the setting of computation on encrypted data. A client gives various encrypted inputs and a
function f to an evaluator. The evaluator should compute f on the encrypted inputs and return the encrypted
result, while learning nothing about the inputs.

Fully homomorphic encryption has been the main tool used in this setting. It was first constructed in a
breakthrough work by Gentry [Gen09] and refined in subsequent work [DGHV10, SS10b, BV11a, Vai11,
BGV12, GHS12a, GHS12b]. Since then, FHE has found many great applications to various problems.

However, one of the main drawbacks of FHE is that when evaluating a Turing machine (TM) over
encrypted data, the running time is at least the worst-case running time of the Turing machine over all inputs.
The reason is that, one needs to transform the TM into a circuit. If tmax is the maximum running time of
the TM on inputs of a certain size—namely, the running time on the worst-case input— then the size of the
resulting circuit is at least tmax. Thus, even if the TM runs in a short time on most of the inputs, but for a very
long time (tmax) on only one input, homomorphic evaluation will still run in tmax for all inputs. This property
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often results in inefficiency in practice; for example, consider a TM having a loop that depends on the input.
For specific inputs, it can loop for a very long time, but for most inputs it does not loop at all.

As a result, researchers have tried to find input-specific schemes. A first observation is that this goal is
impossible: input-specific evaluation implies that the evaluator learns the runtime of the TM on each input,
which violates CPA-security of the homomorphic scheme (Def. 2.5). Hence, we must relax the security
definition and allow the evaluator to learn the runtime for each input, but require that the evaluator learns
nothing else besides the running time. This goal is not possible with FHE because the evaluator cannot
decrypt any bit of information, so it cannot tell whether the computation finished or not; thus, we must look
for new solutions.

A second observation is that the evaluator must no longer be able to evaluate TMs of his choice on the
client’s data: if he could, the evaluator would run TMs whose running times convey the value of the input x
(for example, the evaluator could run |x| TMs, where the i-th TM stops early if the i-th bit of x is zero, and
otherwise, it stops later; in this way, the evaluator learns the exact value of x).

Based on these observations, we can see that functional encryption is the natural solution: it hides the
inputs to the computation, enables the evaluator to decrypt the running time, and requires the evaluator to
obtain a secret key from the client to evaluate each TM.

Due to the impossibility result for functional encryption [AGVW12] discussed in Sec. 1, the client cannot
give keys for an arbitrary number of Turing machines to the evaluator. The best we can hope to achieve is
for the client to provide a single key for a function to the evaluator (or equivalently, for a constant number q
of keys if the client runs the scheme q times). Fortunately, the single-key restriction does not mean that the
client can evaluate only one Turing machine. In fact, the client can give a key to the evaluator for a universal
Turing machine U that takes as input a TM M and a value x, and outputs M(x). Then, the client must specify
together with each input x the TM M he wants to run on x. Such a strategy is even desirable in certain cases:
the client may not want the evaluator to compute a TM on every input the client has provided and learn the
running time on that input; the client may prefer to specify what inputs to run each Turing machine on.

Using our functional encryption scheme, we achieve a construction that enables computation in input-
specific time. We call such a scheme Turing machine homomorphic encryption, or shortly TMFHE.

As discussed (Corollary 3.2), our functional encryption scheme is succinct in that the ciphertexts grow
with the depth of the circuit rather than the size of the circuit. Therefore, our input-specific computation
is useful only for Turing machines that can be represented in circuits whose depths are smaller than the
running time – because otherwise the client would have to do a lot of work and could instead just run the
Turing machine on its own. Moreover, for these machines, we cannot use the Pippenger-Fischer [PF79]
transformation because the resulting circuits have depth roughly equal to the running time of the transformed
machines. Specifically, our input-specific scheme makes sense for the following class of circuits, with a
bound on their depth.

Definition 6.1 (d-depth-bounded class of Turing machines). A finite class of Turing machinesM is d-depth-
bounded for a function d, if there exists a class of efficiently computable transformations {Tn}n∈N with
Tn : N→ {all circuits} such that Tn(t) = Cn,t where Cn,t is a circuit as follows.

• On input a Turing machine M ∈ M and a value x ∈ {0, 1}n, Cn,t outputs M(x) if M on input x
stops in t steps, or ⊥ otherwise.

• The depth of Cn,t is at most d(n) and the size of Cn,t is Õ(t).

Remark 6.1. Notice that, if we remove the depth constraint (but still keep the circuit size constraint), any
finite class of Turing machines satisfies the definition because of the Pippenger-Fischer transformation
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applied to the universal circuit of this class of Turing machines. Specifically, let Ut be a universal Turing
machine that runs any given machine M ∈ M for t steps. This machine has O(t) running time and when
applying the Pippenger-Fischer transformation [PF79] to it, we get a circuit of size O(t log t).

We next present our construction. For completeness, we provide formal definitions and proofs of our
theorems and claims in Appendix C. Our security notion (Def. C.2 in the appendix) is called runtime-
CPA security, which straightforwardly captures the fact that the evaluator should learn nothing about the
computation besides the running time.

6.1 Construction

A TMFHE scheme consists of four algorithms: TMFHE = (TMFHE.KeyGen, TMFHE.Enc, TMFHE.Eval,
TMFHE.Dec). The client runs TMFHE.KeyGen once in an offline preprocessing stage. Later, in the online
phase, the client sends a potentially large number of encrypted inputs to the evaluator. For every input (x,M)
consisting of a value x and a Turing machine M , the client runs TMFHE.Enc to encrypt the input and then
TMFHE.Dec to decrypt the result from the evaluator. The evaluator runs TMFHE.Eval to evaluate M on x
homomorphically in input-specific running time. The work of the client in the offline phase is proportional to
tmax, the worst-case input running time. However, for each input in the online phase, the client does little
work (independent of the running time of M ) and thus the cost is amortized.

We first provide intuition for our construction. As mentioned, we use our functional encryption scheme
FE to enable the evaluator to determine at various intermediary points whether the computation finished or
not. For each intermediary step, the client has to provide the evaluator with a function secret key fsk (using
the FE scheme) for a function that returns a bit indicating whether the computation has finished. However, if
the client provides a key for every computation step, the offline work of the client becomes quadratic in tmax,
which can be very large in certain cases. The idea is to choose intermediary points spaced at exponentially
increasing intervals. In this way, the client generates only a logarithmic number of keys, while the evaluator
runs in roughly twice the time of M on an input.

As part of TMFHE.Enc, besides providing the FE encryptions for a pair (M,x), the client also provides
a homomorphic encryption for x and the machine M , so that once the evaluator learns the running time of M
on x, it can then perform the homomorphic computation on x in that running time.

We present our construction for a class of d-depth-bounded Turing machines. By Def. 6.1, such a class has
a transformation Tn that enables transforming a universal TM into a circuit. Let FHE be any homomorphic
encryption scheme (as defined in Sec. 2.3) for circuits of depth d and let FE be any functional encryption
scheme for circuits of depth d. For simplicity, we present our scheme for Turing machines that output only
one bit; we discuss in Sec. 6.3 multiple output bits and how to avoid having the output size be worst case.
Key generation TMFHE.KeyGen(1κ, 1n, 1tmax) takes as input the security parameter κ, an input size n, and
a maximum time bound tmax.

1. Let τ = ⌈log tmax⌉. For each i ∈ [τ ], let Di = Tn(2i) be the circuit that outputs M(x) if M finishes in
2i steps on input x or ⊥ otherwise. Construct circuit Ci based on Di: the circuit Ci, on input a TM M
and a value x, outputs 1 if M finished in 2i steps when running on input x or 0 otherwise; Ci is the
same as circuit Di but it just outputs whether the first output bit of Ci is non-⊥ or ⊥, respectively.

2. Generate functional encryption secret keys for C1, . . . , Cτ by running:

(fmpki, fmski)← FE.Setup(1κ) and fski ← FE.KeyGen(fmski, Ci) for i ∈ [τ ].
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3. Generate FHE keys (hsk, hpk)← FHE.KeyGen(1κ).

4. Output the tuple PK := (fmpk1, . . . , fmpkτ , hpk) as the public key, EVK := (fsk1, . . . , fskτ , hpk) as
the evaluation key, and SK := hsk as the secret key.

Encryption TMFHE.Enc(PK,M, x): takes as input the public key PK of the form ({fmpki}i, hpk), a TM
M and a value x of n bits long.

1. Let x̂← (FHE.Enc(hpk, x1), . . . ,FHE.Enc(hpk, xn)), where xi is the i-th bit of x. Similarly, let M̂
← (FHE.Enc(hpk,M1), . . . , FHE.Enc(hpk,Mn)), which is the homomorphic encryption of M (the
string description of TM M ) bit by bit.

2. Compute ci ← FE.Enc(fmpki, (M,x)) for i ∈ [τ ].

3. Output the ciphertext c = (“enc”, x̂, M̂ , c1, . . . , cτ ).

Evaluation TMFHE.Eval(EVK, c): takes as input an evaluation key EVK of the form ({fski}i, hpk) and a
ciphertext c of the form (“enc”, x̂, M̂ , c1, . . . , cτ ).

1. Start with i = 1. Repeat the following:

(a) b← FE.Dec(fski, ci).

(b) If b = 1, (computation finished and we can now evaluate homomorphically on x̂)

i. Compute Di, the circuit that evaluates a Turing machine inM for 2i steps, using Tn(2i).
ii. Evaluate and output (“eval”,FHE.Eval(hpk, Di, (M̂, x̂))).

(c) Else (b = 0), proceed to the next i.

Decryption TMFHE.Dec(SK, c): takes as input a secret key SK = hsk and a ciphertext c of the form
(“enc”, x̂, M̂ , c1, . . . , cτ ) or (“eval”, c).

1. If the ciphertext is of type “enc”, compute and output FHE.Dec(hsk, x̂).

2. Else (the ciphertext is of type “eval”), compute and output FHE.Dec(hsk, c).

6.2 Results

We now state our results.

Theorem 6.2. For any class of d-depth-bounded Turing machines that take n bits of input and produce one
bit of output, there is a Turing machine homomorphic encryption scheme, assuming the existence of a fully
secure functional encryption scheme FE for any class of circuits of depth d, and an d-leveled homomorphic
encryption scheme FHE, where:

• The online work of the client is

(n+ log tmax) · poly(κ, d(n))
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• The online work of the server in evaluating M on an encryption of x is

poly(n, d(n), time(M,x)),

where time(M,x) is the runtime of M on x.

This theorem shows that our TMFHE scheme comes as a reduction from any functional encryption
scheme. The proof of this theorem is in Appendix C. We can see that the work of the client is indeed smaller
than computing the circuit especially if the polynomial d is smaller than the running time. Moreover, we can
also see that the server runs in input-specific time: the evaluation time depends on the actual running time
and the depth of the circuit.

When instantiating our TMFHE construction with our functional encryption FE construction from Sec. 3
and using Corollary 3.2, we obtain a scheme under an LWE assumption.

Corollary 6.3 (LWE Instantiation). For every integer n ∈ N and polynomial function d = d(n), there
is a Turing machine homomorphic encryption scheme for any class of d-depth-bounded Turing machines,
under the following assumption: there is a constant 0 < ϵ < 1 such that for every sufficiently large ℓ, the
approximate shortest vector problem gapSVP in ℓ dimensions is hard to approximate to within a 2O(ℓϵ) factor
in time 2O(ℓϵ) in the worst case.

Remark 6.4. If the underlying FE scheme is selectively secure (Def. 2.14), one can still obtain an input-
specific homomorphic encryption scheme, but with selective security; namely, the scheme would achieve a
modified version of Def. C.2 in Appendix C (the adversary A must choose x before seeing EVK and PK).
The scheme would then be secure under the following assumption: there is a constant 0 < ϵ < 1 such that
for every sufficiently large ℓ, the approximate shortest vector problem gapSVP in ℓ dimensions is hard to
approximate to within a 2O(ℓϵ) factor in the worst case by polynomial-time adversaries.

Let us discuss what kind of Turing machines classes are d-depth-bounded.

Fact 6.5. The class of Turing machines running in log-space is log2-depth-bounded.

This fact follows directly from the known relation that the LOGSPACE complexity class is in NC2.
In general, the following pattern of computation would fit in d-depth-boundedness and would benefit

from input-specific evaluation. Consider a computation that on different types of inputs, it performs different
kinds of computation; all these computations are of the same (shallow) depth, but the computation can be
much larger in one case.

A few remarks are in order:

Remark 6.6. Denote by universal TMFHE scheme to be a scheme for any finite class of Turing machines.
Based on Remark 6.1, we can see that if there is a universal succinct functional encryption scheme and a fully
homomorphic scheme, there is a universal TMFHE scheme with online client and server work independent of
depth:

• The online work of the client becomes

(n+ log tmax) · poly(κ)

• The online work of the server in evaluating M on an encryption of x becomes

poly(n, time(M,x)),

where time(M,x) is the runtime of M on x.
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6.3 Input-Dependent Output Size

The construction above considered Turing machines that output only one bit. To allow TMs that output more
than one bit, one can simply use the standard procedure of running one instance of the protocol for each bit
of the output. However, as with running time, this would result in repeating the protocol as many times as the
worst-case output size for every input. Certain inputs can result in small outputs while others can result in
large outputs, so it is desirable to evaluate in input-specific output size.

We can use the same approach as above to obtain input-specific output size: The client provides keys to
the evaluator to decrypt the size of the output. Then, the evaluator can simply use homomorphic evaluation
on a circuit whose output size is the determined one.
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A Detailed Background on Learning With Errors (LWE)

The LWE problem was introduced by Regev [Reg05] as a generalization of “learning parity with
noise” [BFKL93, BKW03, Ale03]. Regev showed that solving the LWE problem on the average is as
hard as (quantumly) solving several standard lattice problems in the worst case. This result bolstered our
confidence in the LWE assumption and generated a large body of work building cryptographic schemes under
the assumption, culminating in the construction of a fully homomorphic encryption scheme [BV11a].

For positive integers ℓ and q ≥ 2, a vector s ∈ Zℓ
q, and a probability distribution χ on Zq, let As,χ be

the distribution obtained by choosing a vector a $← Zℓ
q uniformly at random and a noise term e

$← χ, and
outputting (a, ⟨a, s⟩+ e) ∈ Zℓ

q × Zq. A formal definition follows.

Definition A.1 (LWE). For an integer q = q(ℓ) and an error distribution χ = χ(ℓ) over Zq, the learning
with errors problem LWEℓ,m,q,χ is defined as follows: Given m independent samples from As,χ (for some
s ∈ Zℓ

q), output s with noticeable probability.
The (average-case) decision variant of the LWE problem, denoted dLWEℓ,m,q,χ, is to distinguish (with

non-negligible advantage) m samples chosen according to As,χ (for uniformly random s
$← Zℓ

q), from m

samples chosen according to the uniform distribution over Zℓ
q × Zq.

We denote by LWEℓ,q,χ (resp. dLWEℓ,q,χ) the variant where the adversary gets oracle access to As,χ, and
is not a priori bounded in the number of samples.

For cryptographic applications we are primarily interested in the average case decision problem dLWE,
where s

$← Zℓ
q. We will also be interested in assumptions of the form: no t-time adversary can solve dLWE

with non-negligible advantage, which we will call the t-hardness of dLWE.
There are known quantum [Reg05] and classical [Pei09] reductions between dLWEℓ,m,q,χ and

approximating short vector problems in lattices. Specifically, these reductions take χ to be (discretized
versions of) the Gaussian distribution, which is B-bounded for an appropriate B. Since the exact distribution
χ does not matter for our results, we state a corollary of the results of [Reg05, Pei09] in terms of the bound
on the distribution.

Let B = B(ℓ) ∈ N. A family of distributions χ = {χℓ}ℓ∈N is called B-bounded if the support of χℓ is (a
subset of) [−B(ℓ), . . . , B(ℓ)]. Then:
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Lemma A.1 ([Reg05, Pei09]). Let q = q(ℓ) ∈ N be a product of co-prime numbers q =
∏
qi such that for

all i, qi = poly(ℓ), and let B ≥ ℓ. Then there exists an efficiently sampleable B-bounded distribution χ such
that if there is an efficient algorithm that solves the (average-case) dLWEℓ,q,χ problem. Then:

• There is a quantum algorithm that solves SIVP with approximation factor Õ(ℓ
√
ℓ · q/B) and gapSVP

with approximation factor Õ(ℓ
√
ℓ · q/B) on any ℓ-dimensional lattice, and runs in time poly(ℓ).

• There is a classical algorithm that solves the ζ-to-γ decisional shortest vector problem gapSVPζ,γ ,
where γ = Õ(ℓ

√
ℓ · q/B), and ζ = Õ(q

√
ℓ), on any ℓ-dimensional lattice, and runs in time poly(ℓ).

We remark that this connection is time-preserving, in the sense that given an LWE algorithm that runs in
time t, these reductions produce algorithms to solve lattice problems that run in time poly(t).

We refer the reader to [Reg05, Pei09] for the formal definition of these lattice problems, as they have
no direct connection to this work. We only note here that the best known algorithms for these problems run
in time nearly exponential in the dimension ℓ [AKS01, MV10]. More generally, the best algorithms that
approximate these problems to within a factor of 2k run in time 2Õ(ℓ/k). Specifically, given the current state
of the art on lattice algorithms, the LWEℓ,q,χ assumption is quite plausible for a poly(ℓ)-bounded distribution
χ and q as large as 2ℓ

ϵ
(for any constant 0 < ϵ < 1).

Given this state of affairs, we will abuse notation slightly and conflate the LWE dimension ℓ with the
security parameter κ.

B Construction of Two-Outcome Attribute-Based Encryption

Let us construct a two-outcome attribute-based encryption scheme, denoted ABE2, from an ABE scheme,
ABE.

The idea is to use two ABE instantiations, one encrypting M0 and the other M1. To make sure that exactly
one of these messages gets revealed when a predicate is evaluated, we provide secret keys for the predicate
and the negation of the predicate for the two instantiations.
Setup ABE2.Setup(1

κ):

1. Run (fmsk0, fmpk0)← ABE.Setup(1κ) and (fmsk1, fmpk1)← ABE.Setup(1κ).

2. Let fmsk := (fmsk0, fmsk1) and fmpk := (fmpk0, fmpk1). Output fmsk and fmpk.

Key generation ABE2.KeyGen(fmsk, P ): Let fsk0 ← ABE.KeyGen(fmsk0, P̄ ) and
fsk1 ← ABE.KeyGen(fmsk1, P ), where P̄ is the negation of P , namely P̄ (x) = 1− P (x). Output fskP =
(fsk0, fsk1).
Encryption ABE2.Enc(fmpk, x,M0,M1): Let C0 ← ABE.Enc(fmpk0, x,M0) and
C1 ← ABE.Enc(fmpk1, x,M1). Output C = (C0, C1).
Decryption ABE2.Dec(fskP , C):

1. Parse fskP = (fsk0, fsk1) and C = (C0, C1).

2. Run M0 ← ABE.Dec(fsk0, C0) and if M0 ̸= ⊥, output M0.

3. Run M1 ← ABE.Dec(fsk1, C1) and if M1 ̸= ⊥, output M1.
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We next prove that this construction yields a secure two-outcome ABE scheme. Note that our construction
requires an ABE scheme where the predicate class Pn is closed under negation: for every predicate P ∈ Pn,
the predicate P̄ is also included in Pn.

Proof of Claim 2.5. Correctness of ABE2 is straightforward: If P (x) = 0, C0 will decrypt to M0 by the
correctness of ABE, and mutatis mutandis for P (x) = 1.

We prove security by contradiction. Assume there exists p.p.t. A = (A1, A2, A3) that breaks the security
of our ABE2 construction: Def. 2.11; namely, there exists a polynomial p such that, for infinitely many κ,

Pr[ExpABE2,A(1
κ) = 1] ≥ 1/2 + 1/p(κ). (6)

We construct a p.p.t. adversary R = (R1, R2, R3) that breaks the security of ABE, Def. 2.9.
The adversary R1 receives as input fmpk∗ and outputs a predicate P ∗ as follows. The adversary A1

expects two public keys. R1 uses fmpk∗ as one of these public keys and generates the other public key freshly
(fmsk, fmpk)← ABE.KeyGen(1κ). The order in which R1 provides these keys to A1 depends on the value
of P (x) not known at this step. If P (x) will be 0, R will have to give A the ability to decrypt a ciphertext
encrypted with the first key. If that key is fmpk∗, R cannot accomplish this task because it does not have the
corresponding secret key. Therefore, R will try to guess P (x) by flipping a random coin. Concretely, R1

runs:

1. Guess P (x) at random, namely draw a random bit denoted guess. If guess is 0:

(a) Provide (fmpk, fmpk∗) to A1.

(b) Receive P from A1 and output P ∗ := P .

2. Else [guess is 1]:

(a) Provide (fmpk∗, fmpk) to A1.

(b) Receive P from A1 and output P ∗ := P̄ .

Adversary R2 receives as input fskP ∗ and generates M∗
0 ,M

∗
1 , and x∗ as follows.

1. Generate fskP̄ ∗ ← ABE.KeyGen(fmsk, P̄ ∗).

2. If guess is 0, provide (fskP̄ ∗ , fskP ∗) to A2, else (guess was 1) provide (fskP ∗ , fskP̄ ∗) to A2.

3. Receive (M,M0,M1, x) from A2. Output M∗
0 :=M0, M∗

1 :=M1 and x∗ := x.

Adversary R3 receives as input c∗ and outputs a guess bit as follows:

1. Check that P (x) equals guess. If this is not the case, namely, R1 had guessed incorrectly the value of
P (x), output a random bit and exit. Otherwise, continue.

2. Feed the following input to A3: if guess = 0, feed inputs (ABE.Enc(fmpk, (x,M)), c∗), else (guess =
1), feed inputs (c∗,ABE.Enc(fmpk, (x,M))). Output whatever A3 outputs.
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R1 guesses P (x) correctly with a chance of half. When R1 does not guess P (x) correctly, R3 outputs a
correct bit with chance 1/2 (because it outputs a random guess). When R1 guesses P (x) correctly, we can
see that R simulates the ABE2 game with A correctly. Therefore, in this case, whenever A guesses correctly,
R also guesses correctly. Using Eq. (6), we have

Pr[ExpABE,R(1
κ) = 1] ≥ 1/2 · 1/2 + 1/2(1/2 + 1/2p(κ)) = 1/2 + 1/2p(κ), (7)

which provides the desired contradiction.

C Homomorphic Encryption for Turing Machines: Definitions and Proofs

Let us first define the syntax of a Turing machine homomorphic encryption scheme.

Definition C.1. A Turing machine homomorphic encryption scheme TMFHE for a class of Turing machines
M is a quadruple of p.p.t. algorithms (TMFHE.KeyGen,TMFHE.Enc,TMFHE.Dec,TMFHE.Eval) as
follows:

• TMFHE.KeyGen(1κ, 1n, 1tmax) takes as input a security parameter κ, an input size n, and a time
bound tmax, and outputs a public key PK, an evaluation key EVK, and a secret key SK.

• TMFHE.Enc(PK,M, x) takes as input the public key PK, a Turing machine M with one bit of output,
and an input x ∈ {0, 1}n, for some n, and outputs a ciphertext c.

• TMFHE.Dec(SK, c) takes as input the secret key SK and a ciphertext c, and outputs a message x.

• TMFHE.Eval(EVK, c) takes as input the evaluation key EVK, and a ciphertext c, and outputs a
ciphertext c′.

Correctness: For every polynomial n(·), for every polynomial tmax(·), for every sufficiently large security
parameter κ, for n = n(κ), for every Turing machine M ∈M with upper bound on running time for inputs
of size n of tmax(n), and for every input x ∈ {0, 1}n,

Pr[(PK,EVK,SK)← TMFHE.KeyGen(1κ, 1n, 1tmax(n));

c← TMFHE.Enc(PK,M, x);

c∗ ← TMFHE.Eval(EVK,M, c) :

TMFHE.Dec(SK, c∗) ̸=M(x)] = negl(κ).

Note that the correctness property constraints tmax to be a polynomial. However, tmax can still be a very
large polynomial and we would like the server to not have to run in that time for all inputs. (In fact, this
constraint can be eliminated if we use a FHE scheme and an ABE scheme that have no correctness error).

Definition C.2 (Runtime-CPA Security). Let TMFHE be an input-specific homomorphic encryption scheme
for the class of Turing machinesM. For every p.p.t. adversaryA = (A1, A2) and p.p.t. simulator S, consider
the following two experiments:
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ExprealTMFHE,A(1
κ) : ExpidealTMFHE,A,S(1

κ) :

1: (1tmax , 1n, stateA)← A1(1
κ).

2: (PK,EVK,SK)← TMFHE.KeyGen(1κ, 1n, 1tmax)
3: (M,x, state′A)← A2(stateA,PK,EVK)

4: c← TMFHE.Enc(PK,M, x)
5: Output (state′A, c)

4: c̃← S(M, 1n, 1t,EVK,PK) with t = time(M,x)
5: Output (state′A, c̃)

The scheme is said to be runtime-CPA-secure if there exists a p.p.t. simulator S such that for all pairs of
p.p.t. adversaries A = (A1, A2) for which A2 outputs M ∈M and x ∈ {0, 1}n, we have{

ExprealTMFHE,A(1
κ)

}
κ∈N

c
≈

{
ExpidealTMFHE,A,S(1

κ)

}
κ∈N

.

This definition essentially captures our security goal: one can simulate any information learned from
the scheme by using only the Turing machine M and the running time of M on x, but without any other
information about x.

In fact, we can achieve a scheme that hides M as well in a straightforward way: since our construction
passes M and x as inputs to universal circuits, M could also be hidden in the same way as x is.

C.1 Proof

Proof of Theorem 6.2. We first prove the correctness and efficiency claims of the theorem and then we prove
security.

If the underlying FE scheme is correct, then TMFHE is correct; whenever 2i for some i is an upper bound
on the running time of M on x, then Ci(M,x)’s output is 1. Based on the correctness of the FHE scheme
FHE, the evaluation of Di on M̂, x̂ will be correct, so FHE.Dec will return M(x).

Lemma C.1. The online work of the client in the TMFHE scheme is (log tmax + n) · poly(κ, d(n)).

Proof. The work of the client in the online phase consists of running TMFHE.Enc(PK, x) and TMFHE.Dec(SK, c).
The work of the client for TMFHE.Enc(PK, x) is npoly(d(κ)) to compute the FHE ciphertexts and
(1 + ⌈log tmax⌉) · poly(d(n), κ) to compute the FE ciphertexts. Since n depends polynomially in κ, we
obtain that total cost is at most (log tmax + n)poly(κ, d(n)) (where be incorporated the constant values in
the poly notation).

The runtime of TMFHE.Dec(SK, c) is poly(d(κ)) because FHE.Enc runs polynomial in κ and d(κ).
Therefore, the total online work of the client is (log tmax + n)poly(d(κ), d(n), κ).

Lemma C.2. The work of the evaluator in the TMFHE scheme is poly(n, d(n), time(M,x)).

Proof. The work of the evaluator consists of running TMFHE.Eval(EVK,M, c). This depends on the number
of times the loop in TMFHE.Eval is repeated and the cost within each loop. Let us evaluate the cost at the
i-th repetition of the loop. Let ti = 2i.

By the properties of the transformation Tn, the size of Ci is at most tipolylog ti. The cost of evaluating
FE.Dec(fski, ci) is therefore poly(n, d(n), tipolylog ti).
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If t is the runtime of M on x, the index i at which the loop will halt (because the evaluator obtained a
value the bit b being one) is at most 1 + ⌈log t⌉. Therefore, the loop will repeat at most 1 + ⌈log t⌉ times.

Runtime of TMFHE.Eval(EVK, c) =

1+⌈log t⌉∑
i=1

poly(n, d(n), ti polylog ti)

≤ (1 + ⌈log t⌉)poly(n, d(n), t polylog t)
≤ poly(n, d(n), t polylog t) = poly(n, d(n), t),

where the last equality comes from adjusting the implicit polynomial in poly. Note that even though EVK
consists of log tmax such fski keys, TMFHE.Eval does not have to read all of EVK.

Finally, we prove security of the scheme.

Lemma C.3. The TMFHE protocol is runtime-CPA-secure.

Proof. To prove that our TMFHE construction is secure, we provide a simulator S, as in Def. C.2. The
simulator S invokes the simulator of the functional encryption scheme, as in Def. 2.13, which we denote
SimFE. The simulator S receives inputs M , 1n, 1t, EVK, and PK, and proceeds as follows:

1. Compute 0̂n ← (FHE.Enc(hpk, 0), . . . ,FHE.Enc(hpk, 0)) (n times).

2. For each i ∈ [τ ], compute the circuits Di = Tn(2
i) and then Ci as before; we remind the reader that

Ci, on input a TM M and a value x, outputs 1 if M finished in 2i steps when running on input x or 0
otherwise.

3. For each i such that 2i < t:

(a) Call the simulator SimFE to simulate a computation result of 0 because M could not have finished
its computation at step i. Specifically, compute c̃i ← SimFE(fmpki, fski, Ci, 0, 1

n+|M |).

4. For each i such that 2i ≥ t:

(a) Call the simulator SimFE to simulate an answer of 1 because M finished computation on the
input (unknown to S). Thus, compute c̃i ← SimFE(fmpki, fski, Ci, 1, 1

n+|M |).

5. Output c̃ = (0̂, c̃1, . . . , c̃τ ).

To prove that S satisfies Def. C.2, we use three hybrids:
Hybrid 0: The ideal experiment with simulator S.
Hybrid 1: The same as Hybrid 0 but 0̂n gets replaced with x̂ = (FHE.Enc(hpk, x1), . . . ,FHE.Enc(hpk, xn)).
Hybrid 2: The real experiment.
It is easy to see that the outcome of Hybrid 0 and the outcome of Hybrid 1 are computationally

indistinguishable because FHE is semantically secure: the encryptions of 0n in Hybrid 0 and the encryption
of x in Hybrid 1 are both generated with fresh randomness, and the secret key hsk (or any function of hsk
other than a fresh encryption) is never released to any adversary.

Now let us look at Hybrid 1 and Hybrid 2. These are computationally indistinguishable based on a
standard hybrid argument invoking the security of SimFE as follows.
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The simulator SimFE is called τ times. Let c̃(1)i be the ciphertext output by the simulator for the i-th
invocation in Hybrid 1, and let ci be the ciphertext output in Hybrid 2 on the i-th invocation. It is enough
to prove that the outcome of these two experiments consisting of state′A and only one of the ciphertexts
(e.g., c̃(1)i or ci) are computationally indistinguishable. The reason is that one can employ a standard hybrid
argument consisting of τ + 1 sub-hybrids, the 0-th sub-hybrid being Hybrid 1 and the τ -th sub-hybrid being
Hybrid 2 and any intermediary sub-hybrid i has the first i ciphertexts as in Hybrid 2 and the rest as in Hybrid
1. Such an argument is possible because τ is polynomial in the security parameter and each ciphertext is
encrypted with independently generated public keys.

Therefore, all we need to argue is that the outcome of Hybrid 1 and Hybrid 2 consisting of state′A and
only c̃(1)i (ci respectively) are computationally indistinguishable. This follows directly because SimFE satisfies
the FULL-SIM-secure functional encryption definition, Def. 2.13.

The three lemmas above complete the proof of the theorem.
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