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Abstract

A reusable launch vehicle control problem during ascent is addressed via multiple-time

scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop

structure and provides robust, de-coupled tracking of both orientation angle command profiles

and angular rate command profiles in the presence of bounded external disturbances and plant

uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error

dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential

equations with desired eigenvalues placement. Overall stability of a two-loop control system is

addressed. An optimal control allocation algorithm is designed that allocates torque commands

into end-effector deflection commands, which are executed by the actuators. The dual-time scale

sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch

vehicle in the launch mode. Simulation results show that the designed controller provides robust,

accurate, de-coupled tracking of the orientation angle command profiles in presence of external

disturbances and vehicle inertia uncertainties. This is a significant advancement in performance

over that achieved with linear, gain scheduled control systems currently being used for launch

vehicles.



Introduction

Flight control of both current and future reusable launch vehicles (RLV) in ascent mode

involves attitude maneuvering through a wide range of flight conditions, wind disturbances, and

plant uncertainties. A flight control algorithm that is robust to changing flight conditions,

disturbances, and vehicle uncertainties would be an improvement over current RVL flight

control technology. Sliding Mode Controller (SMC) is an attractive robust control algorithm for

RLV ascent designs because of its inherent insensitivity and robustness to plant uncertainties and

external disturbances 13.

A SMC design consists of two major steps: (1) a sliding surface is designed such that the

system motion on this surface exhibits desired behavior in the presence of plant uncertainties and

disturbances; and (2) a control function is designed that causes the system state to reach the

sliding surface in finite time and guarantees system motion in this surface thereafter. The

system's motion on the sliding surface is called sliding mode. Strict enforcement of the sliding

mode typically leads to discontinuous control functions and possible control chattering effects 4.

Control chattering is typically an unwanted effect that is easily eliminated by continuous

approximations of discontinuous control functions 4'5, or by continuous SMC designs 6.

An example of the application of SMC is shown in the spacecraft attitude control work

performed by Dwyer et al 7. This work utilizes the natural time-scale separation, which exists in

the system dynamics of many aerospace control problems 8.

9
The RLV SMC architecture, which is developed in this paper, is a two loop structure

that incorporates backstepping techniques 1°. In the outer loop, the kinematics equation of angular

motion is used with the outer loop SMC to generate the angular rate profiles as virtual control

inputs to the inner loop. In the inner loop, a suitable inner loop SMC is designed so that the



commanded angular rate profiles are tracked. The inner loop SMC produces roll, pitch and yaw

torque commands, which are optimally allocated into end-effector deflection commands.

Multiple time scaling (multiple-scale) is defined as the time-constant separation between the two

loops. That is, the inner loop compensated dynamics is designed to be faster than the outer loop

dynamics. The resulting multiple-scale two-loop SMC, with optimal torque allocation, causes the

angular rate and the Euler angle tracking errors to be constrained to linear de-coupled

homogeneous vector valued differential equations with desired eigenvalues placement.

Simulation results are presented that demonstrate the SMC's effectiveness in causing the

X-33 technology demonstration Launch vehicle, operating in ascent mode, to robustly follow the

desired profiles. The resulting design controls large attitude maneuvers through a wide range of

flight conditions, provides highly accurate tracking of guidance trajectories, and exhibits

robustness to external disturbances and parametric uncertainties.

Equations of RLV dynamics

The dynamic equations of rotational motion of the rigid-body RLV are given by the Euler

equation in the body frame

(Jo +AJ_=-_(Jo +AJ_+T+d, (1)

where J0 e R3×3 is the nominal inertia matrix, AJe R 3×3 is an uncertain part of the inertia

matrix, caused by fuel consumption and variations of particular payloads from a nominal one,

_=[p q r] r is the angular rate vector, T={L,M,N} r is the control torque vector,

d = {L d ,M d ,N,_ }r is the external disturbance torque vector. The matrix _ is given by:



0 - 033 CO2
0)_ 0 -09

I -oJ, oJ, 0

(2)

The RLV orientation dynamics are described by the kinematics equation on the body

axes

]? = R(y)co, (3)

where

R(?') =

?' =[cp

1 tan0sincp tan0coscp

0 cos _0 - sin cp

sin cp cos cp
0

cos0 cos0

0 _]r

The RLV equations of the translational motion are given in the body frame as

(4)

1 Fi, = Hco - gCI:,+ (5)
M

where

r-

IO -v_ v

H =1 v 0 -v

/

L-- V v V x 0

(6)

, v ]r is the linear velocity vector, M is the mass of RLV, F is the vector of external

th , if m: >0 (7)M=ma..+m z, m z=m/o-th/t, rh/= O, ifmy=O'

described as follows:

gravitational constant. The total mass expenditure onboard the RLV in the launch mode is

forces acting on RLV, _=[sinq9 cos0sincp cos0coscp] r, and g=9.81m/s 2 is a



where m s and mi0 are the current and initial fuel masses, respectively, ma_. is a mass of the

RLV without fuel (dry), and th s is a rate of fuel consumption.

The control torque T is generated by the aerodynamic surfaces and rocket engines. This

is described by the equation

T = D(.)6, (8)

where D(.)_ R 3_'' is a sensitivity matrix calculated on the basis of table lookup data, 6 E R _ is

the vector of aerodynamic surface deflections and differential throttles of the rocket engines.

Electromechanical actuators deflect the aerodynamic surfaces (aerosurfaces), and thrust-

vector-control valves that throttle the rocket engines. The actuator dynamics are assumed to be

much faster than the dynamics of the compensated RLV flight control system.

Problem Formulation

The general problem formulation is to determine the actuator deflection commands 6,

such that the commanded Euler angle profiles y,. = [q_, 0,, q/]7- are robustly followed in the

presence of bounded disturbance torques d and plant inertia variations AJ. This problem is

addressed as follows:

• A control law is designed in terms of the control torque command vector T c, and

• An optimal control allocation matrix B v is designed to map the control torque command

vector T: to actuator deflection commands. That is,

6 = B T_ . (9)

• The "fast" actuator dynamics are neglected at the stage of the controller design. They must be

used during simulations to validate the designed controller.



Specifically,thecontrol problemfor theRLV in launchmodeis to determinethecontrol

torqueinputcommandvector T in thegivenstate,,affableequations

(Jo+ AJ)o) = -a(Jo + AJ)w + T_ + d,

such that the output vector y asymptotically tracks a command orientation angle profile

y,. = y,. That is,

limyic(t)-yi(t) =0 Vi=l,3. (11)

The desired RLV performance criteria is to robustly track both the commanded Euler

angle guidance profiles yc and the real-time generated angular rate profiles a),., such that the

motion for each quantity is described by a linear, de-coupled, and homogeneous vector valued

differential equations with given eigenvalues placement.

Sliding Mode Controller Design

Tracking of the commanded Euler angles guidance profile y,. (the primary

objective) is achieved through a two loop SMC structure 9. The cascade structure of the system in

eq. (10) and the inherent two time scale nature of the RLV flight control problem are exploited

for design of a two loop flight control system using continuous SMCs in the inner and outer

loops. The outer loop SMC provides angular rate commands to to the inner loop. The inner loop

SMC provides robust de-coupled tracking of angular rates (,o. Together, the inner and outer loop

SMCs form a two loop flight control system that achieves de-coupled asymptotic tracking of the

command angle guidance profile _/c- Similar structure was developed 't for an aircraft control

system using a dynamic inversion algorithm.



Outer Loop Sliding Mode Controller Design

The outer loop SMC takes the vehicle's angular rate vector co as a virtual control _o, and

uses the kinematics eq. (3) to compensate the Euler angle tracking dynamics. The motion of the

outer loop compensated tracking error dynamics, with desired bandwidth, is constrained (by

proper control action) to a sliding surface of the form

a=y_+Kliy_dr, a_ R 3 (12)

0

where y_ =y,.-y and K l =diag{kl_ }, K 1 _ R 3x3. The gain matrix K t is chosen so that the

output tracking error y_ exhibits a desired linear asymptotic behavior on the sliding surface

(a =0).

The objective of the outer loop SMC is to generate the commanded angular rate vector

¢o. (which is passed to the inner loop SMC) necessary to cause the vehicle's trajectory to track

the commanded Euler angles guidance profile 7,.. In other words, the virtual control law ¢o is

designed to provide asymptotic convergence (with finite reaching time) of the system's eq. (3)

trajectory to the sliding surface cy -- 0. Dynamics of the sliding surface in eq. (12) are described

as

6- = )_ - R(y)a_, + K,y_. (13)

The outer loop SMC design is initiated by choosing a candidate Lyapunov function of the

fOFITI

V 1 (14)= --CYrOY>0,
2

whose derivative is shown as

f' = at6- = err []?c - R(y)w c + K,y_]. (15)



To ensure asymptotic stability of the origin of the system in eq. (13), the following

derivative inequality of the candidate Lyapunov function is enforced 1-4

3

(1 =_per r SIGu(o.)=-p_ or, l, 19 >0. (16)
i=1

Considering equality (16), the required angular rate command wc to ensure asymptotic

stability is defined as

°9c = R< (Y)[Yc + KIY, ] + R-I (y)pSIGN(cr), (18)

where SIGN(or) = [sign(cr t ), sign(or 2), sign(or3 )_, and p > 0.

The sliding surface shown in eq. (12) will reach zero in a finite time 14 defined as

cr i (0) (19)
t r = max--,

i_[1,31 p

where /9 > 0, and t r is the design parameter describing the sliding surface reaching time. The

value of p is calculated using inequality (19).

The angular rate command profile in eq. (18) is discontinuous; as a result, the control

actuation will chatter during system operation on the sliding surface eq. (12). Mechanically and

electrically, this chattering is an unwanted effect. Moreover, a discontinuous profile cannot be

accurately tracked in the inner loop. To solve this problem, the discontinuous term (SIGN(a))

in eq. (18) is replaced by the high-gain linear term

I , ,  2o,KoCr=
L< 8 2 8 3

where e i > 0 V1,--3define the slopes of the linearized function 4'5.

After substitution of eqs. (20) and (18) into eq. (13), the sliding surface dynamics are of

the form



6" = -PKocr. (21)

Eq. (21) is globally asymptotically stable, since p > 0 and K 0 is positive definite, and

the equilibrium cr = 0 will be reached asymptotically. Moreover, in a close vicinity of o', = 0,

Vi = 1,-3, the tracking error y_ will exhibit de-coupled motion in accordance with eq. (14).

Inner Loop Sliding Mode Controller Design

The purpose of the inner loop SMC is to generate the vehicle torque command vector T

necessary to track the given commanded angular rate profile o3c. In addition to solving the inner

loop tracking problem defined as

lira o3,c(t) - o3i (t) =0, Vi = 1,3, (22)
(--+_

SMC causes the system to exhibit linear decoupled motion in sliding mode.

The motion of the inner loop compensated dynamics, with desired bandwidth, is

constrained (by proper control action) to a sliding surface of the form

t

s=o3_+K:fo3d_, seR 3,
0

(23)

where o3_ = o3,. -o3 and K 2 = diag{k 2 }, K 2 6 R 3×3• The angular rate tracking error o3e exhibits

a desired linear asymptotic behavior while operating on the sliding surface (s = 0 ) and with

proper choice of K_. The inner loop sliding mode dynamics in eq. (23) are designed faster than

the outer-loop sliding mode dynamics in eq. (14) in order to preserve sufficient time scale

separation between the loops.



The command torque T c is designed to provide asymptotic convergence (with finite

reaching time) of the system's eq. (1) trajectory to the sliding surface s = 0. Dynamics of the

sliding surface eq. (23) are described as follows:

k=O,. +(J0 + AJ)-'_(Jo + AJ_- (Jo + zXJ)-'Tc - (Jo +AJ)-td + K2w, • (24)

d ,5,1 negligibly
dt

Considering that the inertia matrix J0 + AJ is positive definite and assuming

small, the inner loop SMC design is initiated by choosing the candidate Lyapunov function of the

form

v = LsT(Jo+AJ)s> 0. (25)
2

whose derivative is shown as

=sT(1Ajs+(J0+zkJ)_ +(J0+AJ)K2fo +_(Jo+AJ)w-T-d). (26)

To ensure asymptotic stability of the origin of the system eq. (24), the following

derivative of the Lyapunov function candidate is enforced 1-4

3

<_-_s stoN(s) ---_]l,_,l, ,7> o. (27)
i=1

Further, the sliding surface eq. (23) will reach zero in a finite time _-4defined by

I',(°)l (2s)2" _<max --,

where r/> 0, and t r is the design parameter describing the sliding surface reaching time. The

value of r/ is calculated using inequality (28).

Considering inequality (27), the required torque command T c to ensure asymptotic

stability is defined as

1o



T = Jo6),: + JoK2me + D-,JoO) + #s + _S1GN(s).

One should note that the SMC eq. (29) is independent of uncertainties

d. Substituting eq. (29) into eq. (26) yields

, ,1
i=1

Using the inequality 4 srAjs < _ s -, where A.

the matrix zSj, and assuming

(A,J(bc) , <a,, (AJK2w,) ,, <b,, (ff2AJo_),. <c,, (d), <L, Vi=l,3,

then inequality (30) is rewritten as follows:

3

9 <_-___(_-a i -b, -c i -L,)s, -(It-A) s 2.
i=l

Inequality (32) is rewritten to enforce inequality (27) after selecting It > 2. This is,

3 3

"('I<-E (P-a, -b, -c, - t,)lsil <--17E s_ .
i=I i=l

The value of parameter /5 is identified in accordance with inequality (33) as follows:

> a, +b i +c, + L, +17

Remark. The constants a,, b,, c,, L, Vi = 1,3, are

inequalities (31) within a reasonable flight domain.

To avoid chattering, the SMC eq. (29) is implemented in a continuous form

Tc =J0fb c +.10Kzm_ +g2JoOO+Its+pSAT(Fs),

where

(29)

AJ, Aj and disturbances

(30)

is greater or equal to the maximum eigenvalue of

(31)

(32)

(33)

(34)

derived by estimating the upper bounds of

(35)

11



Vi = _.3, SAT(Fs) = sat ,sat--=-,sat , sat _. =
F = diag .g: J 5: 3 j 1, if s, >(,

s,
_-, . -_.,

-I, if s, <-_,

(36)

Two-loop stability analysis

The outer loop continuous SMC in eqs. (18) and (20) provides global asymptotic stability

of the equilibrium point cr = 0 in accordance with eq. (21). However, the virtual control signal

o4 defined by eqs. (18) and (20) is tracked in the inner loop with a tracking error to e. Using

backstepping techniques l°, the compensated dynamics of the outer loop sliding surface in eq.

(21) must be rewritten as follows

6" = -PK0o" + R(y)w. (37)

Initially, suppose the virtual control signal m_ is tracked in the inner loop by the

discontinuous SMC in eqs. (29) and (34). This SMC provides global asymptotic stability of the

equilibrium point s = 0, since the negative definiteness of the Lyapunov function derivative in

eq. (33) is maintained (given sufficient control power) in the presence of inertia matrix

uncertainties and external disturbances. Furthermore, the equilibrium point s = 0 is reached in

the finite time t = v r in eq. (28). So, Vt > z r the inner-outer loop compensated dynamics are

described as follows:

[ 1[:1K l-pK 0 -R(.)K 2 )'_

= 0 -pK 0 -R(.)K 2 ,

0 0 -K 2

m :-K,z. (38)

In accordance with eq. (38) and that matrix K 2 is chosen positive definite, the

equilibrium z = 0 (and w e = 0 ) is globally asymptotically stable. The equilibrium {7 = 0 is also

globally asymptotically stable, since the matrix K 0 is chosen positive definite and p >0.

12



Furthermore,the equilibrium ]/<=0 is globally asymptoticallystable, sincethe matrix K_ is

chosenpositive definite. Consequently,the systemin eq. (38) has a globally asymptotically

stableequilibrium {y<,or, z} r = 0.

The y< and o9< error dynamics are de-coupled using the multiple time-scale concept.

This is accomplished by selecting positive definite matrices K_ and K_ such that

min{Re[eig(K:)])>>max{Re[eig(K_)]}, and defining the elements of the diagonal positive

definite matrix Ko= diag{-_,} gi = 1--.fi and the scalar p>O such that

min{Re[eig(PKo)]}>> max{Re[eig(K,)_. This approach causes the z- and o-- transients to

die out first followed by the lim ¥e = 0 according to y< = -K_¥<.

Now, suppose the virtual control _o<. is tracked in the inner loop by the continuous SMC

in eqs. (35) and (36). The derivative of the Lyapunov function in eq. (26) is calculated as

follows:

F if Is,l><

-= I',I if

3

The boundary layer s, = _ Vi= 1,--3 will be reached in finite time t =rr, since I)<-r/Els, I
i=l

V 12 >_4,5. The resulting inner-outer loop compensated dynamics, Vt > Tr, are described as

follows:

13



IilI 0 -pK 0 -R(.)K: R(.)

0 0 - K_ 13×3

- A41 - A_2 - A43 - A4_

[i'Ill[i]'+ d + _, + y. (40.)

J,5 _ 46 47

where

A,, = [(I-(I + E)-' )R-'(y)(K, +/_(.)R-1(7))- (Jo + AJ)-I_2AJR-'(Y)]K i,

A._ 2 : [p(I-(I + r)-' )R-_(y)(K, + oK,, + R(y)R-'(Y))-(Jo +&J)-'f2AJR-'(Y)._¢'o,

A43 = [(I -(I + E)-' )R-' (y)(K, + PKo)R(y) + (I -(I + E)-' )1{ 2 -(Jo + AJ)-' £2AJJK2,

An = (Jo + AJ)-' (/.tI + ,bF) + (Jo + AJ)-' E_AJ - (I -(I + E)-' )R-' (y)(K t + pK o )R(y)- (I - (I + E) -1)K z,

A.ts=-(Jo+AJ) -t, Aa6=(I-(I+E)-') R-'(Y),

Aav = -((I - (I + E)-' )R-'(y)R(y)- (J o + AJ)-'_AJ)R-1 (Y), E= Jo .AJ.

The first three equations in eqs. (40) are the same as eqs. (38), with the exception of the

coupling of the bounded signal s. The system in eq. (38) has a globally asymptotically stable

equilibrium {7_, a, z} r = 0. Hence, the forced responses described by the first three equations in

eqs. (40) are bounded with boundary widths proportional to (, Vi = 1,3.

In particular, if 33=0, then AaI=A_:=Aa3=A_6=Aa7 =0, A_5 =J0 -1 and

A_ = Jo-_ (,uI +/31-'). Matrix

globally asymptotically

A., is obviously positive definite and the equilibrium s = 0 is

stable. Further, if limd(t) = C = const, then

lims = (/.tI +/SF)qC = const and limz = K2_(#I +/SF)<C = const. It is easy to show that in

this case limcr = limy, = 0.

14



The following are conclusions

continuousinner and outer loop SMCs operatingin the presenceof boundedinertia AJ

externaltorque d disturbances:

derived from the two-loop stability analysisof the

and

• The asymptotictransientbehaviorof the inner andouter loop tracking errors Ye and o9e,

which are controlled by the continuous outer loop SMC and the discontinuous inner loop

SMC, are de-coupled in presence of bounded AJ and external disturbance torque d.

.- The tracking errors 7e and o9e , which are controlled by the continuous outer loop SMC and

the continuous inner loop SMC, are bounded in presence of bounded AJ and external

disturbance torque d.

• The asymptotic transient behavior of the inner and outer loop tracking errors ¥e and o9,

which are controlled by the continuous outer loop SMC and the continuous inner loop SMC,

are de-coupled in presence of external disturbance torque d" limd(t)= C =const and
t--+_

completely known matrix of inertia J.

Control Allocation

The command torque T is related to the deflection command vector _5.

T = D(.)_5 .

Assuming rankD(.)= rank[D(.), T,.]= 3, it is obvious that given a T

infinite number of corresponding

following optimization problem

minf(_c)=6[Q6 ' FI: {6cD(.)_Sc-Tc=0 },
6c_F 1 - •

which is minimized by the solution

R" as follows:

(41)

profile, there exist an

6,. profiles that satisfy eq. (41). This lends itself to the

(42)

15



a,. : Q-LD(.)T[D(.)Q-1D(.) r ]-_Tc - (43)

Eq. (43) is re-written as

6,. : B_T c , (44)

where

Bv = Q-ID(.) T [D(.)Q-1D(.)T ]-1 (45)

is the control allocation (gain-mixing) matrix, Q is the weighting matrix, and D(.) is the torque-

to-deflection partial derivative matrix or sensitivity matrix.

Design and Simulation of the X-33 RLV Control System in the Launch Mode

The X-33 technology demonstration RLV controller design is considered in the launch

mode. The 6DOF high fidelity mathematical model includes the control deflection vector

8 6 R _' that consists of the following components: 61 and 62 are deflections of the right and left

flaps (in radians); 63 and 8._ are deflections of the right and left inward elevons (in radians); 8,

and 66 are deflections of the right and left outward elevons (in radians); 87 and 68 are

deflections of the right and left rudders (in radians); 69, 8_0, and 611 are pitch, roll and yaw

differential throttles (in % of power level) of the aerospike rocket engine. Flight guidance tables

for the Euler angle command profiles y,. are used. High fidelity sensor mathematical models

with 0.02 s time delay as well as realistic table look up wind gust profiles that create a

disturbance torque are also used.

The command profiles 09c and T c are generated by the outer and inner loop SMCs in

eqs. (18), (20) and (35). The deflection command vector 8 c is calculated in eq. (9) and executed

by the actuators, whose dynamics are contained in high fidelity models used in the simulations.

16



In thecalculationof thecontrol allocationmatrix B v in eq. (45), the Q-I matrix is chosen to be

diagonal. The diagonal terms are equal to square maximum deflections d,2m,_ , which provide

both a dimensionless performance index f(fi,, )= _fQfic and a uniform penalty function for each

command _5,. The control torque T is calculated by eq. (8) and used in eq. (1) during the

simulation. The time-varying sensitivity matrix D(.) is obtained by linearizing through the

aerodynamic and propulsion system data bases at various flight conditions.

The outer loop continuous SMC is designed in accordance with eqs. (12), (18) and (20).

The following outer loop SMC parameters are chosen:

ii00010.400p=l, K o= 0.8 0 , K l= 0.4 0 , (46)

0 1.5 0 0.4

where the matrix K l provides a 0.4 rad/s given bandwidth for the compensated outer loop. The

inner loop continuous SMC is designed in accordance with eqs. (23), (34) and (35). The

following inner loop SMC parameters are chosen:

[i81000] 18800/5 = 3.8"10 6 0 N-m, K, = 0 1.88 0 , (47)

0 5.0"106 0 0 1.88

where the matrix K 2 provides a 1.88 rad/sec given bandwidth for the compensated inner loop,

and _u = 0 is chosen since the matrix Z_lo is a negative definite.

The 6DOF time simulation results are presented in figures 1 - 18. Figures 1 - 3 and figure

7 show overall tracking performance of the Euler angle guidance profiles in the outer loop,

which is obviously decoupled and very accurate. Figures 4-6 show reasonably accurate tracking

the angular rates command profiles in the inner loop. Figures 14 and 15 demonstrate torque

17



commandprofiles T. Thesecommandsareallocatedinto actuatordeflectioncommandstic and

executed by the actuators. Figures 8-13 demonstrate corresponding deflections of the

aerodynamic surfaces and engine differential throttles that are far from saturation. Figures 16-18

show that tracking motion happens in the close vicinities of the sliding surfaces. This means that

the robust accurate real sliding mode exists in the X-33 control system by means of the two loop

multiple scale SMC in the presence of wind disturbances and inertia uncertainties.

Conclusions

Employing a time scaling concept in the inner (angular rates) and outer (orientation

angles) loops, a new two-loop continuous SMC was designed for the RLV. This SMC provides

de-coupled performance in the inner and outer loops in presence of bounded external

disturbances and plant uncertainties. Stability of the two-loop control system is analyzed. A

control allocation matrix is designed that optimally distributes the roll, pitch, and yaw torque

commands into end-effector deflection commands. 6 DOF high fidelity simulation show that the

multiple scale SMC provides robust, accurate, de-coupled tracking of the commanded Euler

angle guidance profiles for the X-33 RLV in the ascent mode in the presence of external

disturbances (wind gusts) and plant uncertainties (changing matrix of inertia).
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Figure 9 Inward eleven deflections
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Figure 10 Outward eleven deflections
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Figure 11 Rudder deflections
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Figure 12 Pitch differential throttle
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Figure 13 Roll and Yaw differential throttle
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Figure 14 Pitch command torque (lb-ft)
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Figure 15 Roll and Yaw command torque
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Figure 16 Outer loop sliding surfaces
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Figure 17 Inner loop sliding surfaces 1 and 3
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Figure 18 Inner loop sliding surface 2
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