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Abstract. Making model transformations trustable is an obvious target for 
model-driven development since they impact on the design process reliability. 
Ideally, model transformations should be designed and tested so that they may 
be used and reused safely as MDA components. We present a method for build-
ing trustable MDA components. We first define the notion of MDA component 
as composed of its specification, one implementation and a set of associated test 
cases. The testing-for-trust approach checks the consistency between these three 
facets using the mutation analysis. It points out the lack of efficiency of the 
tests and the lack of precision of the specification. The mutation analysis thus 
gives a rate that evaluates: the level of consistency between the component’s 
facets and the level of trust we can have in a component. Relying on this esti-
mation of the component trustability, developers can consciously trade reliabil-
ity for resources.  

1   Introduction  

MDA (Model Driven Architecture) is a very promising framework to promote high 
level reuse for software development. Instead of reusing code, the MDA proposes to 
reuse models for software design and to make these models first-class assets. In this 
context, models become more than illustrations for documentation, they are assets that 
can be manipulated, stored and modified by tools. Model transformations encapsulate 
specific techniques to manipulate and create models and they are used all along the 
development to introduce different design aspects. These transformations are impor-
tant assets for reuse in MDA that are meant to be deployed in different software de-
velopments and at different times in the development. Thus, they must be analysed, 
designed and implemented using sound software engineering techniques to ensure 
that they are reused safely. 

In this paper, we propose to encapsulate model transformations as components that 
are called MDA components. The contribution of this work is to propose a model for 
trustable components as well as a methodology to design and implement such 
components. Trustworthiness is a general notion which includes security, testability, 
maintainability and many other concerns. In this paper, we claim that trust is, in first, 
dependent on the quality of the tests in relation with the completeness of the 
specification, captured by executable contracts (as defined in design-by-contract [1]). 
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While building MDA components, we consider it as an organic set composed of three 
facets: test cases, an implementation and contracts defining its specification. A 
trustable component is considered as being “vigilant” [2], in the sense it embeds 
contracts accurate enough to detect most of the erroneous states at runtime. Trust is 
evaluated using a testing-for-trust process and reflects the consistency between the 
specification and the implementation of the component.  

This work details this three-facet model for a MDA component and explains how 
good test cases can be used to evaluate the trust associated to the component. Two 
major concerns are addressed for this study. First, we investigate the use of mutation 
analysis to check the consistency between the three facets of a component. This tech-
nique, originally designed to assess the efficiency of test cases, consists in systemati-
cally injecting faults in the program under test. It is then possible to measure how 
many faults the test cases or the contracts can detect. The rate of detected faults is 
called the mutation score. This technique was originally proposed for procedural 
programs and has been adapted to object-oriented programs. Here we study how mu-
tation analysis has to be adapted to evaluate the trust in MDA components. Second, 
we discuss the expression of contracts for these components. Since there is no stan-
dard today for the specification or the implementation of model transformations 
(QVT, EMF, Kermeta…), this work proposes to establish a taxonomy of contracts. 

Section 2 presents the notion of MDA components and the process we propose to 
build trustable components. Section 3 details the mutation analysis technique and its 
adaptation to the context of model transformation then section 4 details the taxonomy 
of contracts for MDA components. Section 5 illustrates the application of the process 
step by step on the UML2RDBMS example and provides first experimental results. 

2   Trusting MDA Components 

In this section, we propose a model for a MDA component that provides a basis on 
which a testing-for-trust process can be applied. Then we present this process which 
aims at improving the trust one may have in a MDA component by improving the 
efficiency of test cases and the accuracy of the specification.  

2.1   Building MDA Components with the Triangle View 

The proposed model to build trustable MDA components is based on an integrated 
design and test approach for software components. It is particularly adapted to a 
design-by-contract [1] approach, where the specification is systematically translated 
into executable contracts (invariant properties, pre/postconditions of methods). In this 
approach, test cases are defined as being an “organic” part of a component: a 
component is composed of its specification (documentation, methods signature, 
invariant properties, pre/postconditions), one implementation and the test cases 
needed for testing it (V&V: Validation and Verification). Fig. 1 illustrates this model 
of a component with a triangle representation. 

From a methodological point of view, we argue that the trust we have in a compo-
nent depends on the consistency between its three facets. The comparison between 
these three facets leads to the improvement of each one. The improvement of each 
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facet as well of the global consistency is an iterative process. First, a good set of test 
cases is generated. Then it is possible to improve the implementation: running the 
good test cases allows to detect faults and to fix them. At last the accuracy of con-
tracts can be improved to make them effective as an oracle function for test cases. 

Several difficulties arise in running this process. First, test generation since input 
data are models for a MDA component. Here, we consider that the test cases are 
provided by the tester. Second, the oracle function for a MDA component which can 
either be provided by assertions included in the test cases or by contracts. In a design-
by-contract approach, our experience is that most of the decisions are provided by 
contracts. The last difficulty is the writing of contracts for a MDA component since 
there is no clear definition of what contracts for model transformations should be. 

The trust in the component is thus related to the test cases effectiveness and the 
contracts “completeness”. We can trust the implementation since we have tested it 
with a good test set, and we trust the specification because it is accurate enough to 
derive effective contracts as oracle functions. 

 

 Measure  
of Trust based  

on  ConsistencyImplementation 

Specification  
       Contracts between the client 

and the component 

V&V

Checking Implementation 
against Specification 
(e.g. embedded tests) 

 

Fig. 1. Trust based on triangle consistency 

2.2   The MDA Trusted Component Process 

The process for building trust in a MDA-component consists in three steps as pre-
sented in Fig. 2. The process starts with an initial component that already has its three 
facets ready. The goal is then to improve each facet and to check the global consis-
tency between facets. On the right side of the figure, the evolution of the trust we 
have in each facet of the triangle view of the MDA component is highlighted. 

Step 1- Test cases improvement. It aims at improving the test set using a relevant test 
quality criterion. In this paper, we suggest to evaluate this quality using mutation 
analysis. We adapt it to evaluate the efficiency of test cases for model transformations 
programs, as detailed in section 3. This analysis produces a ratio, which estimates the 
fault revealing power of a test set (0 means that the test set does not detect any fault, 
and 1 means that all the seeded faults have been detected). We note Qtd this ratio and 
section 3 will go in the detail of its computation in the form of a mutation score (MS). 

 If this ratio is low when running a mutation analysis, it means that the test set has 
to be improved. This can be achieved by adding test cases by hand or by automatic 
optimization techniques. Step 1 ends when the quality of the test set reaches a satis-
factory quality (good mutation score).  
Step 2- Implementation improvement. This step leads to the correction of the model 
transformation program with the efficient test set. Indeed, test cases generated at  
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previous step have a high mutation score and are thus able to detect faults in the 
model transformation program. At this stage, the tester has to run these test cases on 
the model transformation, and, if some faults are detected, they have to be localized 
and fixed. At the end of step 2, the implementation facet is trustable, since its correct-
ness has been validated with efficient test cases. 
Step 3- Contracts improvement. It aims at embedding accurate contracts, considered 
as the executable part of the specification. The precondition for this step is that the 
MDA component has to possess a trustable implementation and efficient test cases. 
We propose using the mutation analysis again to estimate the accuracy of contracts in 
terms of fault detection rate (i.e. the proportion of faults the contracts actually detect 
knowing the test cases provoke a faulty output). It thus estimates the accuracy of 
contracts as embedded oracles.   

The difference with step 1 is that the fault revealing power of the test data set is 
known with the Qtd value. Using contracts as embedded oracles, the new proportion of 
detected faults (%detected-faults) is computed. The quality of contracts is checked 
w.r.t Qtd. The quality estimated for contracts Qcont is thus defined as:  

Qcont = %detected-faults /   Qtd. 

This can be seen as an estimate of the accuracy of contracts to be a valid oracle for 
the test cases. So, when Qcont equals 0, it means that no fault is detected by contracts 
and when Qcont equals 1, it means that contracts are able to detect all the faulty out-
puts. So step 3 consists in improving contracts until the expected quality level is 
reached. At the end of the process, the contracts are embedded in the MDA compo-
nent and it becomes ‘vigilant’, e.g. contracts have a good probability to dynamically 
detect faulty states [2]. 

When the three steps process ends, we obtain a MDA component with an estimate 
of the trust we may have in the test cases, the implementation and the contracts. This 
estimate has checked the consistency between test cases and implementation, and then 
between test cases, implementation and contracts. In section 3, we detail how the 
mutation analysis is adapted to the specific context of model transformation, and how 
contracts can be expressed in the particular context of model transformation. 
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Fig. 2. Building a MDA trusted component 

3   Mutation Analysis for Model Transformations 

Mutation analysis is a testing technique that was first designed to evaluate the effi-
ciency of a test set. It also allows to improve its effectiveness and fault revealing 
power. Originally proposed in 1978 [3], mutation analysis consists in creating a set of 
faulty versions or mutants of a program with the ultimate goal of designing a test set 
that distinguishes the program from all its mutants. 
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The process is presented in Fig. 3 with the execution of each test case against all 
the mutants of the program. A mutant is the program modified by the injection of a 
single fault. In practice, faults are modelled as a set of mutation operators where each 
operator represents a class of software faults. A mutation operator is applied to the 
original program to create each mutant. 

An oracle function is used to determine if the failure is detected. This function 
compares each mutant’s result with the result of the program P; the latter being con-
sidered as correct. If one result differs, it means that one test case exhibits the fault; 
the mutant is killed. The mutant stays alive if no test case detects the injected fault. 
Sometimes, a mutant can never be killed, it is an equivalent mutant and it has to be 
suppressed from the set of mutants. 

A test set is adequate if it distinguishes the original program from all its non-
equivalent mutants. Otherwise, a mutation score is associated to the test set to 
measure its effectiveness in terms of percentage of the revealed non-equivalent 
mutants. A benefit of the mutation score is that even if no error is found, it still 
measures how well the software has been tested giving information about the test set 
quality.  

MutationScore = #KilledMutants / ( #Mutants - #EquivalentMutants) 

If the score is insufficient, we have to improve the test set, which could be done 
with new test cases or actual test set improvement. 

The value of mutation analysis is based on one assumption: if the test set can kill 
all the mutants, then this test set is able to detect real involuntary errors.  

      

 
  

 
Mutant   

    

P   
    

Test 
   Set   
    

  suppress the equivalent mutants  improve the test set

 
     

 
 

 
    

  
mutant 

 
 

results  
 

 
 

results 
 
 of  P

 

 
  sufficient   

    

no   
    

 yes   
    

insert the    mutation   
 
  operators  

 
  

 
 

 
  

 
mutants 

 
 killed 

 
 

 
 

mutants 
 
 alive 

 
 

   oracle 
   

 

Fig. 3. Mutation process 

The relevance of mutation analysis depends on the relevance of the mutants, which 
itself strongly depends on the relevance of the mutation operators. Classical mutation 
analysis is related to a set of faults specified by mutation operators which define 
syntactic patterns which are identified in the program in order to inject a fault. For 
example, classical mutation operators include arithmetic operator replacement (like 
replacing a ‘+’ with ‘-‘). Some operators dedicated to OO programs, and especially to 
Java, have been introduced by Ma et al. in [4] (method redefinition, inherited 
attributes etc). These faults are related to the notions of classes, generalization, and 
polymorphism. These operators take into consideration specificities related to the 
semantics of OO languages, but remain simple faults which can be introduced by a 
syntactic analysis of the program. To execute mutation analysis with these operators, 
the faults are inserted systematically everywhere the pattern is found in the code. 
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In the next section, we explain why we do not want to transpose this classical mu-
tation process to the model oriented development. 

3.1   Mutation Analysis in a Model Development Context 

All the classical and OO operators can be applied to model transformation programs, 
but their relevance to this particular context is limited due to the following reasons: 

• Mutant significance: seeded faults are far from the specific faults a transformation 
programmer may do if he is competent. A transformation programmer will make 
not only classical programming faults but also specific faults related to the model 
transformation. He may forget some particular cases (e.g. forget to deal with the 
case of multiple inheritances in an input model), manipulate the wrong model ele-
ments etc.  A wrong model transformation will differ from the correct one by com-
plicated modifications in the transformation program. 

• Implementation language independency: Today there are lots of model transforma-
tion languages with their own specificities and which are very heterogeneous (ob-
ject oriented, declarative, functional, mixed). Thus we can not take advantage of a 
transformation language's syntax. To be independent from a given implementation 
language is an important issue. That leads us to choose to focus on the semantic 
part of the transformation instead of the syntactic one imposed by a language. So 
we introduce semantic operators, they have to reflect the type of fault which may 
appear. That is studied next section (3.2). 
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Fig. 4. Model transformation process 

Classical mutation operators (object oriented or not) are still useful, to check code 
or predicate coverage, for example. However they depend on the language which is 
used in the implementation, thus they have to be completed by injecting faults which 
make sense, in terms of erroneous model transformation. These new operators that we 
propose try to capture specific faults that take into account the semantics of a particu-
lar type of program: model transformation. Such mutation operators are called seman-
tic operators. 
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We need to analyze the activities involved in the development of model transfor-
mations (Fig. 4) which may be fault-prone. The mutants produced by the mutation 
operator insertions has to preserve the conformity towards the metamodels involved 
in the transformation; they must be able to process the input models (depending on 
their metamodels) and must not create output models that do not conform to output 
metamodels. Thus mutation operators must be directly connected with the metamodel 
notion. 

3.2   Semantic Faults for Model Transformations Activities 

The operators introduced have to be defined based on an abstract view of the trans-
formation program, by answering that question: which type of fault could be done 
during a model transformation implementation? For example, a transformation goes 
all over the input model to find the elements to be transformed, a fault can consist in 
the navigation of the wrong association in the metamodel, or in selecting the wrong 
elements in a collection. During a transformation, output model elements have to be 
created; a fault can consist in creating elements with the wrong type or wrong initiali-
zation. The analysis of these possible faults for a model transformation leads to dis-
tinguish 4 abstract operations linked to the main treatments composing a model trans-
formation: 

- navigation: the model is navigated thanks to the relations defined on its in-
put/output metamodels, and a set of elements is obtained. 

- filtering: after a navigation, a set of elements is available, but a treatment may be 
applied only on a subset of this set. The selection of this subset is done according 
to a filtering property. 

- output model creation: output model elements are created from extracted ele-
ments. 

- input model modification: when the output model is a modification of the input 
model, elements are created, deleted or modified. 

These operations define a very abstract specification of transformations, which 
highlights the fault-prone steps of programming a model transformation. However, 
we believe they explore the most frequent model manipulations for transformations. 

The decomposition of a model transformation with these fault-prone operations 
provides an abstract view useful to inject faults. We define mutation operators which 
are applied by injecting faulty navigation/filtering/creation/modification operations. 

3.3   Example of Two Mutation Operators Dedicated to Model Transformation 

For sake of conciseness, only two mutation operators are detailed. We present more 
operators in [5]. The example UML2RDBMS is a transformation which creates a set 
of tables (database) from the persistent classes of a UML diagram. 

3.3.1   Mutation Operators Related to the Filtering 
Filtering manipulates collections to select only the elements useful for the trans-
formation. In a general way, a filter may be considered as a guard on a collection, 



596 J.-M. Mottu, B. Baudry, and Y. Le Traon 

depending on specific criteria. Two types of filtering are considered. First, instances 
of a given class may be selected in function of their properties (attributes, methods, 
relations). That’s the property filtering. The second one can select some instances 
among a collection of instances of generic classes. That’s the type filtering. 

Collection filtering change with perturbation (CFCP): This operator aims at modi-
fying an existing filtering, by influencing its parameters. One criterion could be a 
property of a class or the type of a class; this operator will disturb this criterion. 

 In our transformation UML2RDBMS, this operator generates a mutant which fil-
ters the non “persistent” classes instead of the “persistent” one. In both cases, the 
filtering acts on a collection of instances of the same type. Then it is viable because 
the rest of the transformation will not be influenced. 

Filtering depending on the type of the classes could also be disturbed. A 
transformation could act on a collection of the generic class E. The instances in this 
collection are of type E, or its children classes (F and G for example). If a filtering on 
this collection selects only the instances of F, this operator creates two mutants: one 
selects the instances of G and the other the instances of E. All these classes share the 
same inherited properties. Then the fault injected by this operator will not be 
discovered. Even if a class redefines a property, the programmer should not detect the 
fault. 

Collection filtering change with deletion (CFCD): This operator deletes a filter on a 
collection; the mutant returns the collection it was supposed to filter. This operator 
leads to the same cases than the CFCP operator, which justifies its relevance. 

3.3.2   Operators Implementation with a Language Not Devoted to the MDE, Java 
We wrote the entire transformation using Eclipse Modeling Framework (EMF). The 
sample we are interested in is: 

ELists cls = getClasses(modelUse); 
Iterator itCls = cls.iterator(); 
while (itCls.hasNext()){ 
  Class c = (Class)(itCls.next()); 
  if (!c.is_persistent) cls.remove(c);    }//while 
createTables(cls); 

Here, the filtering (on the collection cls) is implemented from line 2 to 5. If we ap-
ply the CFCP operator, a mutant is generated with the code: 

ELists cls = getClasses(modelUse); 
Iterator itCls = cls.iterator(); 
while (itCls.hasNext()){ 
  Class c = (Class)(itCls.next()); 
  if (c.is_persistent) cls.remove(c);    }//while //mutant without ! 
createTables(cls); 

If we apply the CFCD operator, a mutant is generated with the code: 
ELists cls = getClasses(modelUse); 
createTables(cls); 
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If the CFCP operator modifies only one statement, the CFCD affects a larger part 
of the program. This illustrates the fact that we need operators that are more than 
syntactic changes. 

4    Contracts as Embedded Oracles  

Embedded oracles – predicates for the fault detection decision – can either be provided 
by assertions included in the test cases or by executable contracts. Contracts are ex-
pressed at specification level and translated into executable properties which are 
checked at execution runs of the transformation. Today, there is no standard to express 
contracts for model transformations or to define the specification of a transformation. 
In the following, we define two levels of contracts w.r.t. the classification of [6]: 

Basic contracts: The first level, basic, or syntactic, contracts, is required simply to 
make the system work. Interface definition languages, as well as typed object-based 
or object-oriented languages, let the component designer specifies the operations a 
component can perform, the input and output parameters each component requires, 
and the possible exceptions that might be raised during operation. Applied to MDA 
components, the input/output metamodels describe the “types” of the manipulated 
data. They are parts of the specification: the input/output models must be conformant 
to their respective metamodels. While for a classical procedure, a programmer can 
declare a variable as being an integer instead of a float, it is usual to consider that a 
model transformation takes a model as input not conformed to a whole metamodel but 
to one of its sub-part. For example, the UML2RDBMS transformation is restricted to 
the parts of the UML metamodel which describe what classes and their relations are. 
Thus contracts will check the conformance to this restricted metamodel that we called 
effective. Finally, we have contracts on the input models (basic precondition 
contracts) and on the resulting models (basic postcondition contracts). 

Behavioral semantic contracts: The second level, behavioral and semantic contracts, 
improves the level of confidence in the execution context for the specific model 
transformation. Because the UML2RDBMS input metamodel does not define 
precisely that the input model must include at least a class with at least one attribute, 
the user can only guess this fact. So, specific properties can be attached to the input 
domain of the transformation, which play the role of preconditions specific to the 
transformation. In classical programming, a programmer can write that the character 
variable should only be equal to ‘a’ or ‘b’ for example. So, if the effective metamodel 
describes the “type” of an input/output model, the precondition can express properties 
which must be true only for the given transformation. Three categories of contracts 
can be expressed:  

- domain contracts (or precondition) are properties specifying the input domain more 
precisely than a simple metamodel, 

- range contracts (or postconditions) are specific properties on the output models, 
- domain/range contracts (or postconditions) express properties linking the input and 

output models).    

In a design-by-contract approach, our experience is that most of the oracle verdicts 
are provided by contracts derived from the specification. The fact that the contracts of 
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components are inaccurate to detect a fault exercised by the test case reveals a lack of 
precision in the specification. The specification should be refined and new contracts 
added. The trust in the component is thus related to the test set efficiency and the 
contracts “completeness”. We can trust the implementation since we have tested it 
with a good test set, and we trust the specification because it is precise enough to 
derive accurate contracts as oracle functions.  

5   The Testing for Trust of a MDA Component Illustrated 

This section illustrates the three steps to improve the trustability of a MDA component 
using an example taken from the UML2RDBMS transformation implemented in Java. 
Mutation is applied on a particular method of the transformation (createColumns) 
and the improvement of the test set and the contracts to detect the mutants is 
illustrated. The createColumns, given below, takes a class and a RDBMS table as a 
parameter and adds one column in the table for each attribute of the class. The method 
is called recursively to add columns that correspond to inherited attribute.  

private static Table createColumns(Class classUse, Table tableUse) { 
Iterator itClass = classUse.getFeature().iterator(); 
while(itClass.hasNext()){ 
  metaUML.Attribute attributeUsed=(metaUML.Attribute)itClass.next(); 
  Column newColumn = MetaRDBMSFactory.eINSTANCE.createColumn(); 
  newColumn.setName(attributeUsed.getName()); 
  newColumn.setType(attributeUsed.getType().getName()); 
  tableUse.getColumns().add(newColumn); 
}//while 
Iterator itGeneralization = classUse.getGeneralization().iterator(); 
if( itGeneralization.hasNext()){ 
  tableUse=createColumns((Class) 
    ((Generalization)itGeneralization.next()).getParent(), tableUse); 
}//if 
return tableUse; 

}//method createColumns 

5.1   Test Set Improvement 

The first step of the process consists in evaluating the quality of the test set. Mutation 
analysis allows computing a mutation score that evaluates the proportion of simple 
errors the test set can detect. If this score is not acceptable, meaning that the test cases 
do not detect enough injected errors, the test set must be improved.  

For example, let us consider the following excerpt of the createColumn method: 

private static Table createColumns(Class classUse, Table tableUse) { 

……… 

Iterator itGeneralization = classUse.getGeneralization().iterator(); 
if( itGeneralization.hasNext()){ 
   tableUse=createColumns((Class) 
     ((Generalization)itGeneralization.next()).getParent(),tableUse); 
}//if 

return tableUse; 

}//method createColumns 
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The CFCP operator can modify the condition in the “if” statement to create the fol-
lowing mutant: 
private static Table createColumns(Class classUse, Table tableUse) { 

……… 
Iterator itGeneralization = classUse.getGeneralization().iterator(); 
if( ! itGeneralization.hasNext()){ 
   tableUse=createColumns((Class) 
     ((Generalization)itGeneralization.next()).getParent(),tableUse); 
}//if 
return tableUse; 

}//method createColumns 

To kill this mutant, it is necessary to add a test case which produces different out-
puts between the mutant and original version. We need an input model with a class 
that has a super class with at least one attribute. Several models may be generated, 
with simple or multiple inheritance. For example let us consider a model called 
“Model 1” that contains a class A which inherits from two classes B and C (Fig. 5). 
So, applying this analysis to the whole set of mutants forces the creation of new test 
cases (input models) which exercise the model transformation program more effi-
ciently than the simple test set provided by the tester.  

B C

« persistent » A

att2 : int att3 : int

att1 : int
 

Fig. 5. Model 1 

5.2   Implementation Improvement 

When efficient test cases (according to the mutation analysis) have been produced, 
they are executed against the implementation to detect errors in the program. For 
example, when running the transformation with the model 1, an error is detected: the 
produced table contains only two columns named att1 and att2, it does not contain the 
column called att3. The error is due to the fact that, the transformation only considers 
one super class when it looks for attributes from super classes to add new columns in 
a table being build. The correct version of the program is given below (the “if” is 
replaced by a “while”: all the super classes are navigated instead of only one):  

private static Table createColumns(Class classUse, Table tableUse) { 

……… 
Iterator itGener = classUse.getGeneralization(). iterator(); 
while( itGener.hasNext()) 
{ 
   tableUse=createColumns((Class) 
     ((Generalization)itGener.next()).getParent(),tableUse);}//while 
return tableUse; 

}//method createColumns 
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If several errors are detected and fixed after running the test cases, a new mutation 
analysis is ran with the corrected program since the mutants will be slightly different 
from the ones generated in previous analysis. Once efficient test cases are available 
and the program has been fixed, it is possible to improve the contracts. 

5.3   Contracts Improvements 

While for the step 1 (test set improvement) the difference between the outputs of the 
original and the mutant programs was used to check the efficiency of the test set, step 
3 is based only on the use of the mutants previously killed to evaluate the contracts. A 
mutant that is not killed at step 3 using contracts while at least one test case killed it at 
step 1 (using the difference of outputs as oracle) corresponds to a weakness of the 
contracts which should be improved.  

For example, let us consider the following contract for the UML2RDBMS trans-
formation. This contract is expressed in the context of the global metamodel for the 
transformation: the union of UML and RDBMS metamodels. It is necessary to link 
the input and output metamodels to express constraints between elements of the input 
(UML) and output (RDBMS) models. 

Contract: context MetaUmlRdbms inv: 
 self.modelUml.elements->select(e|e.oclIsTypeOf(Class)  
 and  e.stereotype->exists(s|s.name='persistent')) 
 ->collect(ec|ec.oclAsType (Class)) 
  ->forAll(cp|self.database.elements 
   ->one(t|t.name=cp.name and  
     cp.feature->select(f|f.oclIsTypeOf(Attribute)) 
    ->collect(fa|fa.oclAsType (Attribute)) 
    ->forAll(a|t.columns->one(tc|tc.name=a.name)) 
     and t.columns.size()=cp.feature 
     ->select(f|f.oclIsTypeOf(Attribute)).size())) 

Let us also consider a possible mutant for the createColumns method where the 
initialization of the type of the created column has been deleted: 

Mutant:   
private static Table createColumns(Class classUse, Table tableUse) { 
 Iterator itClass = classUse.getFeature().iterator(); 
   while(itClass.hasNext()){ 
    metaUML.Attribute attributeUsed=(metaUML.Attribute)itClass.next(); 
     Column newColumn = MetaRDBMSFactory.eINSTANCE.createColumn(); 
     newColumn.setName(attributeUsed.getName()); 
     tableUse.getColumns().add(newColumn);}//while 
 ……… 
}//method createColumns 

When running the test cases generated previously, the faulty part of the mutant pro-
gram is executed (this mutant is killed with mutation analysis). However, when run-
ning the test cases using the considered contract as the oracle function, the mutant is 
not killed. Looking at this contract, it appears that a particular property has not been 
expressed that prevents it from killing this particular mutant. A more complete con-
tract is given below (it adds a property that checks the type of the columns): 
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context MetaUmlRdbms inv: 
self.modelUml.elements->select(e|e.oclIsTypeOf(Class) and 
   e.stereotype->exists(s|s.name='persistent')) 
 ->collect(ec|ec.oclAsType (Class)) 
  ->forAll(cp|self.database.elements 
   ->one(t|t.name=cp.name and  
     cp.feature->select(f|f.oclIsTypeOf(Attribute)) 
    ->collect(fa|fa.oclAsType (Attribute)) 
    ->forAll(a|t.columns->one(tc|tc.name=a.name  
        and tc.type=a.type.name)) 
     and t.columns.size()=cp.feature 
     ->select(f|f.oclIsTypeOf(Attribute)).size())) 

Table 1. Mutation scores with contracts and different mutation operators 

 MS % Range contract % D/R 0 % D/R 1 % D/R 2 % D/R 3 % D/R % 
classic 91,7 64,6 74,0 83,3 88,5 91,7 91,7 
model 89,1 67,4 58,7 67,4 71,7 78,3 87,0 
total 90,8 65,5 69,0 78,2 83,1 87,3 90,1 

5.4   Results 

Table 1 gives results for several mutation analyses on the UML2RDBMS example. 
The three lines in the table correspond to different types of mutation operators: “clas-
sic” corresponds to classical mutation operators (mutants were obtained using MuJava 
mutation tool [7]), “model” corresponds to mutation operators dedicated to model 
transformation and “total” is the combination of both types of operators. The analyses 
were run with 96 classical mutants and 46 model-specific mutants. The first column 
(MS= Qtd) corresponds to the mutation score using the behavior difference as an ora-
cle (it estimates the quality of test set Qtd). The following columns present the quality 
Qcont of contracts. The second column concerns only Range contracts (check that the 
result conforms to the output metamodel). Columns 3 to 6 give the results with Do-
main/Range (D/R) contracts at 4 successive levels of improvement when applying the 
step 3 of the design-for-trust process. Last column is the final score obtained with 
both Range and improved D/R contracts. This first experiment shows that the range 
contracts allow detecting 60-70% of the mutants killed by the test set. However, to 
reach a higher score, D/R contracts are needed in complement to Range contracts. The 
combination of both allows reaching a Qcont of 90%. Roughly, it means that embedded 
oracles have a high probability to detect a faulty result: the MDA component is thus 
robust and ‘vigilant’.  These first results have to be validated with other experiments. 

6   Related Works  

The notion of MDA component has recently appeared as a necessary feature for a suc-
cessful deployment of MDA. In [8], this type of component is defined as “a packaging 
unit for any artifact used or produced within an MDA-related process”. This paper in-
troduces several concepts and entities that are present in a MDA context and they give 
several examples of MDA components. If they present model transformations as the 
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most important component, they also consider metamodels, promoters, and consistency 
checkers as MDA components. This concept of MDA component may thus be used in a 
wider meaning than the restricted but also more precise definition we propose in this 
paper. In [9], Fondement and al. also propose to use MDE components to answer meth-
odological needs. They analyze what are the different available technologies to improve 
reuse and define assets that can automate a model-driven methodology.  They consider, 
package dependency, profiling, model transformation and metamodelling and show that 
they all have serious limitations to allow a real component oriented MDE. As for [8], 
this work uses a larger definition of MDA component as ours, however and they only 
give clues of what could be done to actually design MDA components. In this paper, we 
focus on a specific aspect of MDE, the model transformation to define MDA compo-
nent and propose a trustability assessment. 

Concerning the particular techniques necessary to build trustable components, 
there are few related works. These techniques are: specification of contracts for a 
transformation, test generation and mutation analysis. In [10], Cariou et al. study the 
applicability of OCL to express contracts to specify a model transformation. Other 
works propose to express rules that declare the behavior of the transformation, but 
most of these techniques are declarative implementation of the transformation and not 
a specification from which the implementation is derived. 

There are also few works about model transformation testing. In [11], Lin et al., 
identify all the core challenges for model transformation testing, and propose a 
framework that relates the different activities. In [12], Küster considers rule-based 
transformations and addresses the problem of the validation of the rules that define 
the model transformation, i.e. syntactic correctness and termination of the set of rules. 
In [13], we looked at the problem of test data generation for model transformations 
and proposed to adapt partition testing to define test criteria to cover the input meta-
model (that describes the input domain for a transformation). 

At last, mutation technique has been widely studied to evaluate the test sets for im-
perative and object-oriented programming but, as far as we know, has not been stud-
ied to validate tests or contracts for model transformation, except in our work [5]. In 
[14], mutation analysis is studied in a UML context. The idea is to propose a taxon-
omy of faults when designing UML class diagrams. The work presented in this paper 
focuses on the specific faults related to model transformation and not on the way 
models may be faulty. 

7   Conclusion 

The presented work detailed a process to help programmers/developers building trust 
in a model transformation encapsulated into a MDA component. This method, based 
on test qualification, also leads to contracts improvement. For a given MDA compo-
nent, we propose to estimate the consistency between contracts, implementation and 
tests using mutation analysis as the main qualification technique. The process to im-
prove the trustability of MDA components is incremental: 

1. improving the test set by analyzing their efficiency using a mutation analysis, 
2. improving the implementation, thanks to the previously evaluated test set, 
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3. improving the contracts by measuring their accuracy as embedded oracles, know-
ing that test cases are efficient to provoke a faulty execution of the model trans-
formation program. 

Test set, implementation and contracts improvements are guided by the fact that 
we know which faults are injected during mutation.  
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