

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

International Journal of Software Engineering and Knowledge Engineering 25.4

(2015): 727 – 756

DOI: http://dx.doi.org/10.1142/S0218194015500084

Copyright: © 2015 World Scientific Publishing

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1142/S0218194015500084

International Journal of Software Engineering and Knowledge Engineering

 World Scientific Publishing Company

REUSABLE SOLUTIONS FOR IMPLEMENTING USABILITY

FUNCTIONALITIES

Francy D. Rodríguez

Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid,

Campus de Montegancedo s/n, 28660 Boadilla del Monte, Madrid, Spain

fd.rodriguez@alumnos.upm.es

Silvia T. Acuña

Departamento de Ingeniería Informática, Universidad Autónoma de Madrid,

Calle Francisco Tomás y Valiente 11, 28049 Madrid, Spain

silvia.acunna@uam.es

Natalia Juristo

Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid,

Campus de Montegancedo s/n, 28660 Boadilla del Monte, Madrid, Spain

natalia@fi.upm.es

Received (Day Month Year)

Revised (Day Month Year)

Accepted (Day Month Year)

Usability is a software systems quality attribute. Although software engineers originally considered

usability to be related exclusively to the user interface, it was later found to affect the core

functionality of software applications. As of then, proposals for addressing usability at different

stages of the software development cycle were researched. The objective of this paper is to present

three reusable solutions at detailed design and programming level in order to effectively implement

the Abort Operation, Progress Feedback and Preferences usability functionalities in web

applications. To do this, an inductive research method was applied. We developed three web

applications including the above usability functionalities as case studies. We looked for

commonalities across the implementations in order to induce a general solution. The elements

common to all three developed applications include: application scenarios, functionalities,

responsibilities, classes, methods, attributes and code snippets. The findings were specified as an

implementation-oriented design pattern and as programming patterns in three languages. Additional

case studies were conducted in order to validate the proposed solution. The independent developers

used the patterns to implement different applications for each case study. As a result, we found that

solutions specified as patterns can be reused to develop web applications.

Keywords: Software Engineering; Programming Patterns; Design Patterns; Usability.

1. Introduction

Usability is a critical software quality attribute critical in highly interactive systems [1].

Usability contemplates that specified users can use a product effectively and efficiently

enough to achieve specified objectives in a specified context [2]. Apart from improving

quality, several studies have pointed out other benefits of usability in software

1

mailto:fd.rodriguez@alumnos.upm.es
mailto:fd.rodriguez@alumnos.upm.es
mailto:silvia.acunna@uam.es
mailto:silvia.acunna@uam.es
mailto:natalia@fi.upm.es
mailto:natalia@fi.upm.es

2 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

development [3] [4] [5] [6] [7]: improved productivity of the work team and users and

increased income from software projects.

The field of human-computer interaction (HCI) has addressed system usability at

length. HCI guidelines are useful for achieving a satisfactory level of system usability.

The adoption of usability guidelines in software engineering (SE) has passed through

several stages. At first it was considered sufficient to include usability features in user

interface (UI) design to achieve satisfactory usability. As a result, usability was addressed

in the later stages of the software development cycle. Software architectures tailored to

this approach separated the UI functionality from the core functionality of the

applications [8]. Model-view-controller (MVC) is an example of this type of solution.

Later it was found that some usability issues generate static and dynamic constraints

on software components [9], that the separation strategy is no good for achieving a usable

system and that some usability issues should be addressed from the early phases of the

development cycle and particularly by the system architecture [10]. It was established

that there is a relationship between usability and functional requirements and even that

some usability-enhancing features have a direct impact on software functionality [11].

Based on HCI recommendations on how to improve software systems usability,

Juristo et al. [11] identified three categories of guidelines depending on their effect on

software development: usability guidelines with an impact on the UI, usability guidelines

with an impact on the development process and usability guidelines with an impact on

design. They reported empirical evidence of the relationship between usability and

software design, identified functional usability features (FUF) with a high impact on

design and measured their impact on real-world applications. In turn, each HCI author

identifies different FUF subtypes. Each subtype has been referred to as usability

mechanism (UM) and has a name indicating its functionality. A non-exhaustive list of

FUFs and their respective mechanisms is presented in [12].

In this paper we present reusable solutions for building three of the UMs identified as

having a high impact on design into web applications. We selected three UMs: Abort

Operation (part of the Undo/Cancel FUF), Progress Feedback (part of the Feedback

FUF), and Preferences (part of the User Profile FUF). The other mechanisms belonging

to these three FUFs are Global Undo, Go Back and Object-Specific Undo (Undo/Cancel

FUF); System Status, Warning and Interaction (Feedback FUF), and Favourites and

Personal Object Space (User Profile FUF). The UMs were selected according to several

criteria: number of affected functionalities determined according to the features of the

applications to be developed; ease of recognition by a system user, and ease of evaluation

from the viewpoint of HCI guidelines.

The solutions that we propose aim to provide developers with tools for effectively

building error-free usability functionality into a web application at the least possible cost.

As the solutions that we present were discovered by implementing usability

functionalities in different applications and successfully tested as part of other case

studies, they have been specified as patterns. A pattern is considered to be a three-part

rule that expresses a relationship between a given context, a problem and a solution [14].

Reusable Solutions for Implementing Usability Functionalities 3

Patterns are a way of specifying widely accepted reusable solutions within different

branches of knowledge. They are useful for transmitting good practices in a standard

format and language. A pattern is an experience-based reusable artefact, described in a

structured format, which communicates designs and best practices [15] [16].

The reusable solutions for each usability functionality that we present are composed

of several artefacts: a description of the functionality of the solution as application

scenarios or functional requirements, a design, and code implementing the proposed

design in three languages: PHP 5, Visual Basic .NET and Java. We refer to the union of

design and code as programming pattern. Programming patterns, also known as idioms,

are patterns with a low-level of abstraction. Programming patterns are a self-contained

solution describing how to implement parts of or relationships between components

identified in a design pattern using the programming language features and options [14].

This paper has been structured as follows. Section 2 analyses the related work dealing

with usability patterns. Section 3 describes the applied research method, detailing the

developed case studies. Section 4 analyses the process enacted to identify the application

scenarios for the Abort Operation and Progress Feedback UMs and to describe the

requirements associated with the Preferences UM. Section 5 details the process of

specifying the solutions as programming patterns. Section 6 describes the evaluation of

the proposed solutions based on another two case studies. Section 7 discusses the features

of the solutions. Finally, Section 8 presents the conclusions.

2. Related Work

HCI researchers have defined a lot of usability-related patterns bearing different names:

interaction or interaction design patterns [17] [18] [19], user interface patterns [20],

usability patterns [21] [22], and web design patterns [23]. Although they are described or

grouped differently, all these patterns have in common that they offer solutions to

specific usability problems. There are also several pattern libraries for user interface

design built by companies and available on the web [24] [25] [26] [27].

Some patterns appear in more than one definition or collection sometimes even under

the same name. For example, the navigation aid pattern is consistently referred to as

breadcrumbs in [18] [28] [24] [25] [26] [27], whereas the pattern indicating that the user

requires a button or link providing the option of exiting a screen and returning to a

familiar state is called escape hatch in [18] and home link in [28]. The HCI pattern

definition explains what they are, and when and why they should be used, and provides

detailed examples of what the UI should contain and how an application using the pattern

should work. Most definitions do not detail how to design or implement the pattern at

software development level. Only a few pattern library or collection web sites provide

implementation examples for some patterns [28], specify code (html and css) for

implementing the pattern [26] at UI level, and/or indicate which familiar language library

controls are applicable.

SE researchers have also conducted numerous studies and proposals for addressing

usability using patterns. As already mentioned, SE originally considered usability as a

4 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

feature associated exclusively with the UI, and therefore solutions were developed that

favoured the strategy of separating the UI from the core application functionality. Such

solutions can use different interfaces for the same functionality and UI-level changes do

not affect the application core. Examples of these solutions are the model-view-controller

(MVC) pattern and the presentation-abstraction-control (PAC) pattern. Later, however,

the separation approach was found to be insufficient for implementing, debugging and

maintaining some usability features [8].

Changes in the way that SE addresses usability have led to solutions covering the

entire software development cycle being proposed and researched, that is, from

requirements elicitation [12], through architecture [29] [8] [30] [10] [31] [32] and high -

level design, to low-level design and implementation [33] [34]. A lot of research has

focused on how to improve usability starting with the system architecture and identifies

connections between usability features and software architecture [29]. Bass and John

presented a set of usability scenarios in which the UI separation strategy is not good

enough to produce a usable system and define architecture patterns to support usability

[10]. John et al. [32] describe a study applying architecture patterns to support usability at

business level. The results of this study offer a general description of what

responsibilities the different functional elements must fulfil, but do not propose low-level

solutions for implementing usability issues.

In the same vein, the STATUS project [31] examined the relationship between

software architecture and usability and presented an approach for improving usability

applying a specified design process. It proposes guidelines [12] for eliciting usability

functionalities prior to architecture definition, useful for adding usability functionalities

from the very first stage of the development process, namely requirements elicitation.

We find that hardly any of the above HCI and SE patterns provide details on low-

level software design or implementation. In response, Folmer et al. [33] put forward the

concept of bridging patterns. Bridging patterns are an extension of HCI patterns showing

generic implementations for highlighting troublesome issues and their solutions. They

include two more sections than HCI patterns: architectural implications and an example

of the specific implementation in terms of classes and objects and/or in terms of

technologies or techniques used. They intended to provide an instrument for improving

communication on the boundary between SE and the HCI field. Folmer et al. describe

four bridging patterns in [33]: Multi-level undo, Multi-Channel Access, Wizard and

Single Sign-on.

We found that there are very comprehensive HCI pattern libraries and collections, but

most do not provide details for implementing the software system. When they do, the

implementation examples and code given are confined to usability features closely

related to the UI and do not address usability functionalities that have been identified as

having a high impact on design. Although they sometimes provide code for the odd

feature, like Progress Feedback [26] [24], for example, classified as having a high impact

on design, the suggested implementation is confined to the visual part of the usability

functionality and does not deal with issues affecting the core application.

Reusable Solutions for Implementing Usability Functionalities 5

Our research follows Folmer et al.’s approach [33] in that it provides real

implementations, but, unlike Folmer, we set out not only to clarify for architects the

potential systems architecture and design implications of the usability functionality, but

also to provide an implementation-level solution that can be reused as both a low-level

design pattern and reusable code library.

Aspect-oriented programming (AOP) approaches implementation from a different

angle [34]. AOP takes the view that there is a problem with using object-oriented design

and programming: the interlinking of application functionality with usability

functionality. Nevertheless, it remains to determine which usability features can be

modelled as aspects and evaluate the real benefits of using this approach to implement

usability functionalities.

3. Research Method

For this study we used a three-stage inductive research method, implementing case

studies to induce a general solution. We started with three sets of real requirements for

web applications and selected three UMs with a high impact on design: Abort Operation,

Progress (or Long-Action) Feedback and Preferences.

The three case studies developed are interactive web applications. The first is an

indicator administration system designed to create simple indicators and data and

classify, query and import data. The system was built in PHP 5 and has a MySql

database. The second case study is a web system for generating payment variables and

can update and manage payroll information, calculating information on overtime, nights,

weekends and work days. The system was built in Visual Basic .NET and has a Microsoft

SQL database. The third case study is a healthy food electronic commerce system. It is a

subscriber system that creates and maintains data on a subscriber’s state of health,

recommends a healthy diet, and provides several options for healthy food purchases and

deliveries. The system was built in Java and has a Postgress database.

The first stage of the research was to build the web systems assuring that all the final

systems provided the functionality associated with the Abort Operation, Progress

Feedback and Preferences UMs as well as their specific functionality. The elements

related to the UMs (e.g. requirements, classes and code) were highlighted in each artefact

generated in the development process, clearly identifying their respective UM

functionalities as each application functionality may include more than one UM. For

example, the functionality of each UM has a different typeface in the requirements

documents; UM-related classes are coloured differently in the class diagram; UM-related

components are shaded in the sequence diagrams (see Figures 2 and 4); and UM-related

snippets are properly documented in the code.

The second stage identified the commonalities across the implementations of each

UM in the three case studies and established which were reusable. The results were

specified as patterns in the third stage of the research. We propose a single design for

each UM and tailor the implementations to three programming languages: PHP 5, Visual

Basic .NET and Java. The proposed design together with the implemented code is

6 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

specified as a programming pattern. As part of the third phase, we also extract common

code snippets as a first step towards building a component library for usability

functionalities.

4. Usability functionalities and multiple scenarios

The description of usability functionalities in the elicitation guidelines [12][13] is still too

general for implementation. Developers using the existing guidelines face too many open

options regarding the selected UMs (Abort Operation (see Web Appendix
a
), Progress

Feedback (see Web Appendix
b
) and Preferences (see Web Appendix

c
)). This may lead to

scenarios in which the UM can be applied being omitted or to omissions or errors in their

implementation. From an analysis of the requirements after including usability

functionalities, we found that the functionality of each UM could be decomposed into

more detailed application scenarios. Some scenarios had a major effect on design and

implementation options or decisions.

We also found that the Abort Operation and Progress Feedback UMs differ

substantially from the Preferences UM. Whereas the first two closely interact with the

application functionalities, the Preferences UM behaves like any other system

requirement and hardly interacts with the other functionalities at all. This means that in

the first two cases usability functionality has to be described by means of scenarios

representing system interactions, whereas the functionality of the Preferences UM is

described by adding functional requirements to the system.

Trees with the identified combinations were built to give an overview of the scenarios

discovered for the Abort Operation and Progress Feedback UMs. Each tree branch is a

scenario. Each scenario has a name identifying its functionality and is described by

sequence diagrams. We used two patterns recognized by the web developer community

in order to generalize the sequence diagrams: façade pattern and model-view-controller

pattern. The façade is used as an entry point to all usability functionalities. The view

refers to the user interface, the controller receives the user events and sends requests to

the respective components, and the model manages the business rules. In the following

sections we detail the scenarios, requirements, responsibilities and components defined

for each usability functionality.

4.1. Scenarios for the Abort Operation UM

The Abort Operation UM should enable the user to cancel an operation, a command or

exit the application in a safe and predictable manner. The elicitation guideline for the

Abort Operation UM divides the questions into three levels: application, operation and

command. At application level, the guideline indicates that users should be asked whether

an option for exiting the application is necessary and, if so, how the option should be

a http://www.grise.upm.es/sites/extras/7/Usability_Elicitation_Pattern_AO.pdf
b http://www.grise.upm.es/sites/extras/7/Usability_Elicitation_Pattern_PF.pdf
c http://www.grise.upm.es/sites/extras/7/Usability_Elicitation_Pattern_PREF.pdf

http://www.grise.upm.es/sites/extras/7/Usability_Elicitation_Pattern_AO.pdf
http://www.grise.upm.es/sites/extras/7/Usability_Elicitation_Pattern_PF.pdf
http://www.grise.upm.es/sites/extras/7/Usability_Elicitation_Pattern_PREF.pdf

Reusable Solutions for Implementing Usability Functionalities 7

displayed to the user. According to the HCI recommendation associated with the

elicitation question, the quit option must be immediately and obviously available, even if

modal dialogues are used. If the quit option is selected after data have been modified, the

save option must be presented.

The operation level refers to actions requiring the execution of one or more steps

within an application, each of which requires user interaction. Each action has the effect

of changing the state of the application, either by modifying database information,

changing configuration parameters or altering application or session variables for web

applications. Finally, the command level refers to an instruction or order given to the

application by means of a single user interaction, that is, pressing a button, clicking on a

link, selecting a menu item or any other available option. The Abort Operation UM was

defined as an alternative path to core functionality throughout the requirements

description. Sequence diagrams were used to describe each alternative path associated

with the UM.

We found that there is a relationship between the elicitation guideline questions,

possible application scenarios, web system interpretations and the final system state. At

application level, for example, if the response to the guideline question Will the user need

an exit option for the application? is yes, there are two possible scenarios taking into

account the HCI recommendation stating that there should be an option for saving

changes: there are or there are no changes to be saved when the quit option is selected. If

there are no changes, the system will go to the next state, which may be a login page. If,

on the other hand, there are changes to be saved, the user should be asked whether or not

to save the changes. If the user does not want to save the changes, the system will go to

the next state, but if the user wants to save the changes, there are several possible

scenarios: they are saved successfully, or validation errors or database errors occur while

saving the changes. The application should go to a predictable state whatever the case.

We built scenario trees for each HCI recommendation level: application, operation

and command. At the application level, we identified five scenarios. At operation level,

however, the number of scenarios grew to 16, mainly because, unlike the application

level which has only one possible source (exit option), there are four possible sources at

the operation level: dialogue box containing a Cancel button, form containing a Cancel

button, selection of another application option and Clear button.

Figure 1 shows the size of the scenario tree at operation level. Note that, despite the

fact that the illustrated scenario tree contains 24 branches or cases, there are only 16

scenarios. This is because some cases generate one and the same scenario. In Figure 1, *

is placed beside the scenario name to identify repeated scenarios. For example, the

FormCancelOpButtonSaveChangesValError scenario is generated when the cancel option

is executed from a form containing a button, there are changes to be saved, the user

chooses to save the changes but validation errors occur while they are being saved. As far

as UM functionality is concerned, the scenario for the cancel option that is generated

when another application option is selected from a dialogue box or form, there are

8 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

changes to be saved, the user chooses to save the changes but validation errors occur

while they are being saved is exactly the same.

Fig. 1. Operational level scenarios tree for the Abort Operation UM.

Each branch of the tree shows a possible use case scenario for the UM functionality.

Each branch was named and described using sequence diagrams, for example, the

scenario for cancelling an operation using a form containing a cancel button, where there

are changes, the changes are to be saved and are successfully saved was called

FormCancelOpButtonSavedChanges (scenario highlighted in Figure 1). Figure 2

illustrates the associated sequence diagram.

The identified responsibilities for the Abort Operation UM are:

 Listen to user actions to determine when to quit the application, cancel an operation

or cancel a command.

 Know whether or not there are changes to be saved at any time.

 If there are changes to be saved, ask the user whether or not to save these changes

and know which action to take depending on the user response.

 Know the previous and current state of the application.

 Know how to save changes irrespective of the operation or command that is being

executed.

Reusable Solutions for Implementing Usability Functionalities 9

Fig. 2. Sequence diagram for the FormCancelOpButtonSavedChanges scenario.

We defined a set of components in order to fulfil the identified responsibilities. They

are shown in Table 1. These components are used in the sequence diagrams. The three

components related to usability functionality are shaded in Figure 2.

Table 1. Abort Operation UM component responsibilities.

Component Responsibility

ChangesChecker Updates and reports changes to be saved in the application

CancelHandler Saves changes if operations are aborted and gets system into a state that is predictable

and safe for users

UndoCancelFUF Receives request to abort operation (quit or cancel), asks the ChangesChecker

component if there are any changes, asks users if they want to save changes and calls

the respective method.

StepHistory Updates and provides information on previous and current application states.

4.2. Scenarios for the Progress Feedback UM

The Progress Feedback UM informs the user either graphically or textually of process

progress. The context for Progress Feedback functionality implementation is: a process

executing within an application is likely to block the UI for longer than two seconds.

According to the elicitation guideline, the questions to be asked are: Which tasks are

likely to take longer than two seconds? Which of the identified tasks are critical? How

will the user be informed that the process has finished? How will the user be informed

about the progress of each task? And what information is necessary in each case?

10 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

The elicitation guideline also shows a summary of the HCI recommendations on

which the questions are based. These recommendations provide more details about the

issues to be taken into account in the implementation. For example, one HCI

recommendation suggests that the system should supply information on the proportion of

the operation that has already been completed and the time remaining to finish the task.

For a web application, this recommendation implies major design and implementation

decisions: either the use of asynchronous processes to discover the progress of an

ongoing server-side task or the division of a process into several tasks for execution on

the client side monitoring progress on a task-by-task basis. Table 2 shows a list of the

elicitation guideline questions, their associated HCI recommendations, possible

application scenarios and their technological implications.

We infer from the technological implications shown in Table 2 that there are

conditions that generate significant design and implementation changes. These conditions

include task criticality, the type of available progress information, process cancellability

or usability functionality responsibility for reporting whether or not the process has

finished.

Table 2. Relationship between elicitation questions and scenarios for the Progress Feedback UM

Questions/Recommendations Cases/Scenarios Technological Implications

Question: Which processes are

critical?

Recommendation: If the process

is critical, users should not be

allowed to do anything else until

this task is completed. If the

task is not critical and takes over

5 seconds, users should be

allowed to run

another operation if they so

wish.

The process is critical. Users will not be

allowed to do anything else.

A scenario that allows users to

execute two simultaneous

processes calls in web

applications for the use of

asynchronous processes and a

checker to check events on all

the navigable pages and

monitor running processes. It

will also require a server-side

mechanism for reporting when

a process has finished.

The process is not critical and takes less

than 5 seconds. Users will not be

allowed to do anything else.

The process is not critical and takes

longer than 5 seconds. Users will be

allowed to run another operation if they

wish.

Question: How will the user be

informed when the process has

finished?

By displaying and automatically closing

a message reporting the results

(progress indicator will also be closed)

If the usability functionality is

responsible for reporting that a

process has finished, a

mechanism should be

implemented to query the

process state.

By displaying a message which will not

be exited until it is closed by the user

By displaying and automatically closing

a message on the progress indicator

By displaying a message on the progress

indicator which will not be closed

automatically

By displaying the actual result instead

of a message

Reusable Solutions for Implementing Usability Functionalities 11

Table 2 (Continued) Relationship between elicitation questions and scenarios for the Progress Feedback UM

Questions/Recommendations Cases/Scenarios Technological Implications

Question: How will the user be

informed about the progress of

each task?

Recommendation: Regarding

the remaining time: If the

timing can be calculated, use

either a Time-remaining

progress indicator or a

Proportion-completed progress

indicator; if timing cannot be

estimated, but the process has

identifiable phases or tasks, use

a Progress checklist; if neither

of these possibilities exist, then

indicate the number of units

processed; if no quantities are

known, use an Indeterminate

progress indicator.

By displaying a time remaining progress

feedback indicator

For processes requiring the

provision of progress

information that run as a single

process on the server,

asynchronous processes will

have to be used to manage the

core process and an independent

process that queries and updates

the progress on different threads.

Besides, a mechanism should be

added to the process to

determine and report progress.

Another possibility is to

subdivide the process into n

tasks, whose execution is

monitored from the client in

order to report progress in terms

of the number of tasks. Another

alternative would be a

combination of both options.

By displaying a proportion completed

indicator

By displaying a progress checklist

By displaying a message reporting the

number of processed units

By displaying an indeterminate time

progress indicator

By displaying a time remaining progress

indicator and number of processed units

By displaying a proportion completed

indicator and the number of processed

units

By displaying a progress checklist and

the progress of one of the tasks on the

list in terms of time, proportion or units

Question: What information is

necessary in each case?

Recommendation: Show how

much progress has been made

either verbally or graphically

and tell the user: what’s

currently going on, what

proportion of the operation is

complete so far, how much time

remains.

By displaying the process name The graphical component of the

progress indicator must be able

to display all four options

identified by the scenarios and

their possible combinations, and

be able to be configured to

display them according to the

available information.

By displaying the lower or upper value

bounds, for example, 0% to 100%, task

1 to n, 0 to x registers, total time, etc.

By displaying the current progress value

By displaying a description of the phase

or task as part of the overall process

Recommendation: The indicator

must tell the user how to stop

(or cancel) the operation if the

time remaining is longer than 10

seconds.

If the operation cannot be cancelled, the

actions open to users depend exclusively

on whether or not the task is critical.

If a task is cancellable, the

functionality necessary for

finishing the process leaving the

system in a safe and predictable

state should be implemented.

If the operation can be cancelled, display

a cancel option for users.

Apart from the above implications, there is another variable to be taken into account:

the technology. The design will be different depending on whether or not the technology

is able to manage multiple threads of execution (single-threaded or multithreaded

technology). A multithreaded language is one in which several processes can be executed

simultaneously, each with their own control flow. If the technology is multithreaded,

separate server-side processes can be used to update process progress. However, if the

technology is single threaded, no other task will be able to be run simultaneously to query

progress until the primary process finishes. There are two options in this case: use an

indeterminate progress indicator or change the design in order to subdivide the process

into several tasks that execute and display the processed tasks one by one, for example.

12 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

We found that there are 12 application scenarios for the progress feedback

functionality. The whole tree is shown in Figure 3. The scenarios are conditioned by the

possible responses to the elicitation questions and by the type of technology used. Note

that the nodes nearest to the tree root are related to responses to elicitation questions,

whereas the terminal nodes depend on the technology features.

Fig. 3. Progress Feedback UM application scenarios

Each scenario is described by a sequence diagram. For example, we have denoted the

scenario where a non-cancellable process using multithreaded technology with progress

information has to display a completion message for the user (highlighted in Figure 3) as

MultithreadedPIw/Infow/oCancelw/MSG. Figure 4 shows the respective sequence

diagram. The sequence diagram shows that there are two cycles. One cycle is associated

with the usability functionality and serves the purpose of querying the progress of a

process at set time intervals while the process is running. The other cycle is on the server

side. It is associated with the application functionality and serves the purpose of

periodically updating the active process progress information for query and display.

The responsibilities identified for the Progress Feedback UM are:

 If progress information is available and the technology is multithreaded, determine

whether a process is still active.

 Generate a server-side mechanism for the active process to update and report

progress.

 Create a cyclical process that queries the progress of a task until completion.

 Display the right progress indicator depending on the available information.

 Inform the user of task completion.

 Display the completion message and close the progress indicator.

Five components were defined to fulfil these responsibilities. They are described

below.

ProgressFeedbackUI. This component displays the either right progress indicator

depending on the available information —time, percentage, processed units, tasks

completed—, or an indeterminate progress indicator when no information is available. It

paints the progress indicator on the UI according to the parameters that it is given: title,

size, process name, task name, modal or modeless, initial value, etc. It changes the values

Reusable Solutions for Implementing Usability Functionalities 13

displayed at any time. It can reposition the progress indicator on the UI. It informs the

user that the process has finished as instructed. It displays the Close or Cancel button and

a completion message when necessary. It closes the progress indicator.

Fig. 4 Sequence diagram for MultithreadedPIw/Infow/oCancelw/MSG

ProcessChecker. This component is able to determine whether a process is still

active. It establishes whether or not the progress indicator should still be displayed and

checks its progress.

ProgressFeedbackHandler. This component handles the user-generated events and

server responses. It launches the right options depending on the event and the information

it receives. It also accounts for the possibility of there being more than one progress

indicator active at the same time. It is responsible for creating and updating the

ProgressFeedbackUI class instances in order to display and update the information on

screen. It manages cyclical processes that query a server object progress value every x

units of time.

ProgressResult. This is the server-side component that maintains the session process

progress information. Its function is to update and provide the process progress

information when requested.

FeedbackFUF. This component is a class that is used as a façade between the system

and progress feedback functionalities. Its responsibility is to distribute the requests to

usability functionality components reducing dependence on the application functionality.

14 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

4.3. Preferences UM

The Preferences UM does not interact much with the remainder of the system and

behaves like an add-on functionality. It is addressed in the same way as a functional

requirement by defining use cases, conceptual model and sequence diagrams. The

Preferences UM allows users to define and save their own settings for aspects like

language, font, icons, colour schemes and sound use. The user settings should be saved

for subsequent sessions. There is also the option of selecting predefined preferences

settings.

We identified a set of requirements associated with the Preferences UM to be taken

into account:

 Preferences can be configured at user, user group and application level.

 There must be a basic preferences configuration. This will be the default

configuration assigned when creating a user, user group or when the application

starts up without a login process.

 Apart from the basic or default configuration, other pre-established preferences

settings may be defined. These settings will be available for users to use to change

their current settings or apply when creating a user group, user profile or user.

 A persistence mechanism is necessary to store preferences information.

We found that four functional requirements cover the Preferences UM functionality:

 Apply user preferences settings during the application login process.

 Change preferences.

 Change preferences for a predefined set of preferences.

 Change the application language.

Each requirement has a sequence diagram that describes its behaviour. Figure 5

shows the sequence diagram for applying preferences during the login process.

Fig. 5. Sequence diagram for “Apply preferences during login process"

We use the components described below in order to meet the four requirements

associated with this usability functionality.

Preference_type. This component is the persistence mechanism for the available

preferences settings types. It includes the form of physical storage and the methods for

representing and accessing information.

Reusable Solutions for Implementing Usability Functionalities 15

Preferences. This component is the persistence mechanism for possible preferences

settings. It includes the form of physical storage and the methods for representing and

accessing information.

PreferencesFacade. This component represents the entry point from the web layer to

the business components and the model data. It provides all the methods required by the

controller to meet any user request. Internally it can call any business layer component

and access, modify and query the data.

PreferencesCSS. This component is a class for dynamically generating style sheets.

It is the key for changing the visualization of the pages when users change any of their

preferences. It will not work without the id of the set of user preferences.

PreferencesController. It is the component that has the responsibilities associated

with the Preferences UM at client level. It applies a set of preferences to the current view

of the application or changes the application language. It also displays and is used to

modify the current preferences settings. To fulfil these responsibilities, the component is

based on a PreferencesCSS class that is able to dynamically generate the style file for

each page and the functions of the façade.

5. Reusable solutions for the Abort Operation, Progress Feedback and

Preferences UMs

After identifying scenarios, requirements, responsibilities and components, we continue

to analyse the result of the three case studies searching for matches in classes, methods,

attributes and code. Based on the findings we were able to define a single design and

tailor the implementations to the three different programming languages: Visual

Basic .NET, Java and PHP 5. The programming patterns that we propose cover all the

discovered scenarios and requirements. We know that other implementations will apply

subsets of these scenarios and requirements on which ground not all the implemented

code will always be used. The example code associated with the patterns has been

documented so developers can easily locate the useful parts depending on the scope of

the UM functionality that they need to implement.

5.1. Abort Operation UM

After examining the elements related to the Abort Operation UM in the class design for

all three case studies, we found that:

 All three designs have a class that operates as a façade. As a result, all three cases

were built to be reusable solutions.

 In all three cases, there is a class that has the responsibility of determining whether

there are changes to be saved. This class has only one attribute and three methods

with similar functionality. The attribute is able to find out whether there are changes

to be saved, and the three methods are able to modify and query the attribute value.

 In all three cases, there is a class that encapsulates the main methods in order to

respond to a request to exit the application or cancel an operation or command. It

16 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

knows how to save changes and what the state of the system should be after

completing the request.

 Another class appears in two out of the three case studies. This class is responsible

for storing the information on the previous and current system state. VB .NET has no

class for this purpose because it uses technology-specific features.

At attribute level, we found that although attribute definition is technology dependent,

it is also consistent on several points. For example, an attribute in the class that

encapsulates the main methods for dealing with an abort operation request is used in all

three cases to store the necessary information for saving the changes, although it is

implemented differently in each case. The same applies to the instruction for closing a

dialogue box or quitting the application.

We also found that other design decisions matched. This applies to the use of a

singleton class as a façade (UndoCancelFUF) because the solution requires several

unique session attributes. The singleton pattern assures that there is only one instance of

the class and consequently a single data update channel. In the case of the Abort

Operation UM, the session data that should be unique are: whether or not there are

changes to be saved, the latest application state, how the current changes should be saved

and which dialogue box is active. The main difference that we found was how the system

states were handled. Due mainly to the Java technology used (JavaServerFaces), a server-

side class was used to store the information on the previous and current system state,

whereas VB .NET and PHP 5 used session variables instead of classes.

From the analysis of the three designs, we concluded that many attributes, methods

and classes fulfilled the same responsibilities and could therefore be unified in a single

design shown in Figure 6. The elements that do differ are complementary rather than

mutually exclusive and specify a design that covers all the discovered application

scenarios.

At programming level, we found that a significant proportion of the logic is on the

client side in all three cases. Being web systems, the client-level implementation is

written in the same script language in all three cases: Javascript. Some changes were

made to unify the three script codes, and a single piece of code was generated for all three

systems covering all the identified scenarios. Although the components have the same

responsibilities, the design is modified for adaptation to the technology.

Table 3 shows the unified design proposed for the Abort Operation UM, specified as

a design pattern. The pattern template has different sections: name, target problem

description and context, solution, structure, implementation and related patterns. The

solution section details the responsibilities to be fulfilled by the usability functionality.

The structure section includes the proposed design and, as this is an implementation-

oriented design pattern, includes an implementation section that specifies the steps

necessary to codify the proposed design.

Therefore, we have one design proposal and its implementations in each language.

The web appendix shows the programming patterns for the Abort Operation UM in three

Reusable Solutions for Implementing Usability Functionalities 17

languages VB .NET
d
, Java

e
and PHP 5

f
. The programming pattern template is not the

same as the design pattern. The structure section shows the modified design tailored to

the technology features. There is a new example section which shows the real code used

to implement each step of the solution.

Fig. 6. Design of unified classes for the Abort Operation UM

5.2. Progress feedback UM

In all three case studies, the design of the Progress Feedback functionality manages the

same five classes as described as components in Section 4.2. Figure 7 shows the final

class diagram. Because we are dealing with web applications, a distinction has to be

made between the client-side and server-side code. The client-side code is programmed

in the same script language for all three cases: Javascript. The server-side code, on the

other hand, is fully technology dependent, and therefore the proposed design varies in

each case. At client level, we were able to generate a single piece of Javascript code

which is reusable across web applications irrespective of the technology that they use.

The proposed programming patterns for the three languages used are shown in the web

appendix: Visual Basic .NET
g
, Java

h
and PHP 5

i
.

d http://www.grise.upm.es/sites/extras/7/PP_AO_VB_NET.pdf
e http://www.grise.upm.es/sites/extras/7/PP_AO_Java.pdf
f http://www.grise.upm.es/sites/extras/7/PP_AO_PHP.pdf
g http://www.grise.upm.es/sites/extras/7/PP_PF_VB_NET.pdf
h http://www.grise.upm.es/sites/extras/7/PP_PF_Java.pdf
i http://www.grise.upm.es/sites/extras/7/PP_PF_PHP.pdf

http://www.grise.upm.es/sites/extras/7/PP_AO_VB_NET.pdf
http://www.grise.upm.es/sites/extras/7/PP_AO_Java.pdf
http://www.grise.upm.es/sites/extras/7/PP_AO_PHP.pdf
http://www.grise.upm.es/sites/extras/7/PP_PF_VB_NET.pdf
http://www.grise.upm.es/sites/extras/7/PP_PF_Java.pdf
http://www.grise.upm.es/sites/extras/7/PP_PF_PHP.pdf

18 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

Table 3. Abort Operation UM design pattern

NAME Abort Operation UM

PROBLEM The user must be able to exit an application, operation or command immediately and quickly.

CONTEXT Highly interactive web applications

SOLUTION

Components are required to fulfil the responsibilities associated with the UM. They are:

 A component to update and report on whether there are any changes to be saved in the application.

 A component that queries whether there are any changes to be saved and asks the user whether to save the

changes after an abort operation request.

 A component that knows everything it needs to know in order to save the changes, if any, after an operation

is aborted.

 A component that knows the next application state after an operation is aborted irrespective of whether or

not there are any changes and whether or not they are to be saved.

 A component that knows what the previous system state was.

STRUCTURE

IMPLEMENTATION

 Create a singleton UndoCancelFUF class.

 Create a ChangesChecker that updates and provides information on application changes.

 Create a StepHistory class that updates and provides information on the previous system state.

 Create a CancelHandler class that knows how to save operations, clear fields and close dialogues and which

the next system state is after an operation is aborted.

 Implement the UndoCancelFUF class methods to operate as a façade for the CancelHandler, StepHistory

and ChangesChecker classes.

 Implement the right functionality in each changeable part of the application (controllers for MVC) so that

the state of ChangesChecker is updated if anything in the application is changed.

 Implement the right functionality so that the system always knows which method to use or which action to

take to save a change after cancelling an operation or quitting an application. This can be done using the

CancelHandler class.

 Implement the right functionality so that the system knows which method to use or which action to take at

any time in order to close a dialogue box, if any. This can be done using the CancelHandler class.

 Implement the right functionality so that the system knows how to clear form fields or active dialogue

boxes at any time. This can be done using the CancelHandler class.

 Implement the right system functionality to save the latest state during application navigation so that this

data item is available if a previous state has to be restored. This can be saved in the StepHistory class.

RELATED PATTERNS Singleton Pattern and Façade Pattern.

Reusable Solutions for Implementing Usability Functionalities 19

Fig. 7. Unified class design for the Progress Feedback UM

5.3. Preferences UM

The components identified for the UM were described in Section 4.3. As mentioned in

Section 4.3, this usability function is not described using scenarios because it hardly

interacts with application functionality at all. In this case, the UM functionality is

specified as four functional requirements. Figure 8 illustrates the class diagram that

covers the four established requirements. We find in this case that the usability

functionality has components in all three web application layers: persistence, business

and (web) interface.

20 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

Fig.8. Class design for the Preferences UM

As for the Abort Operation and Progress Feedback UM patterns, we obtained unified

client-side Javascript code for all three case studies. The web appendix shows the

programming patterns for the Preferences UM in Visual Basic .Net
j
, Java

k
and PHP 5

l
.

6. Evaluation

We have used cases studies [35] as a research methodology in order to evaluate the

feasibility of using design and programming patterns to implement usability

functionalities in web applications. The case study methodology is suitable for use in

software engineering research because it studies current phenomena in their natural

setting. It is used when the boundary between the phenomenon and its setting is not very

clear. By definition, case studies are conducted in real-world scenarios and are highly

realistic in return for which they are less controllable. Case studies mostly use qualitative

data that provide in-depth descriptions. However, quantitative data can be used too. Case

studies do not provide statistically significant conclusions. On the contrary, they use

different types of evidence, such as data, assertions and documents to support relevant

conclusions.

j http://www.grise.upm.es/sites/extras/7/PP_PF_VB_NET.pdf
k http://www.grise.upm.es/sites/extras/7/PP_PREF_Java.pdf
l http://www.grise.upm.es/sites/extras/7/PP_PREF_PHP.pdf

http://www.grise.upm.es/sites/extras/7/PP_PF_VB_NET.pdf
http://www.grise.upm.es/sites/extras/7/PP_PREF_Java.pdf
http://www.grise.upm.es/sites/extras/7/PP_PREF_PHP.pdf

Reusable Solutions for Implementing Usability Functionalities 21

The research process is similar to any other type of empirical study: case study

design, preparation for data collection, data collection, data analysis and reporting. Case

study design is flexible and the steps are quite often reiterated. Thanks to their flexible

design, the primary study parameters can be changed in the course of the study. The only

exception is the originally specified objectives, as this would alter the purpose of the case

study. The data were collected mainly by means of questionnaires, semi-structured

interviews and document analyses. Most of the analysis was carried out using qualitative

methods combined with a limited quantitative analysis.

The proposed solution is evaluated for exploratory purposes. The aim is to discover

what happens during the development of web applications when using design and

programming patterns in order to implement three UMs: Abort Operation, Progress

Feedback and Preferences. The problem context is highly interactive web applications

developed using the object-oriented paradigm. The unit of analysis is the web application.

The case study is embedded and uses two units of analysis: two web applications

developed using the proposed patterns.

The web applications used as units of analysis have been built by separate developers

with programming experience. The developers built the case studies as part of their

Madrid Technical University master’s theses. One of the developers holds a BS in

Computer Science and Engineering, an MS in Computer Science and Engineering and is

taking the UPM’s MS in Information Technologies, has five years’ professional

experience in software programming and design, is familiar with Visual Basic, Visual

Basic .Net, Java, TeamUp, Javascript, MatLab, HTML and XSLT and was acquainted

with the concept of usability before starting the case study. The other developer holds a

BS in Computer Systems Analysis and is taking a BS in Computer Science and

Engineering and the UPM’s MS in Software and Systems, has four years of professional

experience in programming and two years in software design, is fluent in Java, PHP and

Visual FoxPro, acquainted with Visual Basic, C#, C, C++, Javascript and Perl, and

unfamiliar with the concept of usability. Neither of the developers had previous

experience in the use of design patterns and only one of them had used programming

patterns.

They developed different applications based on real requirements. One of the cases is

an office supplies order control system for a nationwide company with offices in a

number of cities around the country. The primary goal is to automate the office supplies

query, ordering and reception system. The developer was given a preliminary

requirements document containing 13 functionalities. The second case study is a software

project requirements administration system. The system is able to define projects, make

requests, specify and monitor requirements and administer the related documents. The

goal is to improve communication between project team members and with customers.

The developer was given a preliminary requirements document containing 14

functionalities.

The developers used different programming languages and development models. One

of them used the Visual Basic .Net language and the incremental development model,

22 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

whereas the other used the Java language and the waterfall model. In order to elicit

requirements, the developers used the same elicitation guidelines as were used in this

study, plus reusable artefacts output by this research:

 Application scenarios for Abort Operation and Progress Feedback UMs and the

requirements definition for the Preferences UM.

 Design patterns. They provide a description of the components required to fulfil the

responsibilities associated with each usability mechanism.

 Programming patterns. They show a real-world solution using the design pattern

with specific technology. They provide reusable code snippets.

Each application was developed over six months. Each developer met with the user

and the researcher several times. Meetings were audio recorded. At the meetings with the

researcher, the developers were able to ask anything they wished about the use of the

elicitation guidelines, scenarios and/or patterns. Developers also met another researcher

who evaluated progress and advised on the process. At these meetings the principal

investigator acted primarily as an observer.

The developers were asked to document their reaction to the proposed solutions

throughout the entire process and rate how useful each part of the solution was. In

particular, they were asked to rate three aspects: ease of pattern understanding, ease of

pattern use and result of pattern application. The developers also recorded information on

time taken, number and type of elements affected by the solution. Finally, an interview

was held to find out how the developers rated the process as a whole.

The final documents delivered by the developers are secondary and tertiary data

sources. The secondary sources are the parts of the documents where the developers

directly respond to the research questions and the tertiary sources are the parts of the

document related to all the artefacts generated during the development process:

requirements specification, design and code.

From the data analysis, we found that the developed web applications adopted two

out of the three UMs: Abort Operation and Preferences. In the case of the Progress

Feedback UM, the Java programming pattern was not applicable because the JQuery

framework used in the pattern was incompatible with the JavaServerFaces technology

used by the developer. However, the developer did think that it would be possible to use

the same design if code were generated in the technology that he used. The Visual

Basic.Net implementation was also troublesome, and only the Progress Feedback UM

scenario reporting no progress information was implemented.

With regard to the quantitative data, the developers took some measurements of the

impact of using the proposed patterns on their systems. One is the number of

functionalities affected by each UM. As shown in Table 4, each UM has an equivalent

percentage impact. In both case studies, the Abort Operation UM has a high impact on

systems because it affects over 80% of the system use cases, whereas the Progress

Feedback and Preferences UMs do not have much impact in terms of the number of

affected use cases.

Reusable Solutions for Implementing Usability Functionalities 23

Table 4. Percentage of use cases (UC) affected in each case study (CS)

Usability mechanism No. affected UC/

Total No. UC in CS1

% CS1 No. affected UC /

Total No. UC in CS2

% CS2

Abort Operation 13/15 High (87%) 18/22 High (82%)

Progress Feedback 4/15 Low (27%) 7/22 Low (32%)

Preferences 1/15 Low (6.7%) 1/22 Low (4.5%)

The developers also counted the number of new classes added by each UM. Table 5

shows the percentage increase of system classes when using the patterns. We found that

although the percentages vary, the ratio is the same, that is, the Preferences UM has the

least and the Progress Feedback UM the most impact in all three cases. This is only

logical because the design-level solution is the same even though the code varies

depending on the language used.

Table 5. Number of affected classes.

Usability mechanism No. new classes / Total

No. classes in CS1

% CS1 No. new classes / Total

No. classes in CS2

% CS2

Abort Operation 3/34 9% 3/18 14%

Progress Feedback 7/34 21% 5/18 22%

Preferences 1/34 3% 2/18 10%

Another measure is the effort in terms of time taken to add UMs. These

measurements are not comparable because they are very much influenced by the

development model used, and each developer’s experience and programming style. Some

examples of these differences are: one of the developers chose to use UML, whereas the

other decided to use a tool to automatically generate the models. One developer used

paper prototypes, whereas the other built an operational prototype. One developer

decided to build a demo to find out how the Abort Operation UM worked and the other

decided to follow the pattern code. Despite these differences, there are some points in

common: it took both developers what they considered to be a long time to understand

each pattern at first, and both had to ask for further explanations on how the patterns

worked.

The developers concluded that it takes quite a lot longer to use the patterns first time

round because users have to find out how they work, but they can then be successfully

used to implement the usability functionality. The design pattern was easier to use and

was applied in 100% of the cases. As regards implementation, there were two

possibilities on the client side: the code was either used as a black box or tailored slightly.

Tailoring was necessary because of incompatibilities between the language technologies

or versions. On the server side, the code could not be used as a black box. However, a

copy/paste schema was feasible. Finally, developers concluded that once they grasped the

purpose of the scenarios, they were useful and easy to use as a complement for elicitation

guidelines and in the analysis stage.

24 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

In response to the questions asked to validate the proposal, developers concluded that

although it takes longer to understand the solution first time round, the final result was

positive, as the systems provided all the usability functionalities, except the Progress

Feedback UM. However, they did think that this UM could be implemented using the

proposed design pattern if it were reprogrammed for the technology used. They suggested

several improvements for the artefacts, such as better documented code or demo

application development, but they did say that they would use the provided solution in

other developments.

7. Discussion

After implementing the Abort Operation and Progress Feedback usability mechanisms in

three applications, we found that there were multiple application scenarios depending on

user responses to the elicitation guideline questions. No such scenarios were identified,

however, for the Preferences UM because this functionality interacts less with application

functionality. We found that the more scenarios there are, the more coupled usability

functionality is with application functionality. Application complexity is directly

proportional to the number of scenarios.

The three case studies were comparable because they were developed according to an

object-oriented approach despite being implemented in two languages that are not

traditionally used with this approach: PHP and Javascript. Although these languages are

not usually used in object-oriented programming, they are able to define classes and

methods. This provides points of comparison.

We found that each UM had to fulfil similar responsibilities in all three case studies.

This means that there are also similarities in the design and coding. So, there are

components that fulfil the common responsibilities. This does not necessarily mean that

there is one component for each responsibility. In some cases, one component is used for

one responsibility and in others one component is used for two or three similar

responsibilities.

Some components could be implemented without making any distinction regarding

the scenarios that they were going to fulfil, that is, the code fulfils its associated

responsibility without reference to scenarios. In other cases, see Figure 9, distinctions had

to be made according to some conditions specified by the scenarios. Parts of the code will

not be executed depending on which scenarios a particular application uses.

Because the developed software systems are web applications, some of the identified

components are for the client side and others for the server side. The client side was

implemented using JavaScript in all three case studies. This results in similar and

comparable code. However, the implementation of the components on the server side is

language dependent, and they are only comparable at design level.

The code snippets are equal in all three cases. They are for the client layer. They are

implemented in JavaScript and cover all the documented scenarios. They are

encapsulated in a single file, which we consider to be the first step for building a usability

components library.

Reusable Solutions for Implementing Usability Functionalities 25

Fig. 9. Components and scenarios

8. Conclusions

In this paper, we explored the possibility of outputting reusable solutions for

implementing three usability functionalities. From real implementations we found that

there are three commonalities that can be generalized as reusable artefacts for different

phases of the development process. The results of this study are confined to highly

interactive web applications developed using the object-oriented paradigm. The results

may differ for other types of applications.

The functionality covered by the reusable solution is confined to the application

scenarios identified for the Abort Operation and Progress Feedback UMs and the

requirements defined for the Preferences UM. New application scenarios or new

requirements may emerge as new case studies are developed. It is useful to document

scenarios and requirements using sequence diagrams from the very start of the

development process. In the requirements elicitation and specification phase, these

artefacts can be used to check that all the possible cases in which the usability

functionality is applicable are taken into account. In the design phase, they are able to

evaluate how the software system functionalities will be affected by the usability

functionality and provide a clear of idea of how they should be implemented.

The proposed design pattern encapsulates all the functionality necessary to cover the

responsibilities associated with each UM. The design will have to be modified according

to the technology in which it is implemented, although we found that the client-side code

is potentially common to any web application, as it uses a common script language

(Javascript). Programming patterns are useful when the new implementation uses the

26 Francy D. Rodríguez, Silvia T. Acuña and Natalia Juristo

same programming language and the same program versions. The results specified as a

design pattern are useful for implementing the solution in any programming language,

whereas programming patterns provide useful code for other implementations or at least a

guide for implementation in other programming languages.

The application of the patterns to other case studies developed by separate engineers

identified faults in the documentation and the need to provide additional demo

applications on top of the description of the code. Many of the reusable artefacts provided

were found to be useful and, although it took longer to understand and learn the patterns

first time round, they are potentially reusable in other implementations. One feature of

patterns is that they are open to continuous improvement, and each new implementation

will lead to upgrades, include other functionalities, improve the design and devise new

useful code for other languages or versions.

Acknowledgments

This work has been funded by the Spanish Ministry of Science and Innovation

“Tecnologías para la Replicación y Síntesis de Experimentos en IS” (TIN2011-23216)

and “Go Lite” (TIN2011-24139) projects.

References

[1] L. Constantine and L. Lockwood, Software for use: A practical Guide to the Models and

Methods of Usage-centered Design (Addison Wesley, New York, 1999).

[2] ISO, 9241-11, Ergonomic Requirements for Office Work with Visual Display Terminals. Part

11: Guidance on Usability, ISO, 1998.

[3] L. Trenner and J. Bawa, The Politics of Usability: A Practical Guide to Designing Usable

Systems in Industry (Springer-Verlag, New York, 1998, 49-60).

[4] J. Battey, IBM's redesign results in a kinder, simpler Web site, 1999.

http://interface.free.fr/Archives/IBM_redesign_results.pdf.

[5] G. Donahue, Usability and the Bottom Line, IEEE Software, 18(1) (2001) 31-37.

[6] J. Griffith, Online transactions rise after bank redesigns for usability, Business Journal (2002)

http://www.bizjournals.com/twincities/stories/2002/12/09/focus3.html.

[7] J. Black, Usability Is Next to Profitability, Bloomberg Business Week (2003)

http://www.businessweek.com/technology/content/dec2002/tc2002124_2181.htm.

[8] L. Bass and B. John, Supporting usability through software architecture, Computer34(10)

(IEEE, 2002)113-115.

[9] D. Perry, A. Wolf, Foundations for the study of software architecture, ACM Software

Engineering Notes, 17 (4) (1992) 40-52.

[10] L. Bass and B. John, Linking usability to software architecture patterns through general

scenarios, Journal of Systems and Software, 66(3) (2003) 187-197.

[11] N. Juristo, A. Moreno and M.-I. Sanchez-Segura, Analysing the impact of usability on

software design, Journal of System and Software, 80 (2007) 1506-1516.

[12] N. Juristo, A. Moreno and M.-I. Sanchez-Segura, Guidelines for Eliciting Usability

Functionalities Software Engineering, IEEE Transactions on Software Engineering, 33 (2007)

744-758.

[13] N. Juristo, A. Moreno and M.-I. Sanchez-Segura, Usability Elicitation Patterns (USEPs)

(2006) http://www.grise.upm.es/sites/extras/2/. Last visited: March 2012.

http://interface.free.fr/Archives/IBM_redesign_results.pdf
http://www.bizjournals.com/twincities/stories/2002/12/09/focus3.html
http://www.businessweek.com/technology/content/dec2002/tc2002124_2181.htm
http://www.grise.upm.es/sites/extras/2/

Reusable Solutions for Implementing Usability Functionalities 27

[14] F. Bushmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal, Pattern - Oriented Software

Architecture. A system of patterns (John Wiley & Sons, New York, 1996).

[15] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Patrones de Diseño. Elementos de software

orientado a objetos reutilizable. (Addison-Wesley, 2003).

[16] D. Alur, J. Crupi, D. Malks, Core J2EE Patterns (Sun Microsystems Press Publisher, 2003)

[17] Pointer, PoInter: Patterns of INTERaction collection.

http://www.comp.lancs.ac.uk/computing/research/cseg/projects/pointer/patterns.html. Last

accessed: 2012.

[18] J. Tidwell, Designing Interfaces (O'Reilly Media, Inc., 2010).

[19] M. Welie and H. Trætteberg, Interaction patterns in user interfaces, in Proc. of the Seventh

Conference on Pattern Languages of Programming (PloP), 2000.

[20] S. Laakso, User Interface Design Patterns, 2003.

http://www.cs.helsinki.fi/u/salaakso/patterns/. Last accessed: 2012.

[21] The Usability Group at the University of Brighton, The Brighton Usability Pattern Collection,

http://www.cmis.brighton.ac.uk/research/patterns/home.html. Last accessed: 2012.

[22] K. Perzel and D. Kane, Usability Patterns for Applications on the World Wide Web, in Proc.

of the Pattern Languages of Programming Conference, 1999.

[23] D. van Duyne, J. Landay and J. Hong, The Design of Sites: Patterns, Principles, and Processes

for Crafting a Customer-Centered Web Experience, (Addison-Wesley, 2002).

[24] Yahoo! Inc, Yahoo! Design Pattern Library, 2012. http://developer.yahoo.com/ypatterns/.

Last accessed: 2012.

[25] A. Toxboe, User Interface Design Patterns Library, 2012. http://ui-patterns.com/patterns. Last

accessed: 2012.

[26] Pattern Factory Oy, Patternry, 2012. http://patternry.com/. Last accessed: 2012.

[27] Infragistics, Quince. Interactive user experience (UX) design patterns library.

http://quince.infragistics.com/. Last visited: 2012.

[28] M. Welie, Patterns in Interaction Design: The Amsterdam Collection, 2008.

http://www.welie.com. Last visited: 2012.

[29] L. Bass, B. John and J. Kates, Achieving Usability through Software Architecture, in:

Technical Report CMU/SEI-2001-TR-005, (ed. Software Eng. Inst., Carnegie Mellon Univ.,

2001).

[30] B. John, L. Bass, M.-I. Sanchez-Segura and R. Adams, Bringing Usability Concerns to the

Design of Software Architecture, in: Proc. of EHCI-DSVIS'04: The 9th IFIP Working

Conference on Engineering for Human-Computer Interaction and the 11th International

Workshop on Design, Specification and Verification of Interactive Systems, 2004.

[31] STATUS Project, Software Architecture that supports Usability, 2001.

http://www.grise.upm.es/rearviewmirror/projects/status/index.html. Last visited: 2012.

[32] B. John, L. Bass, E. Golden and P. Stoll, A Responsibility-Based Pattern Language for

Usability-Supporting Architectural Patterns, in Proc. of EICS, 2009.

[33] E. Folmer, M. Welie and J. Bosh, Bridging patterns: An approach to bridge gaps between SE

and HCI, Information and Software Technology, 48 (2006) 69-89.

[34] M. Pinto, L. Fuentes, Aspect-Oriented Modeling of Quality Attributes, in Proc. of the Second

European Conference on Software Architecture (ECSA), 2008, pp. 334-337.

[35] P. Runeson, M. Höst, Guidelines for Conducting and Reporting Case Study Research in

Software Engineering, Empirical Software Engineering, 14 (2009) 131-164.

http://www.comp.lancs.ac.uk/computing/research/cseg/projects/pointer/patterns.html
http://www.comp.lancs.ac.uk/computing/research/cseg/projects/pointer/patterns.html
http://www.cs.helsinki.fi/u/salaakso/patterns/
http://www.cs.helsinki.fi/u/salaakso/patterns/
http://www.cmis.brighton.ac.uk/research/patterns/home.html
http://developer.yahoo.com/ypatterns/
http://ui-patterns.com/patterns
http://patternry.com/
http://quince.infragistics.com/
http://quince.infragistics.com/
http://www.welie.com/
http://www.welie.com/
http://www.grise.upm.es/rearviewmirror/projects/status/index.html
http://www.grise.upm.es/rearviewmirror/projects/status/index.html

