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Reuse in Systems Engineering
Gan Wang, Member, IEEE, Ricardo Valerdi, Member, IEEE, and Jared Fortune, Member, IEEE

Abstract—Reuse in systems engineering is a frequent but poorly
understood phenomenon. Nevertheless, it has a significant impact
on system development and on estimating the appropriate amount
of systems engineering effort with models like the Constructive Sys-
tems Engineering Cost Model (COSYSMO). Practical experience
showed that the initial version of COSYSMO, based on a “build
from the scratch” philosophy, needed to be refined in order to in-
corporate reuse considerations that fit today’s industry environ-
ment. The notion of reuse recognizes the effect of legacy system def-
inition in engineering a system and introduces multiple reuse cat-
egories for classifying the four COSYSMO size drivers—require-
ments, interfaces, algorithms, and operational scenarios. It funda-
mentally modifies the driver counting rules and updates its defi-
nition of system size. It provides an enabling framework for esti-
mating a system under incremental and spiral development. In this
paper, we present: 1) the definition of the COSYSMO reuse exten-
sion and the approach employed to define this extension; 2) the up-
dated COSYSMO size driver definitions to be consistent with the
reuse model; 3) the method applied to defining the reuse weights
used in the modified parametric relationship; 4) a practical imple-
mentation example that instantiates the reuse model by an industry
organization and the empirical data that provided practical valida-
tion of the extended COSYSMO model; and 5) recommendations
for organizational implementation and deployment of this exten-
sion.

Index Terms—Cost estimation, metrics, reuse, systems engi-
neering.

I. INTRODUCTION

A LMOST all systems have a legacy. Today, more often
than not, systems are developed based on an evolution

of previous systems. New releases of software are developed
by modifying and enhancing a previous release. Similarly, new
generations of airplanes, ships, and automobiles are developed
by improving the functionality and performance of previous
models. In many situations, product lines are managed through
incremental improvement of previous system definitions. In
other situations, existing systems are modernized through tech-
nology insertions and obsolescence management. Although
system-level examples where previously developed compo-
nents and capabilities have been leveraged can generally be
easily identified, the current literature fails to address how such
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instances of reuse at the system-level should be appropriately
quantified [22]. In other domains, such as software, reuse is a
much better documented concept [16], [19].

When a “new system” is developed, it commonly uses
existing components, proven functionality, or established ar-
chitecture. Across industry, we have witnessed ever increasing
trends of COTS-integration in system development and ever
diminishing endeavors of constructing something completely
new from a “clean slate”. However, incorporating disparate
elements together into a developing system is often no easy
task, as the integration of legacy elements can negatively impact
project resources, sometimes substantially [11]. Knowing this,
addressing reuse from a systems perspective, particularly the
impact on the systems engineering effort required throughout
the life cycle, is critical to accurately estimating the develop-
ment cost of a system.

The concept of reuse has been broadly studied, from
near-philosophical discussions in terms of technological inven-
tions [9] to useful techniques used in semiconductor fabrication
design process [12]; from knowledge management perspec-
tive [13] to manufacturing and service activities [7]. Perhaps
the most extensive effort to date has been the focus on soft-
ware reuse [16], examining issues ranging from methods and
techniques [8], [17], processes [5], [16], [20], to productivity
and economic impacts [4], [5], [10], [23], and to social and
behavior phenomenon in reuse [2], [15]. COCOMO [4], [5],
for example, captures reuse quantitatively by characterizing
source lines of code (SLOC) in terms of process and design
maturity in developing new software and provides a practical
approach for estimating new development with the benefit of
such a reuse. Systems engineering, as a relatively young field
in engineering, has yet made cognitive steps in formulating its
own reuse strategy. As the result, the reuse has been mostly
opportunistic and little guidance has been offered to proac-
tively leverage the practice. In fact, methods are only emerging
to quantitatively evaluate systems engineering activities and
characterize the economic impact and productivity [6], [31]. As
systems engineering content rapidly increases in developing a
system, more practical guidelines are urgently needed.

One method for estimating the amount of systems engi-
neering effort required for a project is the Constructive Systems
Engineering Cost Model (COSYSMO) [25]. Developed at the
University of Southern California with the support of a con-
sortium of academic, industry, and government organizations,
COSYSMO is a parametric model for estimating the systems
engineering and integration effort required for the conceptual-
ization, design, test, and deployment of software and hardware
systems and executing projects that develop such a system.
The model provides a parametric relationship that estimates
systems engineering effort under nominal schedule, in person
months, based on four size drivers—system requirements
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(REQ), system interfaces (INT), system algorithms (ALG), and
operational scenarios (SCN)—and adjusted by fourteen effort
multipliers, which capture the product and project environment
and complexity factors. COSYSMO defines a sizing quantity
called “system size” from a weighted sum of the four size
drivers. The estimating relationship is shown in (1) as follows:

(1)

where

effort in person months (nominal schedule);

calibration constant derived from historical
project data;

REQ, IF, ALG, SCN ;

weight for “easy,” “nominal,” or “difficult” size
driver;

quantity of “k” size driver;

represents (dis)economies of scale;

effort multiplier for the cost driver. The
geometric product results in an overall effort
adjustment factor to the nominal effort.

Being the first of its kind, the model has, in a very short period
of time, caught the attention of the systems engineering commu-
nity, industry and academia alike. It has demonstrated the poten-
tial to bridge a long-time gap between system complexity and
its corresponding systems engineering effort estimate. Organi-
zations have made various attempts to pilot the model and apply
it to practical applications [21], [28].

Early application of the Constructive Systems Engineering
Cost Model (COSYSMO), however, has revealed that the model
did not recognize the concept of reuse in systems engineering
[27], [29]. It assumes that all of its four size drivers—system
requirements, system interfaces, system algorithms, and opera-
tional scenarios—are new entities when sizing a system. In other
words, the model is based on a “build from scratch” philosophy
and assumes all systems are developed from a “clean slate”.

This differs from how systems are typically built today since
requirements for a new system may be “adopted” from an ex-
isting system. Furthermore, some of the new system’s require-
ments may be “modified” from a prior system. Moreover, the
evolution of system requirements over the system life cycle may
result in “deleted” requirements from the initial configuration
baseline. The same situations may apply to the other three size
drivers—interfaces, algorithms, and operational scenarios. As a
result, the calculated system size does not reflect reusing these
system elements and, consequently, can result in inaccurate es-
timate of systems engineering effort required to realize such a
system. This problem intensifies when dealing with the incre-
mental and spiral development.

Therefore, we propose incorporating the concept of reuse for
estimating the size of a system, in order for COSYSMO to more
accurately estimate the systems engineering effort.

II. DEVELOPMENT APPROACH

When defining the concept of reuse for COSYSMO, the fol-
lowing basic principles hold true.

1) COSYSMO is an open model, developed by the commu-
nity and for the community. Users are free to change and/or
extend the model.

2) On the other hand, it is beneficial for the industry to agree
on the basic definition, relationship and parameters to
better communicate basis of estimates.

COSYSMO has been developed as an open model by the
community of academia, industry and government for the use of
the general public. This implies that everyone is free to adopt,
modify, and/or extend the model. In fact, it is intended for orga-
nizations to adapt to their own engineering processes and busi-
ness models, and to develop local, tailored estimating tools. In
defining reuse as another aspect of the model, it should not, in
any way, restrict or hinder individual applications or adaptations
of this model. In fact, it should help to facilitate such a local im-
plementation.

On the other hand, similar to other cost estimating models,
COSYSMO provides a common method for the industry at large
to measure and communicate basis of estimate and productivity.
It is important that the same basic definitions are consistently
understood and applied. This includes definition of terms and
nomenclatures, the parametric relationship, and the guidelines
for measurement.

However, the above two principles could inherently be con-
flicting with each other. Free adaptation of the model could lead
to individual interpretations, while over-restriction of the model
definition could limit its application. Care must be taken to strike
a fine balance to preserve both of the above principles, so that it
does not over-constrain its application across the industry and,
at the same time, preserve the integrity of the model.

The approach taken was to aggregate the organizational def-
initions complementarily based on a “minimum common de-
nominator” strategy. The reuse model has been piloted in several
organizations in the aerospace industry through their individual
implementation of the COSYSMO model. With the benefit of
periodic interactions, we found that the organizations essentially
implemented the same basic model definition with minor differ-
ences, mostly with preferred choice of words. For the industry
definition, the following guidelines were agreed upon.

A) Establish a minimum set of reference categories for each
of the four size drivers, so that organizations can either di-
rectly apply and/or expand to additional reuse categories.

B) Provide minimum common-denominator definitions, so
that organizations can use, refine, and/or instantiate as ap-
propriate to fit their operational needs.

Goal “A” indicates that we define only those reuse categories
that all stakeholders can agree on as the common denominator
for the community, and these categories are intended as the ref-
erence for individual implementations. In other words, the in-
tent is to always maintain this set of categories, but one may
add other categories, generally as subdivisions, if appropriate.
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Goal “B” states that the definitions are intentionally structured
with the minimum common denominator language so that orga-
nizations can either directly use or, if necessary, may refine and
substantiate the definitions to fit their operational use.

Several industry-level round-tables and workshops have been
conducted under the stated guidelines to achieve the commu-
nity agreement over a period of more than a year that involved
stakeholders from the major aerospace organizations, commer-
cial companies, and government agencies. While some of these
workshops are in person, others are via teleconferences. The
participants are from ten’s of attendees in a conference to a few
key stakeholders on a telecom. Topics range from discussions
on terminologies to quantitative exercises to define weights, as
described in Section V. As a result, the following reuse exten-
sion has been defined.

III. THE COSYSMO REUSE EXTENSION

The approach taken to represent the system size is analogous
to that used to represent software code size in which there are
several categories of code, including new and different levels
of reuse, as well as deleted [3], [18], [24]. This is motivated by
its legacy—COCOMO II [5]. In the case of software, the size of
the code is often represented as Equivalent New Source Lines of
Code (ESLOC). ESLOC is computed as the weighted sum of the
new, the reused, the modified, and the deleted code. Similarly,
we define equivalent requirements” (eReqs) in COSYSMO as a
function of the weighted sum of the new, reused, modified, and
deleted requirements in a system.

The COSYSMO reuse model consists of five categories
for counting its size drivers, termed: new, modified, deleted,
adopted, and managed. The quantities of the four COSYSMO
size drivers, i.e., number of requirements, number of interfaces,
number of algorithms, and number of operational scenarios,
may be classified into one of five categories below.

1) New: Items that are completely new.
2) Modified: Items that are inherited, but are tailored.
3) Deleted: Items that are removed from a system.
4) Adopted: Items that are incorporated unmodified. Also

known as “black box” reuse.
5) Managed: Items that are incorporated unmodified and

untested.
As an example, a requirement can be new, which no precedence
can be found for the system to be developed. New items are
generally unprecedented and may be associated with a low level
of familiarity. A requirement may be modified in the sense that
a heritage element it is associated with is reused, but needs a
limited level of modification or tailoring for the element to be
fully incorporated in the new system. A requirement may also be
adopted where the indicated functionality and performance has
previously been developed and can therefore be incorporated
without any changes. This is commonly referred to as “black
box” reuse since a realized requirement is literally copied and
remains unchanged. A requirement that is considered managed
when an associated element is incorporated as a turn-key com-
ponent with minimal development effort, except for engineering
management. Please note that testing in this context refers to the
formal and complete system test procedures and that the word

“untested” means bypassing such formal steps. Deleted require-
ments are those that are already in the legacy system or archi-
tecture design, but need to be removed from the current system
definition based on customer need or contractual commitments.

It is important to note that the modified category can span a
wide range of possible effort. Modification may entail a simple
change or a complete revamp of the entire system architecture.
The intent of the modified category is to capture those elements
that involve tailoring or interface-level changes only, with no
changes to the interior architecture. Therefore, those items that
are inherited but require a significant amount of architectural or
implementation-level changes should be counted as new.

For each size driver, three additional complexity levels are de-
fined in COSYSMO: easy, nominal, and difficult. These levels
are invariant in the context of reuse. Depending upon the point
of view, one may consider that there are three levels of com-
plexity within each category of reuse. Or, alternatively, within
each level of difficulty, there can be five categories of reuse.
Conceptually, the two notions—categories of reuse and levels
of difficulty—form a two dimensional classification framework
for size drivers that provide adequate level of granularity in de-
termining system size. Therefore, the estimating relationship in-
corporating reuse is expressed as (2)

(2)

where

effort in person months (nominal schedule);

calibration constant derived from historical project
data;

REQ, IF, ALG, SCN ;

New, Modified, Deleted, Adopted, Managed ;

weight for defined degrees of reuse;

weight for “easy,” “nominal,” or “difficult” size
driver;

quantity of “k” size driver;

represents diseconomies of scale;

effort multiplier for the cost driver. The
geometric product results in an overall effort
adjustment factor to the nominal effort.

IV. MODIFIED SIZE DRIVER DEFINITIONS

With the introduction of reuse into its parametric relation-
ship, the COSYSMO size driver definitions require their amend-
ments. As an example, the original definition for algorithm con-
tains the verbiage: “This driver represents the number of newly
defined or significantly altered functions ” [25], which di-
rectly conflicts with the concept of reuse such as “adopted.”
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TABLE I
RATING DEFINITIONS FOR NUMBER OF SYSTEM REQUIREMENTS DRIVE

TABLE II
RATING DEFINITIONS FOR NUMBER OF SYSTEM INTERFACES

These definitions must be reexamined to resolve the inconsis-
tencies.

These proposed changes in definitions were elaborated
with stakeholders at the COSYSMO working group meeting
at the Practical Software and Systems Measurement User
Group Meeting in Denver, CO, in July 2007. As the result, the
amended COSYSMO size driver definitions, consistent with
the reuse extension, are given as follows.

A. Number of System Requirements (Table I)

This driver represents the number of requirements for the
system-of-interest at the system level or the level of “sell-off” to
customer, which may include derived requirements at the same
level. The quantity of requirements includes those related to
the effort involved in system engineering the system interfaces,
system specific algorithms, and operational scenarios. Require-
ments may be functional, performance, feature, or service-ori-
ented in nature depending on the methodology used for specifi-
cation. They may also be defined by the customer or contractor.
Each requirement must have systems engineering effort asso-
ciated with it such as verification and validation (V&V), func-
tional decomposition, functional allocation, etc. System require-
ments can typically be quantified by counting the number of ap-
plicable “shalls” in the system or marketing specification.

B. Number of System Interfaces (Table II)

This driver represents the number of shared physical and
logical boundaries between system components or functions
(internal interfaces) and those external to the system (external
interfaces). These interfaces typically can be quantified by
counting the number of unique external and internal system
interfaces among ISO/IEC 15288-defined [14] system elements
at the system level for the system-of-interest.

TABLE III
RATING DEFINITIONS FOR NUMBER OF SYSTEM-SPECIFIC ALGORITHMS

TABLE IV
RATING DEFINITIONS FOR NUMBER OF OPERATIONAL SCENARIOS

C. Number of System-Specific Algorithms (Table III)

This driver represents the number of mathematical algorithms
to be derived in order to achieve the system functional and per-
formance requirements. As an example, this could include a
complex aircraft tracking algorithm like a Kalman Filter being
derived using existing experience as the basis for the all as-
pect search function. Another example could be a discrimina-
tion algorithm being derived to identify friend or foe function
in space-based applications. The number can be quantified by
counting the number of unique algorithms needed to realize the
requirements specified in the system specification or mode de-
scription document.

D. Number of Operational Scenarios (Table IV)

This driver represents the number of operational scenarios
that a system must satisfy in order to accomplish its intended
mission. An operational scenario must be end-to-end and trig-
gered by an operational event. Such scenarios include both the
nominal stimulus-response thread plus all of the off-nominal
threads resulting from bad or missing data, unavailable pro-
cesses, or other exceptional conditions. The number of scenarios
can typically be quantified by counting the number of use cases
or operational modes captured in the user manual, including
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Fig. 1. Systems engineering activity versus life cycle phase mapping by reuse categories.

off-nominal extensions, developed as part of the operational ar-
chitecture.

V. WEIGHT DEFINITION FOR REUSE CATEGORIES

We present in this section the approach used to define the
weights for the reuse categories in the COSYSMO (2). It is im-
portant to note that the approach outlined below is designed to
capture the statistical behavior of a group of the projects, rather
than individual behavior of a particular project. In fact, on an
individual basis, a project may exhibit a vastly different pattern
of labor distribution relatively to reuse. An adopted or modified
element could prove to be more costly than a brand-new element
in terms of life cycle systems engineering effort.

The approach taken is bottoms-up activity-based, by which
we define the reuse weights by evaluating life cycle systems
engineering activities. In particular, we examined the 33 sys-
tems engineering activities in five activity groups defined by the
ANSI/EIA 632 standard [1] relative to four life cycle phases de-
rived from (but not exactly the same as) the stages defined in
ISO/IEC 15288—Systems Life Cycle Processes.

The result of this analysis is presented in the matrix in Fig. 1,
where we identify the applicable activities by life cycle for each
defined reuse category. Along the x-axis, the four life cycle
phases are repeated for each defined reuse category, namely,
Conceptualize, Develop, Operational Test & Evaluation, and

Transition to Operation. Along the y-axis are the 33 systems
engineering activities in the five activity groups.

The analysis determines the applicability of an activity
across the life cycle for a particular reuse category in this
framework. As an example, realizing a new requirement into
a product would in general incur all of the activities as spec-
ified by EIA-632. A reused requirement, on the other hand,
would likely exclude some of the activities. The underlying
assumption is that a reused element generally saves systems en-
gineering effort compared to a new element. This matrix allows
qualitative distinction between relative scales for reused and
new. The exercise was conducted through round-tables. During
an exercise, for example, a particular relationship is proposed,
discussion among participants would ensue, and a consensus
would eventually be reached. If an activity relationship existed,
an “X” was placed in a matrix where the activity, category,
and life cycle phase intersect. If an activity relationship did
not exist, the cell was left blank. After completing the matrix,
the weight of each reuse category was obtained by effectively
summing the number of “X’s” in each category.

The next step is to turn the qualitative relationship to a quanti-
tative one. This is done with an effort distribution table derived
from an industry wide-band Delphi survey [26], as shown in
Fig. 2. Similarly, the four life cycle phases from ISO/IEC 15288
and the five systems engineering activities from ANSI/EIA 632
are presented. The value in each cell of the matrix represents the
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Fig. 2. Life cycle systems engineering effort distribution [15].

Fig. 3. Activity-based weight derivation for reuse categories.

Fig. 4. Aggregated weights for the reuse categories.

percentage of the total effort applied to a particular activity in
a particular life cycle phase. Each systems engineering process
yields a unique effort profile. For example, the Acquisition and
Supply activity typically represents 7% of the total systems en-
gineering effort across four phases of the life cycle. The total
sums to 100%, which corresponds to the life cycle effort of de-
veloping a new system or system element from concept to de-
livery.

The weights of the reuse categories are derived by combining
the results in Fig. 1 with the data in Fig. 2 and by prorating
the effort percentage for a given activity. For example, in the
adopted category, the effort for System Design process is not
significant in the Development phase. Hence, we will assign
the value of 0% or remove the original effort value (12%) for
that cell. On the other hand, the Technical Evaluation effort is
significant and comparable to that in the new category for the
Operational Test and Evaluation phase. We retain the original
percent effort value (12.4%) for that cell. These exercises result
in the series of weight tables for each reuse category, as shown
in Fig. 3. Aggregated weight values for a size driver of nominal
difficulty are shown in Fig. 4.

The reuse weights are summarized along a continuum in
Fig. 5 to illustrate two additional points. First, it should be noted

Fig. 5. Reuse continuum.

that the weight values in Fig. 4 represent the nominal values,
or the mode, for the respectively categories. The exact weights
may fall within a range of possible values that may be greater
than or less than the suggested values or a set of distributions
whose mode is represented by the values in Fig. 4. This presents
an opportunity for further tailoring by each organization that
wishes to incorporate reuse into their COSYSMO implementa-
tion and to more accurately capture organizational productivity.
For example, in the modified case the corresponding weight
may be lower than 0.65 in situations where there is very little
modification taking place. Such a situation may arise when
the color of an airplane is changed from a Forest Green to Sea
Grey. This is a simple modification of a requirement that does
not demand critical changes in systems engineering effort. On
the other hand, significant modifications may emerge which
can result in a higher weight for the modified parameter. This
may arise when the previous requirement is modified to work
in a new environment that was previously considered. Such a
scenario frequently arises when companies attempt to modify
system components from commercial helicopters to military
helicopters. Different operational and performance criteria
apply when such components are incorporated into the military
domain.

The second point illustrated by the continuum in Fig. 5 is the
existence of the Modified vs. New Threshold. This is relevant
in cases where extreme modification of requirements causes the
original reused requirement to be more complex than a new re-
quirement. In this situation, the systems engineer must make
a tradeoff decision to determine whether it is better to “throw
away” the old requirement and start with a new one or keep the
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Fig. 6. Activities-based classification wizard for reuse classification.

old requirement in spite of its extra expense. The range of pos-
sible weights for modified requirements may theoretically ex-
ceed the weight for new, but the exploration of such values was
beyond the scope of this analysis.

The approach as presented above can be followed to derive
organization-specific reuse weights. Operationally, it is impor-
tant to note that these weights, once defined or derived in an
organization, should be applied to all data points consistently,
between the calibration data and new estimates. It is not to be
redefined for each data point or new estimate.

VI. A PRACTICAL APPLICATION EXAMPLE

For the past three years, a diversified aerospace industry
organization has been developing an estimating tool based
on COSYSMO by calibrating the model to its product lines.
During the course of this project, a significant amount of
historical data was collected to calibrate the model to the major
product lines and platforms. This development effort provided
the first organizational implementation and validation of the
COSYSMO reuse model. At the same time, the organization has
been part of the core stakeholder group and led the industry’s
effort in defining the reuse extension. In order to achieve a
practical and deployable estimation tool, the reuse definition
was elaborated and additional specifications were added so that
it is better adapt to organizational process and development
models. To guide the local implementation, a set of guidelines
were followed, as shown below.

• Be consistent with industry definition. Define such reuse
categories by adding refining details to the industry defini-
tions so as to avoid any potential conflicts and inconsisten-
cies.

• Provide clear and consistent operational guidelines for
driver counting and classification, by using unambiguous
verbiage in the reuse definition.

• Establish clear boundaries between categories to ensure
easy separation and consistency.

Therefore, this organizational implementation further instan-
tiated the reuse model and provided more specific definitions for
the five categories, as follows (differences are italicized).

1) New: Items that are completely new.
2) Modified: Items that are incorporated but require tailoring

or interface changes, and verification and validation
testing.

3) Deleted: Items that are removed from a legacy system,
which require design analysis, tailoring or interface
changes, and verification and validation testing.

4) Adopted: Items that are incorporated unmodified but re-
quire verification and validation testing. Also known as
“black box” reuse.

5) Managed: Items that are incorporated unmodified and
untested, and require no additional SE effort other than
technical management.

Several points are worth noting for the above definitions.
First, these definitions are directly inherited from the industry
definition. However, additional clarification of the base defini-
tions has been given with added qualifiers.

Secondly, one of the challenges to overcome is the subjec-
tivity of COSYSMO, which is prone to individual interpretation
and, consequently, inconsistent sizing of systems. Our approach
is to define a classification framework for counting size drivers
with two orthogonal dimensions—reuse by systems engineering
activities and levels of difficulties by relative effort—to enable
finer grain estimation of these drivers. The activity-based frame-
work involves six high-level systems engineering activities for
the development life cycle: 1) Technical Management; 2) Re-
quirement Definition; 3) System Analysis and Design; 4) Ar-
chitecture Changes & Implementation; 5) Tailoring and Inter-
face Changes; 6) Verification & Validation Testing. A reference
table was created, as shown in Fig. 6, to serve as a Rosetta Stone
between the industry definitions and the organizational imple-
mentation. Easy to apply in practice and can be related by most
systems engineers, they were used by end-users as the discrimi-
nators in delineating the reuse categories. The determination of
a reuse category depends upon the required activities to realize a
size drive (e.g., requirement) in an end-to-end development life
cycle.

Finally, we strongly advocated and recommended the cate-
gory called “managed” to the industry definition, which we be-
lieve is important in capturing the intricacies of today’s evolu-
tionary and spiral development, as well as prevalent teaming ar-
rangement between industry partners. This category is intended
for two main circumstances. The first is when a new system in-
corporates legacy elements that have already been developed
and verified and validated from a prior system, the systems en-
gineering activities now are mostly limited to technical man-
agement. The second situation is when a part of the system
under development is subcontracted out or uses COTS/GOTS-
based components that are “turn-key” or “plug-and-play.” The
requirements and other drivers related to these subtracted parts
have already been verified and validated by the providers. To
the prime contractor, the majority of the activities required are
technical (subcontract) management in nature.

The instantiated model was calibrated with a set of histor-
ical program data from several lines of business and major sites
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Fig. 7. Distribution of the same data set, (a) before and (b) after applying the ex-
tended COSYSMO reuse model. (a) Before applying the reuse model, all drivers
are counted as new. (b) After apply the reuse model.

across the country in at a diversified aerospace engineering com-
pany. The set included data from over 50 systems development
projects. The data was analyzed with and without applying the
reuse model. The result is significantly improved data correla-
tion and calibrations with a higher-degree of estimation accu-
racy and confidence level when reuse is applied. Fig. 7(a) shows
the data before applying the reuse model and Fig. 7(b) shows the
same data points after applying the reuse model, with everything
else in the COSYSMO model held constant.

It is evident from the heteroscedasticity of the data that the
reuse model significantly improved the predictive accuracy
of the COSYSMO model. This improvement is a result of
adjusting the model closer to reality, as it has been proved by
practical experience that reuse is more the rule rather than the
exception.

VII. CONCLUSION AND RECOMMENDATIONS

In this paper, we have defined a reuse extension for
COSYSMO. We presented an industry definition, as well
as an organizational implementation as the practical validation
and implementation example of the reuse model. We discussed
the approach applied to this development and the method used

for deriving the reuse categories and weights. We also presented
the updated COSYSMO size driver definitions to be consistent
and compatible with the reuse extension.

To implement this extension for the operational use, an organ-
ization can directly apply the method presented in this paper. It
may consider further instantiating the definitions to establish re-
fined boundaries that are tailored to its business model, product
lines, and engineering process of the respective organizations.
Organizations may also find it necessary to add additional reuse
categories. When doing so, it is recommended that the original
reuse categories be preserved rather than changing the estab-
lished categories.

The weights for reuse, once defined, should be consistently
applied across all data points and over time, between calibration
data and new estimates. They should not be changed for a single
estimate and calibration point to avoid comparing “apples and
oranges”. Any change to these definitions may require recollec-
tion of all the calibration data points, and change to the derived
weights may require recalculation of all the system sizes. This
can be costly. This is required for the necessary level of con-
sistency between programs and between calibrations and new
estimates. In other words, this is to ensure that consistency of re-
quirements is realized across programs and system size is mea-
sured with the same scale and counting rules.

As a community of systems engineers interested in cost esti-
mation, we cannot dictate each individual organization’s exten-
sion of the reuse model, but we should, however, agree on a set
of values for reuse weights. This is desirable to ensure consistent
understanding of estimate system size and to better communi-
cate basis of estimates. This will be a continuing effort in the
refinement of the reuse approach which will involve feedback
from key stakeholders from leading organizations.

The initial version of COSYSMO has established a frontier
for systems engineering cost estimation. However, as with any
other methodology in its early stage, it requires continuous im-
provement so that it can gain the level of maturity required
by operational use and potentially as a new industry standard.
The reuse model is still evolving. At the completion of this
paper manuscript, the authors have collaborated with the in-
dustry stakeholder groups and further extended the reuse model
by adding one additional category. “Design for Reuse” is en-
visioned as the sixth reuse category and defined as the system
artifacts that require additional upfront investment in order to
improve potential reusability in later system life cycle. This cat-
egory is generally assigned a weight of greater than 1.0, which
in represents greater amount of systems engineering effort than
that required for the New category. The validation of this cate-
gory is in progress.

The authors are also engaged in other enhancement efforts
to further improve the fidelity of the model. One of these areas
is the cost drivers or the effort multipliers used in the model to
scale the estimate effort based on the system size [30]. We are
following a similar strategy in combining expert opinion and
historical data to develop the most realistic and accurate model
possible. We will report the progress of these activities in the
near future.
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