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Abstract -- Reuse of large-grain software components offers the
potential for significant savings in application development cost
and time. Successful component reuse and substitutability depends
both on qualities of the components reused as well as the software
context in which the reuse is attempted. Disciplined approaches to
the structure and design of software applications offers the poten-
tial of providing a hospitable setting for such reuse. We present the
results of a series of exercises designed to determine how well “off-
the-shelf” components could be reused in applications designed in
accordance with the C2 software architectural style. The exercises
involved the reuse of two user-interface constraint solvers, two
graphics toolkits, a World Wide Web browser, and a persistent
object manager. A subset of these components was used to con-
struct numerous variations of a single application (thus an applica-
tion family). The exercises also included construction of a simple
development environment for locating and downloading a compo-
nent off the Web and incorporating it into an application. The
paper summarizes the style rules that facilitate reuse and presents
the results from the exercises. The exercises were successful in a
variety of dimensions; one conclusion is that the C2 style offers sig-
nificant reuse potential to application developers. At the same
time, wider trials and additional tool support are needed.1

Index Terms -- software reuse, architectural styles, message-
based architectures, component-based development, graphical
user interfaces (GUI).

I. Introduction

There are numerous difficulties inherent in reusing off-the-shelf
(OTS) software components [BP89, Big94, Kru92, GAO95,
Sha95]. Some common problems developers face when attempting
OTS reuse are:
• OTS systems may not contain clearly identifiable components;
• component granularity is too coarse or too fine;
• components do not provide the exact set of functions required;
• specialization and integration of OTS components is unpredict-

ably complex; and
• the costs associated with locating, understanding, and evaluating

a component for use may be higher than writing the component
from scratch.

1. This material is based upon work sponsored by the Air Force Materiel
Command, Rome Laboratory, and the Advanced Research Projects Agency
under contract number F30602-94-C-0218. The content of the information
does not necessarily reflect the position or policy of the Government and no
official endorsement should be inferred.

Software architecture research is directed at reducing the costs
of developing applications and increasing the potential for com-
monality between different members of a closely related product
family. One aspect of this research is development of software
architectural styles, canonical ways of organizing the components
in a product family [GS93, PW92]. Typically, styles reflect and
leverage key properties of an application domain and recurring pat-
terns of application design within the domain. As such, they have
the potential for circumscribing the scope of OTS reuse, providing
structure for it, and thus alleviating many of its difficulties
[MG96].

However, all styles are not equally well equipped to support
reuse. If a style is too restrictive, it will exclude the world of legacy
components. On the other hand, if the set of style rules is too per-
missive, developers may be faced with all of the above-mentioned
problems of reuse in general. Therefore, achieving a balance,
where the rules are strong enough to make reuse tractable but broad
enough to enable integration of OTS components, is a key issue in
formulating and adopting architectural styles.

Our experience with the C2 style [TMA+95, TMA+96] indi-
cates that it provides such a balance. In a series of exercises, we
were able to integrate several OTS components of various granu-
larities into architectures that adhere to the rules of C2. A subset of
these components was used to create a large number of variations
of a single application, i.e., an application family. We were also
able to build a simple development environment according to the
style. Using this environment, we enacted a scenario where a com-
ponent is located on the World Wide Web (WWW), downloaded,
and integrated into an already executing C2 application.

In these initial exercises, we focused on the following issues:
• requirements for incorporating an external component into a C2

architecture;
• support provided by C2 and its accompanying tools for over-

coming the common problems of reuse listed above;
• issues in substituting one C2 component for another, providing

the same or similar functionality;
• partial utilization of the services a component provides, as a

byproduct of using legacy components in new, unforeseen con-
texts; and

• using C2 as a basis for development tool integration, as well as
application component integration.

The remainder of the paper is organized as follows: Section II
discusses C2 concepts with an emphasis on those that promote
reuse. The material in this section is condensed from a more
detailed exposition on the style, given in [TMA+95, TMA+96].
Section III describes the support tools used in our reuse exercises,
while Section IV provides a detailed overview of the exercises and
emphasizes those C2 concepts that contributed to their success. In
Section V we discuss lessons learned and related work. A discus-
sion of future work rounds out the paper.



II. Support for Reuse in C2

C2 is a component- and message-based architectural style for
constructing flexible and extensible software systems. A C2 archi-
tecture is a hierarchical network of concurrent components linked
together by connectors (message routing devices) in accordance
with a set of style rules. The top of a component may be connected
to the bottom of a single connector and the bottom of a component
may be connected to the top of a single connector. There is no
bound on the number of components or connectors that may be
attached to a connector (see Fig. 1).

Fig. 1. A sample C2 architecture. Jagged lines represent the parts of the ar-
chitecture not shown.

Several characteristics of the C2 style enable it to better support
reuse. Although most of these characteristics are not unique to C2,
our approach of combining them is. We believe the style rules are
restrictive enough to make reuse easier while flexible enough to
integrate components built outside the style:
• component heterogeneity - the style does not place restrictions

on the implementation language or granularity of the compo-
nents.

• substrate independence - a component is not aware of compo-
nents below it, and therefore does not depend on their existence.

• internal component architecture - the internal architecture of a
C2 component, shown in Fig. 2, separates communication from
processing. The internaldialog receives all incoming notifica-
tions and requests and, in turn, maps them to internal object
operations. By localizing this mapping, the dialog isolates the
internal object from changes in the rest of the architecture. When
the state of the internal object changes, a notification is broadcast
down the architecture. Dialogs of components below will inter-
pret this notification and invoke their internal objects as appro-
priate. This implicit invocation reduces dependencies between
communicating components. Thedomain translator is used to
resolve incompatibilities between communicating components,
such as mismatches between message names, parameter types,
and ordering of parameters [YS94, TMA+96]. Domain transla-
tion reduces the dependence of a component on components
above it; the component can use different domain translators in
different architectures.

• asynchronous message passing via connectors - all communica-
tion between components is achieved by exchanging asynchro-
nous messages through connectors. Since all message passing is
done asynchronously, control integration issues are greatly sim-
plified. This remedies some of the problems associated with inte-
grating components which assume that they are the application’s
main thread of control [GAO95].2

Fig. 2. The internal architecture of a C2 component.

• no assumption of shared address space - components cannot
assume that they will execute in the same address space as other
components. This eliminates complex dependencies such as
components sharing global variables.

• no assumption of single thread of control - conceptually, compo-
nents run in their own thread(s) of control. This allows multi-
threaded OTS components, with potentially different threading
models, to be integrated into a single application.

• separation of architecture from implementation - many potential
performance issues can be remedied by separating the concep-
tual architecture from actual implementation techniques. For
example, the C2 style disallows direct procedure calls and any
assumptions of shared threads of control or address spaces in a
conceptual architecture. However, substantial performance gains
may be made in a particular implementation of that architecture
by placing multiple components in a single process and address
space where appropriate. We have found that we can isolate such
implementation decisions in the C2 framework, discussed in
Section III.A. For example, if two components are placed in the
same address space, a connector between them can use direct
procedure calls to implement message passing.

III. Role of C2 Development Tools in Enabling
Reuse

We have constructed several development tools to aid in the
design and implementation of C2 architectures and in reuse of OTS
components. This section describes a class framework and a runt-
ime manipulation tool for C2 architectures.

III.A. C2 Class Framework

To support implementation of C2 architectures, we developed an
extensible framework of abstract classes for C2 concepts such as
components, connectors, and messages, shown in Fig. 3. This
framework is the basis of development and OTS component reuse
in C2. It implements component interconnection and message pass-
ing protocols. Components and connectors used in C2 applications
are subclassed from the appropriate abstract classes in the frame-
work. This guarantees their interoperability, eliminates many repet-
itive programming tasks, and allows developers of C2 applications
to focus on application-level issues. In order to incorporate OTS
components into a C2 architecture, they are wrapped inside frame-
work components, as shown in Fig. 4. The framework supports a

2.  While the style does not forbid synchronous communication, the respon-
sibility for implementing synchronous message passing resides with indi-
vidual components.
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variety of implementation configurations for a given architecture:
the entire resulting system may execute in a single thread of con-
trol, or each component may run in its own thread of control or
operating system (OS) process.

Fig. 3. C2 object-oriented class framework.

The framework has been implemented in C++ and Java;3 its sub-
set is also available in Ada. We have been able to successfully reuse
the Q interprocess communication (IPC) library [MHO96] to
enable message exchange between C2 components implemented in
C++ and Ada. Similar functionality for Java C2 components is
under development.

The Java implementation of the framework is particularly signif-
icant in that it represents the first step in our attempt to (partially)
automate domain translation. A common form of interface mis-
match between communicating components is different ordering of
message parameters [TMA+96]. The Java implementation of C2
messages eliminates this problem by allowing components to
access message parameters by name, rather than by position. We
are currently exploring the possibility of incorporating other
domain translation techniques into the framework.

III.B. ArchShell: A Tool for Runtime Manipulation of
Software Architectures

ArchShell [Ore96] supports interactive construction, execution,
and runtime modification of C2-style architectures. ArchShell is
implemented in Java, using the Java C2 framework. It functions in
a manner similar to the way in which a UNIX shell (e.g., csh)
allows construction and execution of pipe-and-filter architectures.
However, unlike a UNIX shell, ArchShell also supports modifica-
tion of the architecture at runtime by dynamically loading and link-
ing new architectural elements into the architecture. Furthermore,
while the application is running, users can interactively send C2
requests and notifications to architectural elements.

ArchShell enables designers to experiment with components
without building complete applications. Designers can construct
partial architectures and experiment with their behaviors by send-
ing events to components. Candidate components for reuse can be
more easily understood and evaluated by integrating them into the
application architecture and experimenting with the resulting runt-
ime behavior. As a result, techniques for specializing and integrat-
ing OTS component may become more easily apparent.

3. The C++ and Java frameworks and several simple applications developed
with them are available at http://www.ics.uci.edu/pub/arch/.

IV. Reusing OTS Components in a C2 Architecture

In order to evaluate C2’s support for reuse, we have thus far con-
ducted a number of exercises in which existing components of vari-
ous granularities were integrated into C2-style architectures.
[TMA+96] describes several initial reuse exercises, such as that of
a spell checker. This section focuses on more recent efforts, in
which the following OTS components were reused:
• Xlib graphics toolkit [SG87];
• Java AWT toolkit [CL96];
• SkyBlue constraint solver [San94];
• One-way formula constraint solver from the Amulet user inter-

face system [MM95];
• JFox WWW browser [Wen96]; and
• JOP persistent object package [Rot96].

The remainder of this section describes each exercise in more
detail, focusing on C2 features that directly contributed to its suc-
cess.

IV.A. Reusing OTS Graphics Toolkits

C2’s particular focus is on architectures having a significant GUI
aspect. However, commercial user interface toolkits have interface
conventions that do not match up with C2’s notifications and
requests. In a C2 architecture, the toolkit is always at or near the
bottom, since it performs functions conceptually closest to the user
[TMA+96]. As such, it must be able to receive notifications from
components above it and issue requests in response. Typically,
however, toolkits will generate events of the form “this window has
been selected” or “the user has typed the ‘x’ key.” These events
need to be converted into C2 requests by C2 bindings and sent up
the architectures. Conversely, notifications from a C2 architecture
have to be converted to the type of invocations a toolkit expects.

Fig. 4. An OTS component is wrapped inside a C2 component.

In order for these translations to occur and be meaningful, care-
ful thought has to go into the design of the bindings to the toolkits
such that they contain the required functionality and are reusable
across architectures and applications. Our experience with reusing
OTS components in C2 architectures and with building bindings
for Motif and OpenLook in Chiron-1 [TNB+95] suggested an
approach depicted in Fig. 4: a C2 component is created such that
the graphics toolkit becomes its internal object, while the C2 mes-
sage traffic is handled by its dialog. Graphics binding’s dialog
accepts notifications from C2 components above it and reifies them
as calls to toolkit methods. It also transforms user events, generated
in the graphics toolkit, into C2 requests. A C2 component’s internal
architecture, its reliance on message-based communication, and no
assumption of shared address space or thread of control eliminate
the need to internally modify the toolkits in any way.

We have built C2 bindings for two graphics toolkits: Xlib
[SG87] and Java’s AWT [CL96]. The Xlib and AWT bindings are
subclasses of C++ and Java frameworks’componentclasses,
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respectively. This enables their easy integration into C2 architec-
tures built using the two frameworks. The bindings are extensible.
They currently support manipulation of windows, panels, buttons,
text fields, arcs, lines, ovals, rectangles, and text strings. They
export identical message interfaces, making them interchangeable
in an architecture.4

IV.B. Reusing OTS Constraint Solvers

We successfully integrated two externally developed constraint
solvers into a C2 architecture: SkyBlue [San94] and Amulet’s one-
way formula solver [MM95].5 In doing so, we were able to create
several constraint maintenance components in the C2 style,
enabling the construction of a large family of applications. This
subsection summarizes our experience with SkyBlue and Amulet
and the results we obtained; a detailed description of the project
can be found in [MT96].

Fig. 5. A screenshot and description of our implementation of the KLAX
video game.

The architecture into which SkyBlue and Amulet were inte-
grated is a version of the video game KLAX. A description of the
game is given in Fig. 5. The system architecture is depicted in
Fig. 6. The components that make up the KLAX game can be
divided into three logical groups. Thegame state components are at
the top of the architecture. These components receive no notifica-
tions, but respond to requests and emit notifications of internal state
changes. Thegame logic components request changes of game
state in accordance with game rules and interpret the resulting noti-
fications to determine the state of the game in progress. Theartists
also receive notifications of game state changes, causing them to
update their depictions. Each artist maintains a set of abstract
graphical objects which, when modified, send state change notifica-
tions in hope that lower-level graphics components (in this case,

4. Note that identical interfaces are not a requirement; two bindings with
different interfaces could easily be substituted for one another by using a
domain translator.
5. For the purpose of brevity, in the remainder of the paper Amulet’s one-
way formula constraint manager will be referred to simply as “Amulet.”

GraphicsBinding) will render them.GraphicsBinding, in turn,
translates user events, such as a key press, into requests to the artist
components.6

We identified the following UI constraints in KLAX:
• Palette Boundary: The palette cannot move beyond the chute and

well’s left and right boundaries.
• Palette Location: Palette’s coordinates are a function of its loca-

tion and are updated every time the location changes.7

• Tile Location: The tiles which are on the palette move with the
palette. In other words, the x coordinate of the center of a tile
always equals the x coordinate of the center of the palette.

• Resizing: Each game element (chute, well, palette, and tiles), is
maintained in an abstract coordinate system by its artist. This
constraint transforms those abstract coordinate systems, resizing
the game elements to have the relative dimensions depicted in
Fig.  before they are rendered on the screen.8

Fig. 6. Conceptual C2 architecture for KLAX.

IV.B.1. Integrating SkyBlue and Amulet with KLAX

In the original design, theLayoutManager component was
intended to serve as a constraint manager. However, in the initial
implementation, the constraints were solved with in-line code
locally in thePaletteADT andPaletteArtist and the sole purpose of
the LayoutManager was to properly line up game elements on the
screen. The implemented version of theLayoutManager also
placed the burden of ensuring that the game elements have the
same relative dimensions on the developers of thePaletteArtist,
ChuteArtist, andWellArtist components.

In order to renderLayoutManager’s implementation more faith-
ful to its original design, we decided to incorporate constraint man-
agement functionality into the component, as shown in Fig. 7.

6. A detailed discussion of the KLAX architecture is given in [TMA+96]
7. Location is an integer between 1 and 5.
8. This constraint would be essential in a case where the application is com-
posed from preexisting components supplied by different vendors. A simi-
lar constraint could also be used to accommodate resizing of the game
window, and hence of the game elements within it.
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SkyBlue, the OTS constraint solver reused here, has no knowledge
of the architecture of which it is now a part. It maintains the con-
straints, while all the request and notification traffic is handled by
LayoutManager’s dialog.LayoutManager thus became a constraint
management component in the C2 style that can be reused in other
applications by only modifying its dialog to include new con-
straints.9

Fig. 7. The SkyBlue constraint management system is incorporated into
KLAX.

PaletteADT, PaletteArtist, ChuteArtist, and WellArtist also
needed to be modified. Their local constraint management code
was removed. Furthermore, their dialogs and message interfaces
were expanded to notifyLayoutManager of changes in constraint
variables and to handle requests fromLayoutManager to update
them. Only 11 new messages were added to handle this modifica-
tion of the original application and there was no perceptible perfor-
mance degradation. The entire exercise was completed by one
developer in approximately 45 hours.

This initial exercise enabled us to test C2’s support for compo-
nent substitutability and localization of change. In [MORT96] we
showed that behaviorally equivalent C2 components can always be
substituted for one another and that behavior-preserving modifica-
tions to a component’s implementation have no architecture-wide
effects. To demonstrate this, we substituted SkyBlue with Amulet
inside LayoutManager. C2 concepts, such as component-based
development, message-based communication, and substrate inde-
pendence, as well as the internal architecture of a C2 component,
made this a relatively simple task that was completed by one devel-
oper in 75 minutes. As anticipated, no architecture-wide changes
were necessary. The look-and-feel of the application remained
unchanged and there was again no performance degradation.

IV.B.2. KLAX Application Family

Integrating SkyBlue and Amulet with KLAX provided an oppor-
tunity for building multiple versions ofPaletteADT, PaletteArtist,
and LayoutManager components. The two integrations described
above resulted in three versions of theLayoutManager: the origi-
nal, SkyBlue, and Amulet versions. Two versions each ofPal-
etteADT, PaletteArtist, ChuteArtist, andWellArtist were created as
well: original components maintaining local constraints with in-
line code and components whose constraints were managed else-
where in the architecture.

9. In the remainder of the paper, when we state that a constraint solver is
“inside” or “internal to” a component, the internal architecture of the com-
ponent will resemble that of theLayoutManager from Fig. 7.

The two initial integrations also suggested other variations of
these components, such as replacing in-line constraint management
code with SkyBlue and Amulet constraints inPaletteADT andPal-
etteArtist (see Footnote 9). Also, a version ofLayoutManager was
implemented that maintained only theResizing constraint, in antic-
ipation that other components will internally manage their local
constraints. This resulted in a total of 18 implemented versions of
the five components, as depicted in Table 1.10

The four versions ofPaletteADT andPaletteArtist, two versions
of ChuteArtist andWellArtist, and six versions ofLayoutManager,
described in Table 1, could potentially be used to build 384 differ-
ent variations of the KLAX architecture. Three such variations
were described above: (1) the original architecture, (2) the architec-
ture with SkyBlue, and (3) with Amulet. Below, we discuss several
additional implemented variations of the architecture that exhibit
interesting properties.

In the architecture depicted in Table 2, multiple instances of

10. In the remainder of the paper, a particular version of a component will
be depicted by its name followed by the version number (e.g., PaletteADT-
2).
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Table 1: Implemented Versions of PaletteADT, PaletteArtist,
ChuteArtist, WellArtist, and LayoutManager KLAX Components

Version
Number

Constraints
Maintained

Constraint
Managers

P
al
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te

A
D

T

1 Palette Boundary In-Line Code

2 None None

3 Palette Boundary SkyBlue

4 Palette Boundary Amulet

P
al

et
te

A
rt
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t

1 Palette Location
Tile Location
Palette Size

In-Line Code

2 None None

3 Palette Location
Tile Location

SkyBlue

4 Palette Location
Tile Location

Amulet

C
hu

te
A

rt
is

t 1 Chute Size In-Line Code

2 None None

W
el

l
A

rt
is

t 1 Well Size In-Line Code

2 None None

La
yo

ut
M

an
ag

er

1 None None

2 All SkyBlue

3 All Amulet

4 Resizing SkyBlue

5 Resizing Amulet

6 All SkyBlue & Amulet

Table 2: Multiple Instances of SkyBlue

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 3 Palette Location
Tile Location

SkyBlue

ChuteArtist 2 None None

WellArtist 2 None None

LayoutManager 4 Resizing SkyBlue



SkyBlue maintain the constraints in different KLAX components.
A related variation of the architecture is one where multiple con-
straint managers are employed in a single architecture.11 Such an
architecture is shown in Table 3. In this architecture,Palette
Boundary andResizing constraints are maintained by SkyBlue, and
Palette Location and Tile Location by Amulet. Since the sets of
constraint variables managed by the two solvers are disjoint, there
are no interdependencies between SkyBlue and Amulet. Hence,
this modification to the architecture was a simple one.

Particularly interesting are components that are used in an archi-
tecture for which they have not been specifically designed, i.e., they
can do more or less than they are asked to do. This is an issue of
reuse: if we build components a certain way, are their users
(designers) always obliged to use them “fully”; furthermore, can
meaningful work be done in an architecture if two components
communicate only partially, i.e., certain messages are lost? The
architectures described below represent a crossection of exercises
conducted to better our understanding of partial communication
and partial component service utilization in C2.

A variation of the original architecture was implemented by sub-
stitutingLayoutManager-2 into the original architecture, as shown
in Table 4. LayoutManager-2’s functionality remains largely
unused as no notifications are sent to it to maintain the constraints.
The application still behaves as expected and there is no perfor-
mance penalty. Note that this will not always be the case: ifLayout-
Manager-2 was substantially larger thanLayoutManager-1 or had
much greater system resource needs (e.g., its own OS process), the
performance would be affected.

Another architecture that was built is shown in Table 5. This
exercise explored heterogeneous approaches to constraint mainte-
nance in a single architecture: some components in the architecture
maintain their constraints with in-line code (WellArtist and
ChuteArtist), others maintain them internally using SkyBlue (Pal-

11. Combining multiple constraint solvers in a single system has only
recently been identified as a potentially useful approach to constraint man-
agement [San94, MM95].

etteADT), while PaletteArtist’s constraints are maintained by an
external constraint manager.LayoutManager-2 is still partially uti-
lized, but a larger subset of its services is used than in the preceding
architecture.

In the architecture shown in Table 6,PaletteADT expects that
some external component will maintain thePalette Boundarycon-
straint. However,LayoutManager-1 does not understand and there-
fore ignores the notifications sent byPaletteADT (partial
communication). Movement of the palette is thereby not con-
strained and the application behaves erroneously: the palette disap-
pears when moved beyond its right boundary; the execution aborts
when the palette moves beyond the left boundary and theGraphics-
Binding component (see Fig. 6) attempts to render it at negative
screen coordinates.

The above example architectures seem to imply that partial ser-
vice utilization generally has no ill effects on a system, while par-
tial communication does. This is not always the case. For example,
an additional version of each component from the original architec-
ture was built to enable testing of the application. These compo-
nents would generate notifications that were needed by both
components below them in the architecture and the testing harness.
If a “testing” component was inserted into the original architecture,
all of its testing-related messages would be ignored by components
below it, resulting in partial communication, yet the application
would still behave as expected.

IV.C. Using OTS Components to Build a Simple
Development Environment in the C2 Style

In [WRMT95] we discussed the requirements for a software
component marketplace and argued the suitability of C2 as a basis
for such a marketplace. In order to further explore some of those
ideas, we devised a prototypical experiment in which a desired
component would be located on the WWW, downloaded, and
incorporated into an application built according to C2.

This experiment also represents an initial, though limited,
attempt to apply C2 concepts to software tool integration. The sim-
ple environment used in this project was built in the C2 style, using
the Java class framework discussed in Section III.A. The portion of

Table 3: Multiple Constraint Solvers

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 4 Palette Location
Tile Location

Amulet

ChuteArtist 2 None None

WellArtist 2 None None

LayoutManager 4 Resizing SkyBlue

Table 4: None ofLayoutManager’s Constraint Management
Functionality is Utilized

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 1 Palette Boundary In-Line Code

PaletteArtist 1 Palette Location
Tile Location
Palette Size

In-Line Code

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 2 All SkyBlue

Table 5: LayoutManager’s Constraint Management Functionality is
Only Partially Utilized

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 2 None None

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 2 All SkyBlue

Table 6: Palette Boundary Constraint is not Maintained

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 2 None None

PaletteArtist 1 Palette Location
Tile Location
Palette Size

In-Line Code

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 1 None None



the environment architecture relevant to this discussion is shown in
Fig. 8a. Two OTS components were reused in the environment: the
JFox WWW browser [Wen96] and the JOP persistent object pack-
age [Rot96]. Both were wrapped inside C2 components in the man-
ner depicted in Fig. 4.

Fig. 8. A simple environment built according to the C2 style and a C2 appli-
cation architecture developed in the environment. OTS WWW browser and
persistent object package were used in constructing the environment.

Using this environment, a software developer can search the
WWW for a component with desired features. Once the component
is found, it can be downloaded, in which caseJFox emits a notifica-
tion with the component’s location.ComponentIncorporationTool
receives the notification, unpackages the component and sends
requests toIDNParser to parse the component’s interface and to
JOP to store the component’s executable.12 Once the interface def-
inition is parsed,IDNParser sends a request toJOP to store the
abstract syntax tree for the component’s interface. At this point, the
component can be accessed and used in a C2 application.

This environment was used by ArchShell, described in
Section III.B, to download a stack visualization component and add
it to an already executing application. The resulting architecture is
shown in Fig. 8b.

Several C2 concepts contributed to the success of this exercise.
As in previous cases, the internal architecture of a C2 component
enabled relatively easy integration of JFox and JOP. In our design
of the environment, both JFox and JOP were placed at the “top” of
the architecture, as shown in Fig. 8a, so they had no dependencies
on components above. This, combined with substrate indepen-
dence, greatly simplified the implementation of their dialogs.
Finally, C2’s flexibility in supporting components with their own
threads of control enabled us to incorporate JFox, which expects to
execute in its own threads.

V. Discussion and Lessons Learned

The full potential of component-based software architectural
styles cannot be realized unless reusing code developed by others
becomes a common practice. A new architectural style can become
a standard in its domain only if it makes reuse easier. We believe
that C2 is such a style for GUI software, with the potential for
broader applicability. C2’s influences include a number of existing
approaches to reuse. We have tried to build on their successes,

12. We made several simplifying assumptions for the purpose of this exer-
cise. One of them was that a downloaded component consisted of an execut-
able and a definition of its interface. The interface is specified using a subset
of C2 SADL, an architecture description language for C2 architectures
[MTW96].

while avoiding their shortcomings.
Krueger points out some common problems in basing reuse on

software architectures [Kru92]. His criticism mainly applies to
those approaches that do not identify higher-level abstractions
applicable across applications. C2, on the other hand, is a style that
attempts to exploit commonalities across systems and reuse suc-
cessful structural and communication patterns.

Attempts at constraining reuse by focusing on architectures in
particular domains of applicability (domain-specific software archi-
tectures) have been relatively successful, but have tended to be too
restrictive. GenVoca [BO92] has been particularly successful in
producing a large library of reusable components. However, those
components have been custom built for the GenVoca style. In order
to reuse them, one must adhere to GenVoca’s formalism and its
hierarchical approach to component composition, which may result
in a high degree of dependency between communicating compo-
nents. On the other hand, C2’s style rules and underlying formalism
[Med95, MTW96, MORT96] are more flexible; C2 eliminates
assumptions of shared address spaces and threads of control, allows
both synchronous and asynchronous message-based communica-
tion, and separates the architecture from the implementation.

Several aspects of object-oriented (OO) programming provide
valuable lessons as well. In [MORT95] we demonstrate how con-
cepts from OO typing can be applied to software architectures. The
work on OO design patterns [GHJV95] has similarities with archi-
tectural styles. However, OO design patterns support reuse of struc-
tures at a much lower level of abstraction than do styles.

Garlan, Allen, and Ockerbloom classify the causes of problems
developers commonly experience when attempting OTS reuse and
give four guidelines for alleviating them [GAO95]. Our experience
shows that C2 is well suited to address these problems. The first
two guidelines deal with the internal architecture of OTS compo-
nents, and are thus outside the scope of C2. The third guideline pro-
poses techniques for building component adaptors, which is
subsumed by C2 wrappers and domain translators. Finally, the
authors emphasize the need for design guidance, which is a signifi-
cant aspect of our approach to C2 [RWMT95, RR96].

Shaw discusses nine “tricks” for reconciling component mis-
match in an architecture [Sha95]. Several of the tricks are related to
reuse techniques employed in C2. For example, transformations,
such as “Change A’s form to B’s form”, “Provide B with import/
export converters”, and “Attach an adapter or wrapper to A,” are
subsumed by C2’s wrappers and/or domain translators. The need
for other transformations is eliminated altogether by C2 style rules.
For example, “Make B multilingual” is unnecessary, as C2 assumes
that components will be heterogeneous and multilingual.

The exercises discussed in Section IV have enabled us to devise
a set of heuristics for OTS component integration in C2. The only
assumption made across our exercises was that OTS components
provided application programmable interfaces (APIs). As our expe-
rience with reusing OTS components grows, we expect that this list
will be expanded and refined:
• If the OTS component does not contain all of the needed func-

tionality, its source code must be altered. In our exercises, this
was the case with the JFox WWW browser, which required a
simple modification to include the necessary information in a
message. In general, this is a difficult task, whose complexity is
well recognized [Kru92, GAO95, MG96].13

• If the OTS component does not communicate via messages, a C2
wrapper must be built for it. This was the case with all compo-
nents described in this paper.

13.  Note that the component can still be reused “as is” if the developers are
willing to risk degraded or incorrect performance, due to partial communi-
cation and partial component service utilization in the architecture. This
was the case with several variations of KLAX, discussed in Section IV.B.
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• If the OTS component is implemented in a programming lan-
guage different from that of other components in the architec-
ture, an IPC connector must be employed to enable their
communication. We have accomplished this task for C++ and
Ada components using the Q software bus [MHO96], giving us
confidence that we can do so for other languages. Other software
bus technologies, such as [Rei90, Cag90], could also be used.
We are also considering the use of software packaging technolo-
gies [Pur94, CP91], which decouple a component’s functionality
from its interfacing requirements and automate a significant por-
tion of the work associated with adapting a component for use in
new environments.

• If the OTS component must execute in its own thread of control,
an inter-thread connector must be employed. This was accom-
plished in the case of the Java AWT graphics toolkit and the JFox
browser.

• If the OTS component executes in its own process, an IPC con-
nector must be employed. While we do not have direct experi-
ence with such components, we have implemented an IPC
connector using Q [MHO96].

• If the OTS component communicates via messages, but its inter-
face does not match interfaces of components with which it is to
communicate, a domain translator must be built for it. Although
we have done some preliminary work on domain translation in
our Java class framework, this area needs further exploration.

The information above is summarized in Table 7.

The series of exercises described in this paper demonstrate that
C2 isolates changes inside components and limits any global
effects of those changes through message-based communication.
Furthermore, C2’s principles of substrate independence and
domain translation enable component substitutability. Finally, its
component- and message-based nature allows partial communica-
tion and service utilization of components, which are essential to
cost-effective reuse.

The direct benefit of this work is that we now have constraint
management, WWW browser, persistent object, and graphics bind-
ing components, as well as IPC and inter-thread connectors, in the
C2 style that will be reused across future applications. Beyond this,
we have learned an invaluable lesson on the intricacies of incorpo-
rating OTS components into C2 architectures. We will build upon
this experience in our exploration of other facets of C2.

VI. Future Work

One aspect of our future work involves attempting to incorporate
into C2 architectures OTS components that exhibit characteristics
different from those described above. In other words, we intend to
gain more experience in every category depicted in Table 7. For
example, a component that requires its own OS process would be a
good candidate.

In addition, we intend to expand our development tool support
for C2. The following tools are either in the design stage or already
under construction:

• tools for (semi)automatic generation of domain translators and
wrappers;

• tools for C2 component subtyping and type checking; and
• tools to support dynamic architecture changes.

Our long-term goal is to integrate all the tools into a C2 develop-
ment environment.
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