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Abstract. This paper presents a method for automated reuse of proofs in 
software verification. Proofs about programs as well as proof attempts are used 
to guide the verification of modified programs, particularly of program cor- 
rections. We illustrate the phenomenon of reusability, present an evolutionary 
verification process model and discuss theoretical and technical aspects. Fi- 
nally, we report on case studies with an implementation of this method in the 
Karlsruhe Interactive Verifier (KIV). 
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1. Introduction 

Currently, the technological frontier for developing correct software is somewhere between 
1000 and 2000 lines of verified code per year (Moore 1988,Re92b). This productivity can 
be achieved with advanced verification systems, such as the Boyer & Moore Prover (Boyer 
& Moore 1979), or the KIV system (Reif 1992). Combined with a hierarchical and strictly 
decompositional software design discipline, these systems can be used to verify fairly 
large systems. Nevertheless, the development of verified software is still a time and money 
consuming activity. 

Most verification systems make the tacit assumption that the major problem to be solved 
is to verify (affirmatively) a software system. Experience shows, however, that in prac- 
tical applications this assumption is not realistic and must be relaxed: a proof attempt 
is more likely to reveal errors than to prove their absence, and the programs under con- 
sideration might undergo several modifications until correct versions are obtained. Most 
verification systems ignore this evolutionary aspect of programming. In KIV this defect 
is overcome. KIV pursues an evolutionary verification model and offers tool support for a 
tight integration of error correction and verification. 

The main problem to be solved is to preserve or to re-establish proofs that have become 
invalid by modifications. This is illustrated by the following scenario. Let q91 (or) and ~02 (or) 
be two proof obligations with a program ot occurring in both formulas. Suppose, ~01 (or) 
has been successfully proved, although the program c~ is erroneous. This means that the 
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errors in ot do not affect the truth of ~Ol (or). Assume further, that a first proof attempt for 
~02 (or) failed, because of the errors in or. After correction of a this proof has to be repeated. 
Moreover, since the program a has changed to/3, q91 (or) has changed to ~01 (/3). Therefore 
the original proof for ~01 (or) (although successful) becomes obsolete. This means that for 
every program correction all proof obligations involving the corrected program have to be 
proved again. Conventional verification systems repeat these proofs over and over again 
without exploiting the experience accumulated during earlier proof attempts. 

This paper presents a method which extracts this experience from previous proofs in 
order to guide the proofs for the corrected programs. Case studies with the KIV system 
(Heisel et al 1990; Reif 1992) have shown that large parts of earlier proofs can actually be 
reused, saving a lot of proof search and user assistance. 

The phenomenon of reusability is illustrated by an example in § 2. Section 3 investigates 
the basic assumptions of the approach, and sketches an evolutionary verification method- 
ology based on reuse of proofs. In § 4 we present the theoretical and technical aspects. In 
§ 5 we report on our experiences with an implementation in the KIV system, and give an 
evaluation of the experimental results. Section 6 comments on related work, and in § 7 we 
draw some conclusions. 

2. An example 

2.1 Binary arithmetic and dynamic logic 

Consider binary words with two constants zero and one, as well as two unary constructors 
so and sl. The constructors so and sl add zero or one, respectively, at the end of a given 
binary word (Sl (zero) stands for the word '01'). The selector top selects the last bit 
of a word, and pop cuts off the last bit. The unary predicate nlz(a) is true if a has no 
leading zeros. Binary words without leading zeros are used as representations of natural 
numbers. The two procedures succ(a • b) and pred(a • b) with input parameter a and 
output parameter b are intended to implement the arithmetical functions successor and 
predecessor on binary words, respectively. Finally, the statement to be proved, asserts that 
pred  is the inverse operation of succ at least for inputs satisfying nlz. In the KIV system 
this proof obligation is expressed as a sequent of Dynamic Logic (DL, see Harel 1979; 
Heisel et al 1989): 

nlz(a) F- (succ(a : b); pred(b : c))c = a (1) 

In a sequent F F- A, F and A are lists of formulas. A sequent holds if the conjunction 
of the formulas of F implies the disjunction of the formulas of A. A formula (a)q9 is true 
if the program ot terminates and q9 holds afterwards. Hence the above sequent can be read 
as: if the input a has no leading zeros, succ terminates for a and yields a result stored in 
b. Then pred terminates with input b and yields a result stored in c equal to a. 

The truth of ( l )  depends, of course, on the implementations ofsucc  and pred  (figure 1). 
The program succ is given in two versions: a faulty one on the left and a correct one on 
the right. In the erroneous version the case for top(x)  = zero is missing. If we adopt the 
implementation of pred and the second version of succ, the proof obligation (1) can be 
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succ (x : y) succ (x : y) 
ifx = zero  then y := one else ifx = zero  then y := one else 

ifx = one then y := so(one) else ifx = one then y := so(one) else 
succ(pop(x ) :y ) ;  y := so(y) fi fi if top(x )  = zero  then y := Sl (pop(x ) )  else 

succ(pop(x ) :y ) ;  y :--- so(y) fi fi fi 

pred (x : y) 
i f  x = zero  w x = one then y := zero  else 

ifx = so(one) then y := one else 
if top(x )  = one then y := so(pop(x) )  else 

pred (pop(x ) : y ) ;  y := Sl (y) fi fi fi 

Figure 1. the programs: two versions of succ,  and pred .  

proved. With the first version of s u c c ,  (1) is not provable. Let us compare the attempts to 
prove both versions of (1). 

2.2 The proofs  f o r  the two vers ions  ofsucc 

Starting out from the original proof obligation, a proof tree (like those in figure 2) is 
constructed in a goal-directed manner. Proof rules are applied, reducing a goal to sufficient 
subgoals which themselves are reduced and so forth. The original proof obligation is the 
root of the tree (conclusion), the yet unproved subgoals are its premises (light circles). A 
proof tree stands for the assertion that the conclusion holds if the premises do. A proof is 
completed if no premises remain. 

KIV provides a proof strategy for DL sequents. Applying it to (1) with the erroneous 
version of s u c c ,  we obtain the proof tree on the left side in figure 2. With regard to the 
intended reuse of this proof, we will call it the "old" proof and the other one the "new" 
proof. One open premise (59) remains: a ~ z e r o ,  a ~ one  ~- t o p ( a )  = one  states that 
the last bit of every binary word, different from z e r o  and one ,  is one.  Since this is wrong, 
the proof attempt fails. 

Applying the proof strategy to (1) with the correct version of s u c c  (the second one in 
figure 1) it yields the proof tree on the right side of figure 2. This proof is successful. 

The fragments A, B, C, D of the old proof correspond directly to the fragments A, B, C, 
D of the new proof. Although the corresponding sequents in the two proofs are different, 
the same rules can be applied in the same order within the fragments. However, there are 
intermediate proof fragments F and G in the new proof without counterpart in the old proof. 
They deal with the correction of s u c c ,  an additional conditional with a new then-branch. 
Although in the example the relative order of A, B, C, D is preserved, in general this is not 
the case. 

Furthermore, the fragment E of the old proof corresponds to the fragment E' in the new 
proof. However, the rule applied in the new proof differs from the one applied in the old, 
because the fragment E' is carried out in a different proof context. This change of the proof 
context is due to the intermediate fragment F in the new proof. The fragment H has no 
counterpart in the new proof. 

In total 95% of the old proof can be reused, which amounts to 85% of the new proof. 
Only 15% of the proof steps of the new proof are actually new. The example illustrates the 
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Figure 2. Comparison of the two proofs: old vs. new proof. 

E, 

potential that can be exploited with an automated technique for reuse of proofs. However, 
a careful analysis of the corrected program and the old proof is required to detect the 
reusable fragments, to determine the order in which to apply them, and to cope with the 
influence of modified proof contexts. Experiences confirm that the above example is not 
an exception but reflects a general phenomenon. 

3. An evolutionary approach to verification 

Before presenting the technique for reuse in § 4, we describe how it can be incorporated 
into a conventional verification process model. The result is an evolutionary approach to 
verification. It is called evolutionary because proof attempts often reveal errors instead of 
showing their absence, and the programs are subject to several modifications until correct 
versions are obtained. 

The evolutionary approach to verification is built on top of the conventional proof strat- 
egy used in § 2 to generate the proof on the left side in figure 2. It is called the basic 
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strategy and is based on symbolic execution of programs and induction. To some extent 
the approach is generic, and applies to other strategies as well, provided they meet two 
basic requirements. First, verification with a particular strategy must be "continuous" in 
the informal sense that small changes in the program text usually lead to small changes in 
the proof. Second, there must be a correspondence between positions in programs and po- 
sitions in proofs generated by the strategy. Whether the strategy fulfills these requirements, 
depends on the underlying proof rules. For the one adopted in this paper they are satisfied. 
Other examples are the methods due to Boyer & Moore (1979) and Burstall (1974). 

Verification with reuse of proofs proceeds as follows: The first proof attempt for a 
statement ~o(prog) about a procedure prog  with a body u is carried out with the basic 
strategy. If this attempt leads to a subgoal g which seems to be unprovable, the proof is 
interrupted. Let t be the proof constructed so far. If the user provides a ground substitution 
s for the free variables of g as a candidate for a counterexample for g, the system tries to 
verify that s is indeed a counterexample, hence that g is not provable. 

Example 1. In our example from § 2 prog  is the procedure succ with the faulty imple- 
mentation (left hand side of figure 1), and ~o(prog) is 

nlz (a)  ~- (succ(a : b); p r e d ( b  : c))c = a (2) 

The proof attempt leads to a subgoal (No. 59 on the left side in Fig. 2) 

avk  zero,  a ~ one ~ top(a)  = one (3) 

The user guesses a = so(one) and KIV proves that so(one) is indeed a counter example 
for the goal, i.e. that the negation of the goal is true for a = so(one): 

a = so(one) ~- --,(a ~ zero A a 5~ one --+ top(a)  = one) (4) 

Now the goal g is known to be unprovable. What does this mean? In general, there are 
two possible reasons why a proof attempt may lead to an unprovable goal. Either a wrong 
decision was made during the proof (in this case the faulty proof decision must be found 
and withdrawn), or the original goal ~o(prog) is not provable. To find out the accurate 
reason the system tries to construct a counterexample s r for ~o(prog) from s by inspecting 
t. Inspecting the proof tree basically means to collect and simplify all first order formulas 
on the relevant branch of the proof tree from g backwards to the conclusion qg(prog). 

Example 2. In our example, KIV computes the candidate counter example a = so(one). 
KIV proves automatically that a = so (one) is indeed a counter example for (2). Inspection 
of the counter example proof reveals that succ(so(one)  : b) produces the output b = 
so(so(one)),  i.e. the successor of two is four. Consequently, an error is located in the 
implementation of the procedure succ. 

Now the original goal ~o(prog) is known to be unprovable because of an error in the 
procedure body ot of prog.  Therefore, the user must provide a corrected version of prog 
with body/3 instead of or, and ~o(prog) has to be proved again. 

In order to enable the reuse of t in the new proof, the system computes a presentation 
of/3 as a combination of fragments of ot and new fragments. Then t is analysed and a 
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correspondence is set up between the fragments of ot and proof fragments of t. Finally, the 
new proof attempt is guided by these proof fragments. The reuse of proofs is explained 
more precisely in the next section. 

The quality of the technique depends on the quality of the first proof attempt. If the 
proof idea was correct, and the proof failed due to errors in the implementation, then reuse 
usually yields good results. If the first attempt followed a wrong idea, reuse is unlikely to 
succeed in a second attempt. 

4. T h e  t e c h n i q u e  for  r e u s e  

4.1 Presentation of program corrections 

We represent program corrections by presenting the corrected program as a combination 
of fragments of the old program and new fragments. Therefore, we need the formal no- 
tions (program) skeletons and (program)fragments. Roughly skeletons are programs with 
"holes", in which other skeletons may be inserted. A fragment of a program is a skeleton 
together with the position (occurrence), where in the program it occurs. If a fragment is a 
common part of several programs, the skeleton is associated with several occurrences. In 
the following definitions we view programs as terms and use some notation from Huet & 
Oppen (1980). 

DEFINITION 1 
Skeletons, occurrences. 

- Skeletons are the smallest set containing [] (the "hole"), the statements skip, abort, 
assignment x := r, procedure call f(_q_ : y), and which is closed under conditional (if 
e then ot e l se  fl), definition of local variables (var x = r in el) (where ot is the scope of 
the definition of x with initialization r) and compound (or;/3). 

- A program is a skeleton without C]. We call a skeleton el connected iff for each com- 
pound Y; 3 occurring in a,  F is a program. 

- Let O(a)  be the set of occurrences of or, p 6 0 ( c 0  aposition in ~. Here, positions are 
sequences over {1, 2}. 

- a / p  denotes the subskeleton at position p in a, a[p <--- y] the replacement in a with 

F at p (for p E O(o0). 

- < 1 is a partial order on skeletons: ot -< 1 /3 iff there exist a skeleton Y # [] and a position 
p ~ O(fl), such that f l /p  = [] and or = fl[p +-- y]. ___ is the reflexive, transitive closure 

of -<1. 

Intuitively, a -<1 fl means that a is more concrete than t :  fl can be derived from a by 
replacing a subskeleton by [3, or, conversely, a can be derived from fl by replacing [] 
by a skeleton (this replacement can be viewed as an instantiation). If a _ fl holds we 
call fl a pattern for a. 

- For two sequences p and q, pq is the concatenation of p and q. For a sequence p and 
a set S of sequences, pS = {pq [q E S}. 0 denotes the empty sequence. 
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Example  3. An example for a skeleton ce is 

i f x  = zero  then y := one else 
i f x  = one t h e n  v := so(one)  else [] 

This skeleton is derived from the procedure succ  (figure I) by replacing the else-part 
of the second conditional by El. The set of occurrences O(~)  contains 

- 0,  oe/() is ¢ itself. 

- (1), oe/(1) is the then-branch of  the first conditional y :=  one, 

- (2), or/(2) is the else-branch of the first conditional, i.e. the second conditional, 

- (2, 1), or/(2, 1) is the then-branch of the second conditional y := so(one),  

- (2, 2), oe/(2, 2) is the else-branch of the second conditional D. 

The replacement in c~ with [] at position (2), c~l(2) +-- D], yields 

i f x  = zero  t h e n  y := one else a 

is smaller than o~[(2) +- ~] with respect to <1, since o~ can be constructed from 
ot[(2) +-- D] by replacing N with the second conditional ofo~. 

DEFINITION 2 

Program fragments.  Let 1,',/3~ . . . . .  /4n be skeletons, Pl . . . . .  Pi, positions. (y,  Pl . . . . .  P,~ ) 
is a program f ragment  of (/31 . . . . .  ,~%) ill" Pi E 0(/4i) and ?' is a pattern for fli/Pi for 
i = 1 . . .  n. The fragment is called connected iff its skeleton ), is connected. 

In a program fragment (y,  P l . . . . .  p,, ), ?/is a pattern for a subskeleton of each/4i at the 
position Pi, i.e. it is possible to instantiate y (with different skeletons for each i) to Vi such 

that }'i = f l i / p i .  Our aim is to compare an incorrect "'old" program oe with a correct "new" 

program/3. Therefore we will consider only fragments (V, P I, P2) of (/4, c~) and (?', P l) of 
(/3), and call them old and new fragments, respectively. Basically, an old fragment describes 
a part of a program that can be found in both the old and the new program. The demand 
for connected skeletons is important in the analysis of the old proof (§ 4.2). Now we are 

prepared to define the representation of program corrections by presenting the corrected 

program as a sequence of old and new fragments. 

DEFINITION 3 

Presentation of/4 using ol. Let/4 and c~ be skeletons, P = ( f l  . . . . . .  f)~) a sequence with 

f i  a connected fragment of (/3, o~) or a fragment of (/4). P is a presentation of~3 using ol 

iff ~ • P is defined and yields/3: 

i f  P = ( )  
Y p,  = = 

v e P =  Y[lh +- 3 ] •  i f P  (6, Pl . . . . .  P , ,~ )P ' , v /P l  [ ] ,n  E {1,2} 
undefined otherwise 

The function ® tells us how to construct the new program/4 from the sequence of proof 

fragments: Begin with [] and replace [] by the skeleton YI of the first fragment, then replace 
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one occurrence of [] in Yl by the skeleton of the second fragment, and so forth. If • is 
defined, then each position in a fragment corresponds to a [] during the construction, and, 
if/3 is a program, eventually all occurrences of [] are eliminated. Only the first position of 
each fragment (denoting a position in the new program) is used in this process, the second 
position (denoting a position in the old program if it exists) is only used in the analysis of 
the old proof (§ 4.2). 

Example 4. The following is a presentation P of the body of the correct procedure succ 
(from Fig. 1) using the erroneous version. 

p = 

{if x = zero then y := one else 
k i fx  = one then y := so(one) else []' 0,  0 )  ) (if top(x) ---- zero then y := Sl (pop(x)) else to, (2, 2)) 

(succ(pop(x):y); y := so(y), (2, 2, 2), (2, 2)) 

The first and third fragments are fragments of both versions of the body, hence are old 
fragments, the second one is a fragment of the corrected body only, hence a new fragment. 
The new program can be constructed by replacing [] in the first skeleton by the second 
skeleton, and then by replacing [] from the second skeleton by the third skeleton. 

Every program/3 can be trivially presented using t~ by P = ((/3, 0)).  However, our 
intention is to use as many fragments of the old program ot as possible. Therefore we need 
the notion of optimal presentations. 

DEFINITION 4 
Optimal presentation. A presentation P of/3 using a is called optimal iff P fulfills the 
following three conditions: 

1. It is not possible to extract from a new fragment an old fragment, i.e. to find a pattern 
for a subskeleton of the new fragment that is also a pattern for a subskeleton of the old 
program. Formally: 

There are no new fragment (y, p) ~ P, positions q ~ O(y)  and q' ~ O(c0 and 
connected skeleton 8 y~ [] such that ~ is a pattern for y / q  and t~/q f. 

Since ~ is a pattern for a part of the old program, ~ should belong to an old fragment, 
even if the number of fragments is increased. 

2. It is not possible to merge two new fragments into one. Formally: 

There are no fragments (Yl, Pl), (Y2, P2) E P and position P3 E O(yl)  such that 

PiP3 = P2. 

If P is a presentation and PiP3 = P2, then T1/P3 = [] holds, and it is possible 
to instantiate Yl at P3 with Y2 and to discard the second fragment (Y2, P2), thereby 
reducing the number of fragments. 

3. It is not possible to merge two old fragments into one. Formally: 

There are no fragments (Yl, Pl, ql), (Y2, P2, q2) E P, positions P3 E O(F1 ) and 
q3 E O(a) such that PiP3 = P2 and Yl [P3 <--- Y2] is a pattern for a/q3. 
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The definition is slightly more complex than for new fragments, since it is possible 
that one old fragment is instantiated with another old fragment when constructing the 
new program, but the second fragment stems from another position in the old program. 
However, if the skeleton of the combined fragment is also a pattern for part of the old 
program, both old fragments can be replaced by the combined fragment. 

Condition 1 is the most important one. It guarantees that the old program is reused as 
much as possible. The two other conditions just reduce the number of fragments. Example 
4 shows an optimal presentation that is also unique. However, this is not always the case, 
since a program may contain one skeleton at different positions, which leads to different 
optimal presentations. 

The following theorem states that any program correction can be expressed as an optimal 
presentation. 

Theorem 1. For two programs ot and fl there exists" an optimal presentation of ~ using o~. 

Proof sketch. For two programs c~ and/5 there always exists a presentation of/3 using a - -  
the trivial presentation ((/3, ())). Starting from this presentation it is possible to construct an 
optimal presentation. Assume that one fragment violates condition 1. Then this fragment 
can be replaced by one or more other fragments that do not violate 1., such that the new 
sequence of fragments still is a presentation of fl using tz. If condition 2. or 3. is violated by 
two fragments, they can be replaced by one fragment (see Def. 4.2 and 4.3). By iteration 
we get an optimal presentation. 

4.2 Analysis of aw oM proof 

The next step is the analysis of the old proof with a given presentation P of the new program 
/4 using o~. Our aim is to identify, for each program fragment Ji of fl and a, corresponding 
fragments of the old proof. 

In the first phase of the analysis of the old proof we assign to a goal g a position q, 
if the goal contains the subskeleton oUq of the old program o~, no position otherwise. 
This assignment can be computed since each rule of the calculus dealing with programs 
is extended by a description how programs and occurrences are modified. 

Here are some example rules: the symbolic execution rules conditional and assign. The 
rules are reduction rules and have to be read bottom up: 

F, 8 ~- {Otl)~, A F, ~8' ½ (ot2)(fi, A F ~- q)r, A , 
x new 

I'~- ( i f e t h e n ~ l  elsecz2)~P,A F ~- (x :=r )<p,A 

The first rule (conditional) has two premises, one for a positive test ~ and one for a 
negative test --,e. This rule is the proof theoretical counterpart to a symbolic execution 
of a conditional. If q is the assigned position of the conclusion, then ~/q = if ~ then 
oq else or2. Since ott is the next statement in the first premise, we assign to this goal the 
new position q (1), and to the second premise q(2). The second rule con'esponds to the 
symbolic execution of the assignment x := r. Since the application of this rule discards 
the statement, no position is assigned to the new goal. In both cases, the conclusion of the 
rule corresponds to exactly one statement of a program. 
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i fx  = zero then y := one else 
i fx  = one then y := so(one) else 

succ(pop(x):y); y := so(y) 
y := one 
:¢ 

i fx  = one then y := so(one) else 
succ(pop(x):y); y := so(y) 

y := so(one) 

succ(pop(x):y); y := so(y) 
y := so(y) 

i fx  = zero then y := one else 

i fx  = one then y := so(one) else 

succ(pop(x):y); y := so(y) 

Figure 3. The analysed proof. 

In the next phase we identify the set of proof fragments T corresponding to program 
fragments. For each fragment f = (y, p, q) in P and each goal g with an assigned position 
q, the corresponding proof fragment is computed recursively over the subtree beginning 
with g. A proof step with conclusion g~ belongs to the proof fragment for f if the position 
qP assigned to gr belongs to qO(y).  The process ends if q~ ~ qO(y)  or no position is 
assigned to g~. This approach guarantees that the resulting proof fragment forms a proof 
tree in itself. The demand for connected fragments (in Def. 3) assures that every goal g~ 
with an assigned position q' 6 q O (y) is member of one ti E T. Result of the analysis are 
T and the set T t of proof fragments where ot does not appear in any goal. 

Example 5. We demonstrate the analysis for the example presented in § 2 (figure 3). On 
the left side the lower half of the proof is shown. On the upper right side the corresponding 
subskeletons ~/q for each goal are shown (following the numbering of goals in the proof). 
• marks goals with no assigned position. The lower right side shows the correspondence 
between proof fragments and program fragments. 

4.3 The new proof 

The last step in the reuse of proofs is the proof of the original goal with the corrected 
program/5 instead of ot. Since this is the only difference between the old and the new goal 
the proof is likely to differ only in those parts where the corrected program is involved 
somehow. In general, however,/5 also introduces new fragments without any counterpart 
in the old proof. Then, the basic proof strategy with all its heuristics is invoked. This means 
that the new proof is done partly by the basic proof strategy and partly by using fragments 
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Figure 4. The new proof. 

of the old proof. The procedure starts out with the initial goal as the current goal and 
proceeds recursively according to the following decision table: 

- If the corrected program does not occur in the current goal of the new proof, a proof 
fragment from T t is selected and reused. 

- If the current goal refers to an old program fragment (T, P, q) of/3 and or, a corre- 
sponding proof fragment from T for (y, p, q) is selected and reused. 

- If the goal refers to a new program fragment (F, P), the basic proof strategy is invoked. 

Reusing a proof fragment from T or T t basically means to copy each rule application 
of this fragment and to check whether it is actually applicable. Otherwise it is checked 
whether this proof step can be replaced by a different one without giving up the rest of 
the fragment. This flexibility is achieved by a number of elaborate heuristics. Heuristics 
are also involved in the selection of suitable proof fragments from T or T'. It may happen 
that the program fragment referred to in the current goal is associated with more than one 
proof fragment in T, or there may be several possible selections for proof fragments in T I. 
If no further reuse is possible for a goal the basic strategy is invoked. 

Example 6. The procedure is explained by the example. Goals are numbered in both proofs. 
To distinguish between old goals and new goals, numbers for old goals are indexed with 
"o", numbers for new goals with "n". 

The reuse strategy starts with goal 1 n of the new proof and selects the old proof fragment 
lo-5o, yielding ln-5n. Goal 5n refers to an old program fragment f = (y, p, q) in the 
presentation of/3. The corresponding proof fragment for f begins at 50. Application of 
the rules of this fragment leads to a new proof with premises 7n, 14n, 20n. Goal 20n refers 
to a new program fragment (y',  pl) in the presentation of/3. This means that no reuse is 
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possible. Therefore the reuse strategy calls the basic proof strategy, which performs the 
proofs steps 20n-27n. The steps 7n-1 ln, 14n-19n result from reusing fragments of T p. 

At 28n the old program fragment 20o-21o is reused, even though the proof context has 
changed: top(a) ~ zero is an additional precondition. This modification avoids the dead 
end of the old proof, but has no other influence on the proof. The remaining details are 
omitted here. The resulting tree is identical to the new proof in figure 2. 

5. Results 

Now we report on our experiences with the reuse strategy implemented in the KIV system. 
First of all, the algorithms for proof analysis and the strategy for reuse are efficient enough 
to be integrated into KIV's tactic collection for interactive theorem proving. The analysis 
algorithm typically takes only one to ten percent of the time needed to carry out the new 
proof. The reuse strategy is faster than the basic proof strategy (even if there are no inter- 
actions) since there is less proof search in the reuse strategy. To illustrate its applicability 
we present a real example in the sense that the errors have not been introduced a posteriori, 
but have been discovered during the verification of a module for binary arithmetic. 

The procedure di vmod (figure 5) computes the quotient and the remainder in binary 
arithmetic. It is recursive and uses two other procedures le (less or equal) and sub (sub- 
traction). This procedure contains three errors, marked with 1 to 3. The first (1) can be 
considered as a typographical error and is corrected by replacing a variable, the second (2) 
is corrected by replacing a part of the program and the third (3) is corrected by deleting one 
statement and changing the structure of the program. Especially the last correction shows 
that a strategy for reuse of proofs must be able to cope with complex program corrections. 
We show how these errors have been found and corrected during the attempt to prove 
four properties of this procedure. They are named divmod-r (termination of divmod), 
mod-lemma (property of the remainder), div-lemma (property of the quotient), and mod-ls 
(remainder less than divisor). 

The verification protocol is given below. The interesting statistical results are the number 
of proof steps, interactions with the user and the total time needed for the proof. The basic 
proof strategy is partly interactive; e.g. 7 interactions for a proof with 169 proof steps 
means that 7 proof steps were applied by the user, and that the remaining 162 steps 
were performed automatically. We measure the degree of reusability by two numbers that 
indicate how many of the old proof steps are reused? and how many proof steps of the new 
proof stem from reuse?. These numbers will be given in the form Reuse: 97% : 95%. 

The verification starts by proving the first goal divmod-r using the basic strategy: 

1. proof of divmod-r: successful with 169 proof steps, 7 interactions, 6 min. (even though 
the procedure contains three errors, it still terminates) 

2. proof of mod-lemma: failure after 571 proof steps, 66 interactions, 3 h 45 min. This 
failure is a result of the first error (marked above by 1 ). 

3. correction of the error. New proof of mod-lemma: 566 proof steps, O interactions, 
18 min. till the situation of 2. Reuse: 95% : 99% (without reuse, i.e. using the basic 
strategy to prove mod-lemma again till 2., 66 interactions and 3 h 45 min. are needed) 
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d ivmod  (a, b : q, r) 
va re l  = tt  in / [q 

le(b, a: el); f 
if el = f f t h e n  q := zero; r := a else J 

if a = one then [ q := zero; r := o n e  ] 2 else 

divmod(pop(a) ,  b: q, r); 
if q = zero then q := one; sub(a, b: r) else 

if r = zero then ; r := top(a) else 

i f  top(a) = zero then r := so(r) else r := s l (r )  fi 

~ e(b, r;el); 

el = tt then q := sl(q); s u b ( ~ , b :  r) else q := so(q) fi 

fif if i  

:= one; r := zero] 

Figure 5. The procedure divmod. 

4. continue the proof of mod-lemma, mod-lemma and div-lemma can be proved. The 
remaining two errors become apparent during the proof of mod-ls. After their correction 
mod-ls is proved. 

Now the following situation is reached: All four proof obligations have been successfully 
proved. However, di vmod has been modified three times and the proofs refer to different 
versions of di vmod. Only the proof for mod-ls refers to the correct di vmod. Therefore 
the first three goals divmod-r, mod-lemma and div-lemma have to be proved again. The 
reuse strategy is applied again: 

5. new proof of divmod-r: 220 proof steps, 3 interactions, 5 min Reuse: 116% : 89%. 116% 
result from the reuse of several proof steps twice. (without reuse 220 proof steps, 9 
interactions, 9 min) 

6. new proof of mod-lemma: 1389 proof steps, 24 interactions, 58 min Reuse: 96% : 76% 
(without reuse 1389 proof steps, 147 interactions, 6 h 45 min) 

7. new proof of div-lemma: 140 proof steps, 0 interactions, 4 min Reuse: 98% : 96% 
(without reuse 140 proof steps, 42 interactions, 1 h 45 min) 

This concludes the proof of the four goals. Table 1 accumulates the results. If the 
procedure had been correct from the beginning, we would have obtained the figures for 
the correct program. In this case each goal would have been proved exactly once. Due to 
the errors it was necessary to repeat some proofs several times. This extra work is referred 
to as additional with reuse vs. additional without reuse in the table. 

The example shows that reusability of proofs is a significant phenomenon: An average 
of 94% of the old proofs have been reused, and 92% of the new proofs are reused proof 
steps. With the strategy for reuse the verification effort (the overall time including spec- 
ification, implementation, interactive and automatic proof) is only half the time needed 
without it. The additional verification effort due to error corrections is 11% compared to 
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Table  1. Comparison of the results with or without reuse. 

Correct program 
Additional with reuse 
Additional without reuse 
Total with reuse 
Total without reuse 

Time 
9h 
lh  

12h 
10h 
21h 

Interactions Steps 
227 1994 

9 2192 
255 2142 
236 4186 
482 4136 

the verification effort for a correct version. Without a strategy for reuse the additional ver- 
ification effort is approximately 130%. Furthermore, with the strategy for reuse the degree 
of automation improved significantly compared to a verification without it. The example 
demonstrates that the technique can handle complicated proofs and considerable program 
corrections. A number of case studies have confirmed these experiences. Reuse rates of 
more than 90% are typical, and the advantages of reuse grow with the size of the programs 
and proofs. 

6.  R e l a t e d  w o r k  

A certain amount of proof reuse capability is standard in most tactical theorem provers. 
Proof scripts and a replay mechanism can be found e.g. in NUPRL (Constable et al 1986), 
ISABELLE (Paulson 1994), HOL (Gordon 1988), PVS (Owre et al 1993) and others. 
The above reuse mechanism however, goes far beyond that. A machine learning approach 
to proof reuse is taken in Kolbe & Walther (1994). Example proofs are generalized and 
applied to similar goals by pattern matching. This approach aims at generalizing successful 
proofs but is not adequate to handle program corrections. 

Proof reuse in the context of program corrections can be seen as a special case of ana- 
logical reasoning in the sense of Owen (1990). Let P1 be a problem (goal) with the known 
solution S1 (proof), and P2 a new problem (corrected goal) with the yet unknown solution 
$2 (proof). The problem to construct $2 by analogy is divided into four subproblems: 

- base filtering. For P2 find a similar problem (here PI ) which is already solved. 

- analogy matching. Find a mapping between P1 and P2. 

- plan construction. Get one or more candidate solutions for $2 by transforming the 
known solution $1 using the analogy match. 

- plan validation. Check whether the candidates for $2 are indeed solutions for P2. 
Otherwise modify the candidates appropriately. 

In the context of program corrections the base filtering and the analogy matching prob- 
lems are void, since P2 is constructed from PI. There is no search involved. The plan 
construction is realized by computing the presentation of the new program using the old 
one (§ 4.1) and analyzing the old proof (§ 4.2). Plan validation is realized by the construc- 
tion of the new proof (§ 4.3). 
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7. Conclusion 

We have presented an evolutionary approach to software verification based on reuse of 
proofs. It was shown how reuse of proofs can be integrated into a conventional verification 
process model. Proof attempts for erroneous programs are used to guide the verification 
of corrected versions. 

Program corrections are formally described by presenting the corrected version of a 
program as a combination of fragments of the "old" program and new fragments. This 
presentation can be computed in such a way that the original program is reused optimally. 

Based on the presentation of program corrections, the unsuccessful proof attempt is 
analysed and a correspondence is set up between old program fragments and corresponding 
fragments of the old proof. 

This analysis is used to guide the verification of the corrected program. Since more than 
90% of the old proofs can actually be reused, this approach saves a lot of proof search 
and user interaction. However, the quality of the technique depends on the quality of the 
proofs to be reused. 

The technique is completely automated, and tested with complicated examples. We have 
presented one of them. The results show that reusing proofs improves current verification 
technology significantly. 

This research was partly sponsored by the BMFT project KORSO. 
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