
CERIAS Tech Report 2009-29
Reuse-Oriented Camouflaging Attack: Vulnerability Detection and Attack Construction

 by Zhiqiang Lin, Xiangyu Zhang, Dongyan Xu
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Reuse-Oriented Camouflaging Attack: Vulnerability
Detection and Attack Construction

Zhiqiang Lin Xiangyu Zhang Dongyan Xu
Department of Computer Science and CERIAS

Purdue University, West Lafayette, IN
{zlin,xyzhang,dxu}@cs.purdue.edu

ABSTRACT
We introduce a reuse-oriented camouflaging attack – a new threat
to legal software binaries. To perform a malicious action, such
an attack will identify and reuse an existing function in a legal
binary program instead of implementing the function itself. Fur-
thermore, the attack is stealthy in that the malicious invocation
of a targeted function usually takes place in a location where it
is legal to do so, closely mimicking a legal invocation. At the
network level, the victim binary can still follow its communication
protocol without exhibiting any anomalous behavior. Meanwhile,
many close-source shareware binaries are rich in functions that can
be maliciously “reused”, making them attractive targets of this type
of attack. In this paper, we present a framework to determine if a
given binary program is vulnerable to this attack and to construct a
concrete attack if so. Our experiments with a number of real-world
software binaries demonstrate that the reuse-oriented camouflaging
attacks are real and vulnerabilities in the binaries can be effectively
revealed and confirmed.

1. INTRODUCTION
Reuse-oriented attacks against software programs have received

increasing attention in recent years. Such attacks leverage legal
code in the victim programs to compose malicious semantics. For
example, return-into-libc [11, 19] attacks redirect control flow to
certain library code to achieve malicious purposes. Most recently, it
has been shown that even bit sequences in software can be exploited
to construct tiny code snippets, which form the “building blocks”
for constructing arbitrarily complicated malicious semantics [23,
7].

In this paper, we demonstrate a new type of reuse-oriented at-
tacks against software binaries. Different from existing attacks,
the granularity of software reuse in such attacks is the individual
functions in the binary. We call the new type of attacksReuse-
Oriented Camouflaging attacks(or ROC attacks for the rest of the
paper) as the attacker performs a semantically malicious action by
reusing legal functions in the victim binary. Furthermore, we show
that real-world software binaries may be vulnerable to ROC attacks
and we define such vulnerability as theROC vulnerability. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
This paper was submitted to ACM CCS’09 on April20th, 2009 (times-
tamped by EasyChair.org).
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

demonstrate that the detection of ROC vulnerabilities as well as
the construction of ROC attacks are not only feasible but also can
be made highly systematic.

The key observation behind ROC attacks is that certain func-
tional features in legal software binaries can be used for either
benign or malicious purposes. For example, an FTP program has all
the basic capabilities to steal and transfer privacy-sensitive files; an
email client has all the functions necessary to send spams. More
specifically, under a spam ROC attack, the subject and content
of a spam message could be supplied to the proper mail-sending
function, which will then send out the spam just like a regular
email. The attacker does not have to perform any environment
setup such as socket creation, hand-shaking, and payload encoding.

The ROC attack features stealth. Statically, it does not have a
stand-alone code body that implements the malicious semantics. In
comparison, traditional code injection attacks or persistent software
parasites [2] usually require injecting a piece of code to the victim
program and the injected code often manifests rich, distinct foot-
print that can be used to detect such code. In a ROC attack, since
the malicious semantics is fulfilled by reusing existing functions in
the victim binary, the attack only needs to apply a simple patch with
a few writes to memory regions that correspond to legal variables
in the original binary. These writes are indistinguishable from the
existing writes in the binary. Dynamically, the runtime behavior of
the binary under attack complies with constraints dictated by the
program semantics. The attack is mostly carried out by manipu-
lating program states and duplicating existing function invocations.
The duplicated “malicious” function invocations occur at a place
where they are legal to do so. Furthermore, since the attack reuses
communication protocol implementation in the binary, from the
network’s perspective, the victim binary may still follow the com-
munication protocol without exhibiting any anomalous behavior.

A typical scenario of launching a ROC attack is as follows: The
attacker downloads the binary of a popular close-source freeware
or shareware (e.g., a P2P file sharing or video streaming program)
and then patches it with function reuse logic. The patched binary
will be disseminated by the attacker via certain social engineering
tactics (e.g., prompting users to download from web sites of in-
terest). The user would think that the binary is a version of the
popular software. Without a universal binary integrity checking
infrastructure (which is the case for many close-source shareware
programs today), the attack is likely to succeed. Meanwhile, many
close-source shareware programs are rich in functions that can be
reused for malicious purposes, making them attractive targets of
ROC attacks.

To defend against ROC attacks, we propose a systematic frame-
work for the detection of ROC vulnerabilities. Given a close-source
binary, our framework will identify any ROC vulnerability in the

1

binary and further construct a ROC attack to show the true exis-
tence of that vulnerability. Our framework also serves the purpose
of demonstrating the feasibility (and simplicity) of ROC attacks
and thus raising public awareness. The detection of ROC vulnera-
bility involves two main steps:

The first step isreuse-able feature extraction. Given a subject
binary and its output that can be used in malicious contexts (e.g.,
an email client and the emails it sends out), our framework will
check if modular functions exist which are dedicated to producing
that output. Such functions are potential targets of malicious reuse
if their executions lead to very fewreversibleside-effects. For
example, the email client logs emails sent in the sent-email folder –
a side-effect that should be reversed for a spammer. Our framework
employs dynamic binary analysis techniques to narrow down the
reuse-able functions and quantify their side-effects.

The second step isreuse-able function argument identification.
The key part of a ROC attack is the malicious set up of parameters
to invoke the reuse-able feature function. We show that it is pos-
sible to identify such arguments without source code and symbolic
information. Our framework adopts a runtime program state diff-
ing approach, which involves running the subject binary twice –
with the same setting but different input value assignments. The
differences in the two resulting memory states will reveal a wealth
of information about the arguments of the reuse-able function, in-
cluding their memory regions and reference paths.

Our framework also includes a ROC attack composer. In order
to implant malicious logic, reusable function invocations in the
original binary are patched to expose critical internal states and
allow mutation. Such functions and states are identified by the
vulnerability detector. If needed, function invocations can be du-
plicated in the same context of the original invocation such that
the various semantic constraints demanded by calling the target
function can be easily satisfied, i.e., the legal calling context is ma-
liciously reused. A set of API functions are provided to enable easy
ROC attack composition. The attacker can construct non-trivial
attacks by writing a few lines of code, which will be translated into
binary and then patched into the victim binary.

We have implemented a prototype of the ROC vulnerability de-
tector and ROC attack composer and applied them to a number
of real-world software binaries. Our experimental results show
that ROC attacks are real and simple to construct. Moreover, our
framework is able to identify specific reuse-able functions and con-
struct the corresponding attacks. For example, as we have shown
in the case study, the email clientPineandmailx can be converted
into a stealthy email interceptor; the P2P softwareMutella can be
exploited to perform covert Command and Control (C&C) commu-
nication for a botnet; and the P2P softwaregiFT can be converted to
transfer sensitive files (e.g./etc/passwd) to other hosts without
being noticed.

2. APPROACH OVERVIEW

Vulnerability

Specification

0101010000

(app. binary)
Feature

Extraction

Side Effect

Analysis

1101010010

(patched binary)

Argument

Reverse Eng.

ROC Attack

Composer

Candidate

Functions

Candidate

Functions

Reference

Path

Vulnerable

Functions

① ①

② ③

② ③

③ ④

②

②

Figure 1: Typical workflow of ROC vulnerability detection and
attack construction.

Fig. 1 illustrates a typical workflow of ROC vulnerability detec-
tion and attack composition. Given a target application binary, the
user will first specify adesirableROC vulnerability. Unlike tra-
ditional “syntactic” vulnerabilities such as buffer-overflows, ROC
vulnerabilities are highly dependent on the victim program’sse-
mantics, namely the functional feature of the program that can be
reused in a malicious context. The ROC vulnerability specification
indicates such a desirable feature.

Using the desirable vulnerability specification as input, thefea-
ture extractioncomponent will automatically identify a set of can-
didate functions to reuse. The best candidate function is the one
that will lead to the least amount of side effects. The functions’
side-effects will be quantified by theside effect analysiscompo-
nent. Meanwhile, theargument reverse engineeringcomponent
will identify the memory locations of the functions’ arguments.
The output of this component is areference graph, which presents
a hierarchical view of the memory for the argument variables. Fi-
nally, using the outputs ofside-effect analysisandargument reverse
engineering, theROC attack composercomponent will generate the
actual malicious patch that will invoke the best reuse-able function.

3. TECHNICAL DETAILS

3.1 Specifying ROC Vulnerabilities
Recall our technique works directly on software binaries that

may be acquired from Internet, and we assume neither the source
code nor in-depth understanding of their implementation. Thus, the
only thing we can leverage to define a functional feature is the input
and output of the software. In many cases, the input/output does
provide a lot of information of the relevant features. For instance,
if we want to decide if the email sending feature ofpine can be
exploited, the email messages emitted bypine can be used to trace
back to the functions that are responsible for sending emails. Then,
the detector can further analyze these functions to see if they can
be reused. For another example, if we want to detect whether the
file transfer feature of a P2P client is vulnerable, we can annotate
the network packets belonging to the file transfer protocol sent by
the software. With the annotations, the functions corresponding to
file transfer can be disclosed by execution monitoring.

As a generalization of the above examples, our solution of spec-
ifying ROC vulnerability isto represent candidate features of a
software by specifying the outputs generated by (the inputs pro-
cessed by) these features from the whole program output (input).
The specified outputs (inputs) often follow standard formats that
can be inferred from the high level understanding of the software.
More formally, we consider the output (input) of a software as a
sequence of bytes and the relevant output (input) is a sub-sequence.
The sub-sequence is described by a grammarG. The corresponding
parser filters all the irrelevant outputs (inputs). In practice, the
sequence is the events recorded in the log file. Logging is done
by intercepting system calls. In order to use our ROC vulnerability
detection components, the user only needs to provide the grammar
G, which can be written according to the public formats. For in-
stance, the grammar of email messages can be easily derived from
RFC-2822. The generated parser is responsible for recognizing the
relevant outputs and parsing them into fields (nonterminals). As we
will discuss later, such fields will be used to compose ROC attacks.

A sample output grammar provided to our detector is shown
in Fig. 2. It is to detect ROC vulnerabilities inpine regarding
the email sending feature. It is a simplified version for sake of
presentation, a full grammar can be found in RFC-2822. Similarly,
other grammars can be provided if the user wants to detect ROC
vulnerabilities regarding different features.

2

Message → Header Body
Header → Subject Receiver Sender

Receiver → Addr+

Sender → Addr
Title → String
Body → String

Figure 2: Simplified grammar G of email messages, provided
as the input to the ROC vulnerability detector.

3.2 Detecting ROC Vulnerability
This section describes how the detector works given the specifi-

cation described in the previous section. For brevity, our discussion
in this section focuses onoutput based specification, i.e.,G is a
grammar that filters output. Handling input relevant ROC vulnera-
bilities can be easily inferred and examples of input relevant ROC
vulnerability can be found in Section 5.

3.2.1 Feature Extraction
Given a grammarG describing an output sub-sequence,feature

extractionidentifies the set of modular functions in the binary that
are exclusively dedicated to the feature of manipulating and emit-
ting the output described byG. Other modular functions are less
vulnerable as subverting them may cause unexpected effects. For
example, the functionsendpacket is used by a lot of features
in pine including sending emails and communicating with email
servers. The function is not vulnerable to ROC attacks regarding
email sending because subverting the function introduces undesir-
able effects for all the services relying on the function.

Feature extraction is mainly carried out by profiling. Leto be the
output sub-sequence accepted byG andoi represent theith byte of
o. Our technique instruments the binary to support a mapping from
an observed byte to the definition point of the byte, represented as
pci, meaning theith instance of instruction atpc. The instrumenta-
tion is a standard dynamic program dependency tracking (namely
taint analysis), which has been widely used in such as data life time
tracking [8], exploit detection [10, 21], and malware analysis [12,
28]. In particular, we instrument each memory read, write, data
movement, to catch dependencies between data definition and uses.
Also, we capture the call stack context of data definitions and uses.

The next step is to analyze executions to identify functions that
are dedicated to producing the relevant output. Given the sub-
sequenceo, a standard approach would be to perform dynamic
slicing [18] ono to isolate the relevant executions. Dynamic slicing
is a technique proposed as a debugging aid. Given a value at an
execution point, called the slicing criterion, it computes a transitive
closure along program dependencies. A feature can be extracted by
aggregating slices across multiple runs to find out modular func-
tions that are dependent on by the specified outputs. However, we
found such an approach is not optimal for our purpose because it
often isolates functions that do not directly manipulate the speci-
fied outputs. For example,pine needs to call a few initialization
functions to set up the sender’s environments. Such functions are
dedicated to email sending and caught by slicing. However, these
functions do not directly manipulate the specified outputs so that
subversion is hard.

In our solution, given an executionE whose relevant output iso,
a dynamic call tree is constructed, with a node representing a dy-
namic function instance and an edgef → g representing a dynamic
invocation fromf to g. Note that it is a tree instead of a graph as
dynamically one callee instance has only one caller instance. Each
byte oi in o is then annotated on a node in the dynamic call tree

if oi is defined in the function instance represented by that node.
A function instancef is said acontaining functionof o if it is the
common ancestor of all the function instances that are annotated.
Intuitively, it means the entireo is defined insidef , either directly
in f or in function instances transitively invoked byf . Note that
if f is a containing function, its ancestors in the dynamic call tree
are also containing functions. For example, assume we want to
subvert the email sending feature inpine. Email messages are
annotated as relevant from all the outputs ofpine according to
the providedG. Table 1 shows a sample email and the paths in the
dynamic call tree that lead to function instances that define indi-
vidual bytes in the email message. These paths correspond to the
calling contexts of the definition points. Consecutive bytes with the
same path are aggregated and showed in columnContent. Note
that the call paths are only partial as they all share the same pre-
fix main→compose_mail→pine_send→ call_mailer.
According to the above definitions,call_mailer, together with
pine_send, compose_mail, etc. are containing functions.

Not all containing functions are vulnerable. We exclude func-
tions that can be invoked in executions that do not produce the spec-
ified output. Let the set of containing functions for an executionE

beCF(E), and the set of functions invoked by an executionE be
F(E). Assume a test suiteT with T G being the set of executions
that manifest the relevant output. The set of feature functions is
computed as follows.

feature(G) =
⋂

E∈T G

CF(E) −
⋃

E∈T −T G

F(E)

That is to say, the set of feature functions include the common
containing functions shared by all cases that produce relevant out-
put, excluding those occur in any case that does not produce rele-
vant output. In thepine example,compose_mail,pine_send,
andcall_mailer are the feature functions. Functionmain is
not part of the feature as it occurs in executions that do not send
emails.

3.2.2 Side Effect Analysis
ROC attack aims to reuse existing application logics implemented

in modular functions to achieve the malicious goal. They often
entail duplicating calls to feature functions in their original context.
One of the necessary conditions is that the function invocation to
be duplicated has to have no or very few side effects. Otherwise,
benign execution will get perturbed such that stealth can not be
preserved.

Therefore, the next step of ROC vulnerability detection is to
analyze the side effects of the functions in the feature we extracted
in the earlier step. In this work,a side effect of a function instance
is defined as a memory write in the function instance that is used
after the function instance returns or a library call that results in
observable external behaviors like updates to a log file.Writes
to stack variables in the frame of a function instancef and to
heap structures allocated and then freed insidef do not induce
any side effects. The analysis is implemented by tracing memory
writes, system calls, heap allocations and de-allocations. Details
are elided.

Applying the side effect analysis to thepine’s feature shows
that all the functions in the feature do have side effects. As shown
in Section 5, methodscompose_mail, andpine_send have
a large number of side effects. In contrast, a maximum of18
writes to global variables and a maximum of9 heap allocations
are observed as the side effects ofcall_mailer. They can be
reversed by restoring the values of the updated memory locations.
Therefore, we considercall_mailer to be potentially vulnera-

3

Content Call Tree Paths (Calling Contexts) of Definitions
EHLO [10.0.0.4]\r\n ...call_mailer→smtp_open_full→smtp_ehlo→sprintf→vsprintf→vfprintf→_IO_default_xsputn
RSET\r\n ...call_mailer→smtp_mail→smtp_send→0x804ad38→strcpy
MAIL FROM:<alice@bob.com>\r\n ...call_mailer→smtp_mail→smtp_send→0x804ac58→sprintf→vsprintf→vfprintf→_IO_default_xsputn
RCPT TO:<alice@bob.com>\r\n ...call_mailer→smtp_mail→smtp_send→0x804ac58→sprintf→vsprintf→vfprintf→_IO_default_xsputn
DATA\r\n ...call_mailer→smtp_mail→rfc822_output→post_rfc822_output... →pine_header_line→0x804ac58→sprintf→...
Date: Wed, 22 Oct 2008 14:00:... ...call_mailer→smtp_mail→rfc822_output→post_rfc822_output... →pine_header_line→fold→sstrcpy
From: Alice <alice@bob.com>\r\n ...call_mailer→smtp_mail→post_rfc822_output→pine_rfc822_output→pine_rfc822_header→pine_address_line
X-X-Sender: alice@bob.com\r\n ...call_mailer→smtp_mail→post_rfc822_output→pine_rfc822_output→pine_rfc822_header→pine_address_line
To: bob@alice.com\r\n ...call_mailer→smtp_mail→post_rfc822_output→pine_rfc822_output→pine_rfc822_header→pine_address_line
Subject: a test\r\n ...call_mailer→smtp_mail→rfc822_output→post_rfc822_output... →pine_header_line→fold→sstrcpy
Message-ID: <Pine.LNX....137@lo... ...call_mailer→smtp_mail→rfc822_output→post_rfc822_output... →pine_header_line→fold→sstrcpy
Content-Type: TEXT/ ... format=... ...call_mailer→smtp_mail→post_rfc822_output→pine_rfc822_output→pine_rfc822_header→pine_address_line
aaaaaaaaaaaaaaaaaaaaaaaaa\r\n ...call_mailer→smtp_mail→rfc822_output→post_rfc822_output... →gf_local_nvtnl→gf_terminal→l_putc
.\r\n ...call_mailer→smtp_mail→smtp_send→0x804ad38→strcpy
QUIT\r\n ...call_mailer→smtp_close→smtp_send→0x804ad38→strcpy

Table 1: An email string and the call tree paths to function instances that define individual bytes of the string.

ble. In comparison, some side effects are not reversible like GUI
displays. Functions having these side effects are not vulnerable.
If none of the feature functions is vulnerable, the software is not
vulnerable.

3.2.3 Reverse-Engineering Critical Arguments
After deciding feature functions and excluding functions with

irreversible side effects, we have narrowed down the vulnerable
functions to a small set. In order to decide whether they are truly
vulnerable, we need to figure out if the behavior of these functions
can be mutated by changing program state. Therefore, the last step
in ROC vulnerability detection is to identify critical arguments of
these feature functions. Without loss of generality, we consider one
feature functionf in this section.

The ROC vulnerability detector relies on checking two condi-
tions. One is toidentify the important variables (memory regions)
whose values need to be modified in order to manipulate the spec-
ified output. For example, email re-direction entails finding the
memory region that stores the recipient email address. The other
condition is toidentify the reference paths to these variables (mem-
ory regions). A variable or a memory region can not be simply
accessed through their absolute addresses, which may change from
run to run. Therefore, an attack can not be constructed (and hencef

is not vulnerable) unless a reference path that consistently leads to
the same variable (memory region) across all runs can be identified.
Note that we do not have the source code or the data structure
definition.

Given one run, a simple approach to locating the memory region
that stores the sensitive information is to scan the memory. How-
ever, such an approach cannot be generalized. The program may
parse and then store the information to its own formats, e.g., an IP
address can have multiple internal representations. Furthermore,
the information may even be encrypted such as in SSL communi-
cations. In these cases we can not simply conclude the information
is not accessible and hence the program is not vulnerable.

Our ROC vulnerability detector identifies critical memory re-
gions through memory differencing. We acquire an extraexecution
by changing some of the program inputs and directing the software
to produce different outputs. The original execution is called the
reference execution. The memory snapshots of the two executions
at the invocation of the feature functionf are compared to isolate
the relevant memory regions. For example, in thepine case,
the reference execution sends a message to an addressx, whereas
the extra execution is acquired by sending the same message to
a different addressy. The memory states before the invocations of
call_mailer in the two respective runs are compared to identify
the memory region that stores the recipient address, which should

be the only difference of the two runs. Recall thatcall_mailer
is the candidate vulnerable function detected in the earlier phase.

In practice, a dynamic data structured may be allocated to differ-
ent locations in the two runs. Comparing the memory location ofd

in one run to the same location in the other run may be equivalent
to comparingd to a different data structured′, and hence lead to
the wrong conclusion thatd does not hold the same value in the
two runs. In order to properly compare two memory snapshots,
our detection technique needs to construct the correspondences be-
tween memory cells. We define the problem as amemory alignment
problem. More formally,given two executionsE and E′ and a
memory variablei in E, the memory alignment function identifies
a memory variable inE′ that corresponds toi. The function is
denoted asMAE→E′(i), orMA(i) for short if the two executions
are clear from the context.MA(i) is a partial function, fori
that does not correspond to any memory variable inE′, MA(i)
is undefined, denoted asMA(i) = ⊥.

Theoretically, memory alignment is an undecidable problem. We
propose an approximate solution based onReference Graph(RG).
Intuitively, RG identifies the reference paths to all live memory
regions. Because for any live memory region, there must exist a
reference path starting from a global variable, a stack variable on
the current frame, or a register, and hence the roots of RG have
to be one of the above three types of variables. RG serves as an
indexing scheme over the memory space so that indices can be
used to identify memory alignment. The formal definition of RG is
presented as follows.

DEFINITION 1. A reference graph is a pair〈N, E〉 with N be-
ing the set of nodes andE being the set of edges. A node represents
a memory region or a field. There are two types of edges.

• There is a field edge between nodesn and m, denoted as
n ⊸ m, if m is a field ofn. The field name is annotated on
the edge. If symbolic information is not available, the offset
is annotated.

• There is a pointer edge between nodesn andm, denoted as
n −→ m, if n stores a pointer that points tom.

In our pine example, we acquire two executions by running
pine twice, with the same configuration and the same sender and
recipient addresses, but different subjects and email contents. We
show these two test emails in Table 2: one is a spam email and the
other is a regular one.

The two RGs at the invocation point ofcall_mailer are pre-
sented in Fig. 3. The root nodes represent the current stack frame
(the roots for the global regions are irrelevant for our discussion

4

bfff9970 (ESP)

bfffcf58 8506308 0

8506360 ...

0 8519488 8519458 8506a40 85194c0 0 8519ef8 8505e88 085063a8 0

Fri, 31 Oct 2008 12:10:51 −0400 (EDT) Hello<Pine.LNX.4.63.081031121007.13974@localhost>

8507618 0 85075d0 85194b0 0 8506a68 0 8506a80 8506a900 0 85194e885194f8 0 084e4d00 84e4d10 0

bob alice.comAlice alice bob.comAlice alice bob.com alicelocalhost

0 8506af0 8505e48 0 8506430 0

PLAIN

0 85043b0 0

8506468 8506468 0

8519e788519e78 ...

85064688506468 00000010 0000000c 00000048 00000045 ...

0 4 8

0 4

0 8 12 16 20 24 28 32 3648 52

0 4 8 12 16 0 4 8 1216 0 812 16 08 12 16

0 4 8 12 52 56

0 8 12

0 4 8

04 8

04 8

(a)
bfff9960 (ESP)

bfffcf48 8506310 0

8506368 ...

0 851bec0 851c350 85064c8 851bf10 0 8507658 8505e90 085063b0 0

Fri, 31 Oct 2008 12:02:36 −0400 (EDT) SPAM<Pine.LNX.4.63.0810311201560.14328@localhost>

851bee8 0 85075d8 851bf00 0 85064f0 0 8506508 85065180 0 851bf38851bf48 0 084e4d08 84e4d18 0

bob alice.comAlice alice bob.comAlice alice bob.com alicelocalhost

0 8506578 8505e50 0 8506438 0

PLAIN

0 85043a8 0

8506470 8506470 0

851bff8851bff8 ...

85064708506470 00000010 00000015 00000054 00000068 ...

0 4 8

0 4

0 8 12 16 20 24 28 32 3648 52

0 4 8 12 16 0 4 8 1216 0 812 16 08 12 16

0 4 8 12 52 56

0 8 12

0 4 8

04 8

04 8

(b)

Figure 3: RGs at the invocation ofcall_mailer for (a) sending a spam email and (b) sending a regular email.

Subject: SPAM Subject: Hello
From: <alice@bob.com> From: <alice@bob.com>
To: bob@alice.com To: bob@alice.com
This is a spam email. Hello, world

Table 2: The two different test emails

and thus omitted). In Fig. 3(a), three fields have been reverse engi-
neered with the byte offsets of 0, 4 and 8. The first two are pointers,
the last one contains a value 0. The first pointer field0xbfffcf58
points to a memory region that has two fields, and so on.

The two memory snapshots are aligned by aligning their RGs.
Since RGs are graphs with labels, their alignment can be carried
out by a simple labeled graph alignment algorithm, which will not
be further discussed due to the space limit. A memory difference is
defined as a memory region that has a different value in its align-

ment in the other RG. Observe the two RGs in Fig. 3 are highly
similar. The differences are highlighted in the figure. Note that
pointer value differences are ignored to tolerate non-determinism
in memory allocation. Two out of the four differences are for the
subject and the content. The other two are for different time-stamps
and book-keeping information. Note that the content is encoded,
which justifies our approach of memory diff-ing because a simple
scan over the memory would fail to find the content.

Besides identifying critical memory regions, the other goal of
RG is to provide reference paths to these regions. A reference path
is a RG path that starts from a root and leads to the destination
region. It represents how to address the region at the current exe-
cution point. The software is vulnerable only if such paths can be
reverse engineered, because then a ROC attack can be easily com-
posed by mutating the values of these regions. In Fig. 3, the refer-
ence paths from the roots to the differences can be discovered from
the RGs. For example, the reference paths to the subject and the

5

content are *(*(*(ESP+0)+0)+28) and *(*(*(*(*(*(ESP+4)+52)+8)
+0)+0)+8), respectively. Note that dictated by the definition of
memory alignment, the paths to the corresponding memory regions
are identical in the two graphs, e.g. the paths to the email subject
are the same. It is worth pointing out that the normal execution can
be mutated to the malicious one if the values in the shaded regions
in (a) are copied over to the regions in (b) at the execution point
where the snapshot is taken.

Algorithm 1 Reference Graph Construction.
Input: HR is the hashmap for regions;HF is the hashmap for memory locations
occurred in any accesses;S is the snapshot.
1: identify the current framefm and the global regiong from S
2: insertfm andg to the RG.
3: wl← {fm, g}
4: while wl is not emptydo
5: r← wl.pop()
6: for each possible offseto in regionr do
7: p← r.base + o
8: if HF.contains(p) andHF.get(p) happens afterr then
9: a new fieldf is created.

10: a field edger
o

⊸ f is inserted.
11: end if
12: if isPointer(∗(p)) then
13: if ∗(p) points to the middle of a regionrx ∈ HR then
14: separaterx to two regions with one starting at∗(p)
15: end if
16: if HR.contains(∗(p)) and∗(p) is not a region in the RGthen
17: A new region nodenew_r is created forHR.get(∗(p))
18: a pointer edgef → new_r is inserted
19: wl← wl ∪ new_r
20: end if
21: end if
22: end for
23: end while

Reference Graph Construction. RG plays an important role in
ROC vulnerability detection. Next we present an algorithm for
RG construction. The pseudo-code is presented in Algorithm 1.
The algorithm takes a memory snapshotS at a particular execution
point, a hashmapHR that records the memory regions allocated
during execution, and a hashmapHF that records the memory
addresses that have been accessed. It then generates the RG at the
execution point. The hash mapHR is created by tracing memory
allocation/de-allocation functions and function entries (for stack
frames), e.g., a new region is inserted when a piece of memory is
allocated with the key being the base address. The hash mapHF is
acquired by tracing memory accesses. Any location that has been
accessed has an entry inHF .

At line 2, the root nodes of the RG are the region for global
variables and the region for the current stack frame. Before RG
construction, registers are pushed to the stack so that they become
part of the current stack frame and we do not need to create a sep-
arate root node for registers. Note that individual global variables
and stack variables on the current frame become the fields of the
root nodes; other stack frames can be reached from the current
frame. The basic idea of the algorithm is to start from the root
nodes and gradually explore all the reachable memory regions and
their fields, by using a worklist. Observe that all live variables are
reachable from the root nodes. The loop between lines 6 and 22
explores a region from the worklist. It traverses each offset in
the region. It tests if the location denoted by the offset has been
accessed ever since the region was created at line 8. If so, the offset
must represent a field. A value-based heuristic is used to decide if
the value stored at the current offset, denoted by∗(p) at line 12, is a
pointer. If so, the algorithm further tests if it points to the middle of
an existing region at line 13. If this is the case, the existing region
is divided into two regions. It then tests if the pointer points to the

beginning of a region, if this is true and a node has not been created
for the region, a new node is created in the RG; a pointer edge is
inserted; the new node is added to the worklist for later exploration.
An important property of RG is thatany memory region that is
reachable in the ideal reference graph, i.e., the one created with
the knowledge of data structure, is reachable in the RG produced
by our algorithm. The proof is omitted.

4. ROC ATTACK COMPOSER
Given a grammar specification, our ROC vulnerability detector

reports feature functions and critical arguments with their reference
paths. If both can be identified, the software is highly susceptible
to ROC attacks. In order to decide if these candidates are true
positives, we further develop an attack composer which allows user
to easily construct ROC attacks.

Macro/Method Description
BEFORE(intfunc) {code} insert the code block beforefunc
AFTER(intfunc) {code} insert the code block afterfunc
ENTRY(int func) {code} insert right insidefunc
void get(int*field) retrieve the argumentfield
void set(int*field, void* val) set the argument withval
void duplicate(intfunc) duplicate the invocation offunc

Table 3: ROC Attack Composition API.

Recall that feature functions are those that emit the specified
outputs and their invocations can be duplicated for subversion if
needed as they do not have irreversible side effects. Furthermore,
critical arguments of these functions and their reference paths also
allow mutating the arguments. Therefore, we propose a program-
ming interface that facilitates easy ROC attack composition. The
interface is shown in Table 3. This interface provides macros that
allow inserting code before or after a function invocation, or right
at the beginning of the invoked function. It also supports simple
argument manipulations and function call duplication. A ROC at-
tack can be written using a C-like language with the provided APIs.
The following code snippet illustrates a ROC attack that re-directs
an email message.

BEFORE(call_mailer){
set(&receiver, "ghost@somewhere.com");
duplicate(call_mailer);

}

The attack duplicates thecall_mailer (in realization it is an
function address) invocation and mutates thereceiver (it is a
reference path) of the email address before the duplicated call. The
attack code is inserted before the original invocation tocall_mailer.
The result is that a copy of the email is sent to the malicious address
before it is sent to the right receiver. The snippet is translated into
assembly code, which is further compiled to a piece of independent
binary. The binary is then patched to the original software. The
patch is comprised of three parts: anentry patchthat precedes the
duplicate and intercepts the control flow right before the original
benign invocation, amalicious logicthat implements the main body
of the attack, and anexit patchthat reverses the side effects. The
malicious logic includes accessing and changing the critical argu-
ment denoted by the field namereceiverand making a duplicated
call. The field represents the argument that decides the output value
parsed by the non-terminalReceiverin the grammarG, denoting the
receiver’s address.

Binary Patching. The attack can be inserted into the original
software without recompiling. Patching is done by replacing a
few instructions before the invocation sites specified in the attack

6

(a) Original entry code for call_mailer

<pine_send>:
 ...
 81d178f: 89 44 24 08 mov %eax,0x8(%esp)
 81d1793: 89 54 24 04 mov %edx,0x4(%esp)
 81d1797: 8d 85 c4 fe ff ff lea 0xfffffec4(%ebp),%eax
 81d179d: 89 04 24 mov %eax,(%esp)
 81d17a0: e8 ca 43 00 00 call 81d5b6f <call_mailer>
 81d17a5: 85 c0 test %eax,%eax
 81d17a7: 7e 0c jle 81d17b5
 81d17a9: c7 85 18 ca ff ff 01 movl $0x1,0xffffca18(%ebp)

(b) Rewrite first 9 bytes before call_mailer

<pine_send>:
 ...
 81d178f: 89 44 24 08 mov %eax,0x8(%esp)
 81d1793: 89 54 24 04 mov %edx,0x4(%esp)
 81d1797: e9 xx xx xx xx jmp <entry_patch>
81d179c: 90 nop
81d179d: 90 nop
81d179e: 90 nop
81d179f: 90 nop

 81d17a0: e8 ca 43 00 00 call 81d5b6f <call_mailer>

(c) entry_patch

<entry_patch>:
 0: 8d 85 c4 fe ff ff lea 0xfffffec4(%ebp),%eax
 6: 89 04 24 mov %eax,(%esp)
 9: 60 pushal
 a: e8 xx xx xx xx call <malicious_logic>
 10: e8 xx xx xx xx call <exit_patch>
 15: 61 popal
 16: e9 xx xx xx xx jmp <81d179c>

(e) exit_patch

<exit_patch>:
Patch back side effect
variable

(d) Malicious logic

<malicious_logic>:
(1) Keep a copy of all side
effect variable
(2) prepare patched arg for
call_mailer
(3) invoke it to send SPAM
or redirect email

Figure 4: The patched code that sends a copy to a malicious address.

code. No significant code mutation is needed. We illustrate binary
patching using the ROC attack topine described earlier. Fig. 4
(a) shows the original assembly code aroundcall_mailer().
To patch the software, as shown in Fig. 4(b), the a few instructions
before the invocation is replaced with a jump, which jumps to the
entry patch. The entry patch first restores the replaced instructions
at the call site to preserve the original semantics of the program,
and then it keeps a copy of all regular registers, and makes calls
to the malicious logic function and then the exit patch as shown in
Fig. 4(c). At the end of the entry patch, the control flow returns to
the original invocation.

5. EVALUATION
We have implemented the ROC vulnerability detector using Valgrind-

3.2.3 [20]. We instrument binary to (1) collect memory reads,
writes, data dependencies, heap allocations, and de-allocations, along
with the call stack contexts; (2) keep track of function live ranges,
caller-callee relations; and (3) take snapshots of memory along
with regular registers for reference graph construction at selected
function invocation points. Feature extraction, side effect analysis,
and reference graph based memory comparison are conducted off-
line based on the trace file.

The ROC attack composer is implemented independently. We
design a C-like script language. A program written in this lan-
guage can be translated to assembly code and further compiled to
binary. The attack binary is then integrated into the original binary.
Variables declared and used exclusively in the attack code (e.g., a
loop index) are allocated at the end of a data section of the original
binary. Constants such as strings are embedded into the attack code
as they are immutable. More specifically, they are embedded right
after function invocation instructions in the attack code. The target
address of theret instruction in the invoked function needs to be
adjusted accordingly. The addresses of the constants can be easily
computed from the program counter of the invocation instructions.
In order to merge the attack binary into the original binary, besides
the binary patching technique presented in the previous section, the
main body of the attack code is stored in the unused space in the
code segment, which can be identified from the ELF header.

We have applied our framework to a number of programs. Next
we will present the outcome from our detector and demonstrate
how to construct ROC attacks to confirm the reported vulnerabili-
ties.

The first step in ROC vulnerability detection is to specify the

grammar. Here, we assume some high level prior knowledge about
the functionalities of the application such as the protocol being
used. In particular, our evaluation mainly involves two protocols,
an email protocol (RFC-2822) and a P2P protocol Gnutella-0.6. We
aim to detect ROC vulnerabilities in the various implementations of
these protocols. We take 5 widely used software as the benchmarks
which are shown in details in Table 4 and Table 5. TheSize in
Table 4 is the binary size. In the email implementations (pine and
mailx), we aim to find the feature which is responsible for email
sending so that we can use to redirect email or send spam. In the
P2P implementations (mutella, peercast, andgift), we aim
to implant malicious logic such as a C&C channel.

Table 4 shows the cost of profiling in the feature extraction phase.
The profiling consists of one expensive instruction level profiling
and10 times featherweight function level profiling. The instruction
level profiling collects memory reads, writes and dependencies and
produces large log files. It is to facilitate identifying containing
functions. The function level profiling is to identify containing
functions that are not dedicated to the feature, i.e., containing func-
tions executed in runs that do not produce the specified output (or
do not accept the specified input). The overall cost is presented in
Table 4. The overall profile time, the maximal number of traced
threads for one run, and the total log size are shown in the3rd,
4th, and5th columns, respectively. Note thatlibGnutella is
a plug-in ingift. They are treated as two different benchmarks
because we are interested in their different features, namely, the file
index management feature ingift and the file transfer feature in
libGnutella. The first instruction level profiling is the domi-
nant factor in the cost. Currently, it collects traces for the entire
execution which is sub-optimal. We will work on optimizing this
component in the future.

Benchmark #Traced
Software Name Size Time Threads Log Size

pine-4.63 6.3M 8m25s 1 6.4G
mailx-12.4 712K 5m48s 1 2.9G

mutella-0.4.5 843K 10m16s 9 8.2G
peercast-0.1217 58K 15m18s 5 3.5G

gift-0.11.8.1 321K 7m57s 1 2.2G
libGnutella.so.0.11 657K 12m36s 1 3.1G

Table 4: Cost of profiling in feature extraction.

Table 5 summarizes the input and outcome of the detector. Columns
in Prior Knowledge presents the information provided by the
user:Protocol is the feature represented by the provided gram-

7

Prior Knowledge Observed Feature Function Max Length #Identified #Containing Side Effect Write Performance
Benchmark Protocol #Var Func Addr Func Name of Ref Path Var Functions #G #H #F Overhead

RFC-2822 0x081c613c compose_mail 1 1 7 183 9 1 1.71X
pine-4.63 Email 4 0x081cbf67 pine_send 3 0 8 181 37 1 1.68X

Sending 0x081d5b6f call_mailer 6 4 9 18 9 0 1.72X

0x08090f59 talk_smtp 3 3 10 3 2 0 1.77X
RFC-2822 0x08092306 smtp_mta 3 3 9 9 1 0 1.77X

mailx-12.4 Email 4 0x0808e864 start_mta 3 3 8 18 1 0 1.64X
Sending 0x0808e6a2 transfer 3 3 7 18 1 0 1.61X

0x0808ee02 mail1 3 3 6 70 1 2 1.60X

0x080d0cc2 MGnuNode::SendPacket 5 1 15 1 1 0 -
mutella-0.4.5 Ping Send 1 0x080d2eb8 MGnuNode::Send_Ping 4 1 14 1 1 0 -

0x080d64e2 MGnuNode::HandlePacket 5 1 8 - - - -
Ping Recv 1 0x080d1b1c MGnuNode::Receive_Ping 4 1 9 - - - -

0xb7eee13e GnuStream::ping 1 1 9 0 6 0 -
peercast-0.1217 Ping Send 1 0xb7eedf5a GnuStream::sendPacket 3 1 8 0 6 0 -

Ping Recv 1 0xb7eef3b6 GnuStream::processPacket 6 1 8 - - - -

Index 0x08054923 share_update_index 5 0 16 - - - -
gift-0.11.8.1 Management 0 0x0805489e update_index 5 0 17 - - - -

0xb7dc522a recv_packet 3 2 21 - - - -
libGnutella.so.0.11 Query Recv 1 0xb7d027fe gt_msg_query 3 1 22 - - - -

Ping Recv 1 0xb7d01659 gt_msg_ping 4 1 22 - - - -

Table 5: Summarized result from the ROC vulnerability detector.

mar. Column#Var shows the number of critical arguments, which
correspond to some non-terminals in the grammar. Columns in
Observed Feature Functions show the extracted feature
functions. Note our techniques do not require any symbol informa-
tion, and we present function name mainly for the readability. The
next three columns show the maximal length of the reference paths
of the critical arguments, the number of critical variables that are
identified, and the number of containing functions. The side effect
columns present the number of writes to global variables (#G), heap
variables that are live at the end of the function (#H), and external
files (#F). The performance overhead shows the runtime overhead
of the memory tracing and comparison. Note that in this phase, we
do not need to emit external traces as the demanded hash maps are
maintained on the fly and used at the end. The slowdown factor
is acquired by comparing with the time of running the program
on Valgrind without any instrumentation. We did not collect the
overhead data for daemon programs as they are event driven and
do not execute continuously. From the collected data, the overhead
factors are quite stable at roughly 1.7X. If feature functions and all
the specified critical arguments can be identified, we consider the
software vulnerable regarding the specified feature.

In order to identify false positives, we use our attack composer
to construct ROC attacks. If an attack can be constructed, we
consider the reported vulnerability being true. Table 6 summarizes
the attacks. In the following, we present detailed explanation for
each individual cases.

Attack Description Benchmark Patch Binary Size Succeed?

pine-4.63 486 X
Email Redirection mailx-12.4 320 X

pine-4.63 1192 X
Email Spamming mailx-12.4 - ×

Covert C&C mutella-0.4.5 1460 X

gift-0.11.8.1 234
File Transferring libGnutella.so.0.11 670 X

Table 6: Summarized result from the ROC attack composer.

Pine. We are interested in subverting the email sending feature of
pine. The grammar was presented in Section 3. Four critical ar-
guments are specified, namely,sender, receiver, subject,
andcontent. Three feature functions are identified. All the 4
critical arguments are disclosed atcall_mailer while only 1

and 0 are identified atcompose_mail andpine_send. More
importantly, these two functions have a much larger number of side
effects with irreversible file side effects. Therefore,call_mailer
is highly vulnerable and thuspine is vulnerable. We have con-
structed an email re-direction attack in Section 4. The patched
binary is 486 bytes. Observe that this extra code is small com-
pared to the functionality realized, attributed to its reuse oriented
composition. The attack is stealthy as the original email is sent to
the original receiver without any signs of being duplicated. The
extra sent is not recorded in the log. There is no observable change
on the user display.Pine can also be easily turned into a spam
sender by changing the subject and content of the email and then
duplicating the invocation ofcall_mailer. The extra code takes
1192 bytes.

Mailx. The case ofmailx is very similar topine. It is also
vulnerable regarding email sending. The difference lies in that 5
feature functions are identified and 4 out of 5 are almost equally
vulnerable (mail1 is not vulnerable due to the file level side ef-
fect). Furthermore, one critical argumentcontent can not be
reverse engineered for all these functions so thatmailx can not be
mutated to a spam sender by our technique. Inspecting the source
code shows that a temporary file is used to store the email body so
that it is not present in the memory. Nonetheless, the redirection
attack can be successfully constructed with a piece of 320 bytes
binary code being added to the original binary.

Mutella
Malicious intent and desirable featuresIn this case, we are inter-
ested in stealthily introducing a covert Botnet command and control
(C&C) mechanism to themutella implementation. The idea is
to reuse the Gnutella (the protocol used bymutella) internal
management protocol such that network packets would look nor-
mal and the C&C overlay is completely invisible on the peers. In
particular, from the Gnutella protocol specification [1], we know
a “PING” packet is used to announce the presence of a node on
the network, and other peers respond with a “PONG” packet to
notify they are reachable. The “PING” message is also forwarded
to other connected peers if the hops are still alive. We can encode
various botnet commands by sending the identical “PING” packet
in a sequence with various lengths. Note that doing so is completely
legal according to the protocol specification (as such behavior cor-
responds to a node keeps trying to find her neighbors). Un-infected

8

peers would work normally with infected peers and only infected
peers understand these encodings among themselves.

Reuse-able function identificationTherefore, we provide the PING
message grammar to the ROC vulnerability detector with the crit-
ical argument being GUID (the identification of a message). Note
that we are interested in both the sending and receiving PING mes-
sage features. They are considered as separate features as they are
implemented by different sets of functions. For both the PING send
and the PING receive features, two feature functions and the critical
argument are identified such that the software is vulnerable.

We selectSend_Ping andReceive_Ping to compose the
attack. Part of the attack code is presented as follows.

BEFORE(Send_Ping) {
for(i=0;i<2;i++){//Command A

duplicate(Send_Ping);
}

}
...
ENTRY(Receive_Ping) {

get(&GUID);
if(two consecutive messages with identical GUID)

do_command_A();
}

Attack logic compositionThe patch duplicates the invocation of
Send_Ping and wraps the duplication into a loop, which iterates
a number of times depending on the command that we want to
deliver to other peers. To complete the C&C channel, the lower
half of the attack code handles the receiving end of the “PING”
messages to decode commands. It gets the argumentGUID at
the invocation toReceive_ Ping and decodes the command
based on the number of consecutive messages with the same id
and takes the corresponding action. Theget() function concerns
input instead of output. It is translated to a memory access follow-
ing the reference path to the reverse engineered argumentGUID,
which is*(ESP+0) in this case. Moreover, as feature functions
concerning input most likely do not get duplicated, our detector
does not analyze their side effects, which explains the ‘-’ symbols
in the side effect columns. Overall, the patch requires 1460 bytes
binary code.

We performed a small scale deployment of the patchedmutella.
Two commands were implemented to instruct an infected peer to
print two different messages on the screen. One peer served as the
bot-master, whose patch on the sending side, i.e., the patch at the
invocation ofSend_Ping, regularly reads an external file, which
contains the command. If a command is specified, it then prop-
agates this command through the covert C&C channel to instruct
its peers to print the message. If a command is not specified, the
patchedmutella runs completely normal.

The case ofpeercast is very similar, our detector flags it as
being vulnerable regarding the send ping and receive ping features.

Gift and libGnutella.so
Malicious intent and desirable featuresIn this case, we try to use
gift, a P2P file sharing software which supports multiple P2P
protocols, to transfer files without user awareness. In particular, we
focus on the component which implements the Gnutella protocol.
In Gnutella protocol specification [1], file transfer is achieved by
first broadcasting a “Query” on the network and then download-
ing the file if some node returns a “QueryHit” message. “Query”
messages are usually sent when the user initiates a search. Upon
receiving a “Query” message, a P2P node matches the target of
the query with its local shared files index. If it happens to have a
file for this “Query”, it will respond with a “QueryHit”, containing
information regarding such as the file location and hash values.

Our goal is to transfer the/etc/passwd file to a remote peer

stealthily. We cannot permanently copy/etc/passwd to the
shared directory and broadcast its existence. By reading the proto-
col specification, we sketch an attack as follows. When the shared
file index is about to be updated, i.e., upon program start or receiv-
ing thesync command from the user, we copy the file to the shared
directory so that the constructed index includes the file. After the
index is computed, we immediately remove the file from the shared
directory. As a result, we have a phantom file in the index but not in
the real directory. We also need to intercept the “Query” messages
and inspect to see if the pre-decided keywordpasswd is present
as the target of the query. If so, we again copy the file to the shared
directory for download. Finally, the file is immediately removed
after download.

Reuse-able function identificationWe provide the grammar for the
usersync event that initiates the file index management to the
ROC vulnerability detector to identify the index management fea-
ture ofgift. As none of the data fields of the event are of interest
to the attack, there is zero critical arguments. Two functions are
extracted as part of the feature. Observe that they are very deep
in the dynamic call tree according to the numbers of containing
functions.

The gnutella protocol is implemented in the third-partylibGn-
utella plug-in in gift, provided as a dynamically linked li-
brary. Therefore, we run our detector exclusively onlibGnutella
to detect its vulnerabilities. Here, we provide the file query message
grammar to represent the feature of querying a file. We also provide
the “PING” message grammar to represent the internal manage-
ment feature, with the goal of establishing a covert communication
channel. The critical arguments are thekeyword in the file query
message, representing the name of the file, and theGUID in the
query message.

The detector successfully identifies the feature functions and iso-
late the critical arguments and their reference paths. Observe that
these features only concern input. Hence, the detector does not
analyze side effects.

Attack logic compositionOur attack code is composed as follows.
The first two blocks are to create the phantom index by copying
the password file before the index is re-constructed and removing
it right after the re-construction. The third block in the middle is
inserted at the beginning of thegt_msg_query(). It copies the
password file to the shared directory if the host receives a request
with the keyword being the password file. According to the gnutella
protocol, a “QueryHit” message will be sent back; the remote host
and the local machine will automatically initiate the file download
process. Note that all these are carried out by the original binary
instead of the attack code. The last block is to receive the command
from a remote host when it finishes downloading. This is done
through the covert encoding. The patch has the size of 904 bytes.
It allows us to successfully steal the password file.

BEFORE(update_index) {
copy_pwd_file();

}
AFTER(update_index) {

remove_pwd_file();
}
...
ENTRY(gt_msg_query) {

get(&keywords);
if(keywords=="/etc/passwd")

copy_pwd_file();
}
ENTRY(gt_msg_ping) {

get(&GUID);
if(two consecutive messages with identical GUID)

remove_pwd_file();
}

9

6. DISCUSSION
Having demonstrated the feasibility of ROC attacks and their po-

tential threats, we now discuss possible approaches to ROC attack
detection and prevention.

Binary integrity check The most intuitive way to detect ROC at-
tacks is to hash all legal binaries (e.g., using Tripwire [17]) and
periodically check their integrity. In practice, however, it is difficult
to maintain up-to-date, globally consistent hash values, considering
the frequent, automatic software patching and update, as well as the
decentralized distribution of binaries and patches.

Control flow integrity check A ROC attack does not violate con-
trol flow integrity except at the entry and exit points where the
malicious patch gets the control. Therefore it may be possible
to detect such violations by monitoring and profiling the binary’s
normal control flows and enforcing them at runtime. For example,
we could use CFI [3] to enforce legal control flow transfers at
those entry/exit points. One challenge would be that, since the CFI
enforcement itself ispart of the victim binary, the ROC attacker
may bypass the CFI check as part of its side-effect elimination
patch.

Host runtime behavior monitoring ROC attacks are often car-
ried out by duplicating existing, legal function invocations. As
such, such attacks will be oblivious to many host-based intrusion
detection systems (e.g., FSA [22], and VtPath [13]). However, the
timing/sequencing characteristics of the duplicated feature function
invocations may provide a lead for their detection. Hence, detection
approaches based on behavioral sequence analysis (e.g., [16] and
[14]) may be able to detect ROC attacks.

Network-based IDS ROC attacks are able to preserve the nor-
mal network behavior of the victim binary, as demonstrated by
themutella case study in the previous section. As such, most
network-based IDSes (e.g., PAYL [25]) would not pickup behavior
abnormality. However, depending on the nature of certain ROC
attacks, it is possible that an IDS using content-based signatures
be able to detect the malicious action (e.g., sending spams). Such
detection, unfortunately, cannot be generalized to all ROC attacks.

To prevent ROC attacks, one way is to break the software mod-
ularity, e.g., by transforming a program so that it contains very few
function calls, which can no longer be singled out to perform a
malicious action without few side-effects. Another approach is to
obfuscate the binaries so that it would be difficult to identify reuse-
able functions. In fact, many malware programs in the wild adopt
such strategy to avoid detection. We argue that goodware programs
may also benefit from obfuscation in preventing ROC attacks.

7. RELATED WORK
Return-into-libc attack The ROC attack is related to the return-
into-libc attack [11, 19]. The return-into-libc attack requires prior
knowledge about the implementation of the returned library func-
tions and is defeat-able by address space randomization techniques
(e.g., [5, 24]). On the other hand, the ROC attack uses dynamic
program analysis techniques to infer the reuse-ability of applica-
tion level functions. More importantly, the control flow deviation
caused by return-into-libc attacks is fairly obvious and easily de-
tectable; whereas ROC attacks by design try to mimic the control
flow of the victim program and reverse any side-effects.

Return-oriented programming Shacham et al. recently proposed
a return-oriented programming paradigm [23, 7], which reuses ex-
isting instruction sequences in large code segments (e.g., library) to
compose malicious logics. This paradigm enables reuse of very ba-
sic functionalities at the granularity of short instruction sequences;

whereas ROC attacks reuse high-level functional features of soft-
ware at the granularity of modular functions.

Parasitic malwareThe ROC attack is also related to parasitic mal-
ware. Parasitic malware such as Trojans is one of the earliest tech-
niques where malicious logic is added to a legal software program.
Recently, it was reported in [2] that parasitic malware sees a resur-
gence since 2006 with more sophistication (e.g., McAfee Avert
Labs identified 150 new variants of parasitic malware). Unlike
the ROC attack, parasitic malware involves embedding its own im-
plementation of malicious semantics instead of reusing existing
functions.

Feature extraction Prior work exists in feature extractions from
binaries. In the context of software maintenance, Wong et. al.
proposed an execution slice-based technique to identify the ba-
sic blocks which are used to implement a program feature [27].
Greevy et. al. proposed a compact feature-driven approach based
on dynamic analysis to characterize features and computational
units of an application [15]. ROC vulnerability detection is enabled
by similar techniques with new constraints and requirements (e.g.,
side-effect minimization and reversal.)

Program understanding There are also a variety of methods for
profiling, testing, slicing, and debugging program behavior [26]
for a given binary. In particular, data structures reveal a wealth
of information for program understanding. Recent efforts have
applied machine learning techniques to infer the data structures of
a binary from a memory snapshot [9]. Our experience shows that
such data structure inference techniques are not accurate enough
for reference graph construction in generating the patches for ROC
attacks.

Memory Graph Our reference graph (RG) concept is similar to
the object reference graph for garbage collection in object oriented
programs [4] or the memory graph [29] in C programs. An object
reference graph has objects as its nodes connected through their
field edges. It mainly focuses on the management of dynamically
allocated memory. A memory graph has dynamic data structures as
its nodes and “points-to” relations as its edges. Memory graphs re-
quire prior knowledge about data structure definitions [29]; whereas
our technique for ROC attack construction assumes only binaries.
In addition, the requirement of RG is less stringent, meaning that
an RG is valid as long as it provides valid reference paths to specific
memory regions without requiring the nodes and edges to precisely
follow the actual data structure definition. The garbage collector by
Boehm [6] also traverses memory to find reachable regions without
demanding symbolic information. It does not explicitly build the
reference graph and its traversal is coarse-grained, without captur-
ing field information.

8. CONCLUSION
The ROC attack poses a new threat, virtually transforming a

software binary into a stealthy, malicious one. The neutral func-
tional features in a legal binary are potential targets of ROC at-
tacks. ROC attacks are more difficult to detect as each attack is
heavily dependent on the semantics of its victim binary program
and there exists no common content or behavior “signature” across
different ROC attacks. To defend against ROC attacks, we present
a systematic framework for the detection of ROC vulnerability in
a binary and for the construction of a concrete ROC attack. Our
experiments with a number of real-world software binaries indicate
that the ROC attacks are real and can be constructed in a systematic,
convenient fashion.

10

9. REFERENCES
[1] Gnutella Protocol Specification.

http://wiki.limewire.org/index.php?title=GDF.
[2] Parasitic malware: The resurgence of an old threat.Network

Security, 2008(3):15 – 18, 2008.
[3] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti.

Control-flow integrity. InProceedings of the 12th ACM
conference on Computer and communications security
(CCS’05), 2005.

[4] O. Agesen, D. Detlefs, and J. E. Moss. Garbage collection
and local variable type-precision and liveness in java virtual
machines.SIGPLAN Not., 33(5):269–279, 1998.

[5] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient
techniques for comprehensive protection from memory error
exploits. InProceedings of the 14th conference on USENIX
Security Symposium, pages 17–17, Berkeley, CA, USA,
2005. USENIX Association.

[6] H.-J. Boehm. Space efficient conservative garbage
collection. InPLDI ’93: Proceedings of the ACM SIGPLAN
1993 conference on Programming language design and
implementation, pages 197–206, 1993.

[7] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When
good instructions go bad: Generalizing return-oriented
programming to RISC. InProceedings of the 15th ACM
conference on Computer and communications security, 2008.

[8] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. InProceedings of the 13th conference on
USENIX Security Symposium, pages 22–22, Berkeley, CA,
USA, 2004. USENIX Association.

[9] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging for
data structures. InProceeding of 8th Symposium on
Operating System Design and Implementation (OSDI’08),
December, 2008.

[10] J. R. Crandall, S. F. Wu, and F. T. Chong. Minos:
Architectural support for protecting control data.ACM
Trans. Archit. Code Optim., 3(4):359–389, 2006.

[11] S. Designer. “return-to-libc" attack.Bugtraq, August 1997.
[12] M. Egele, C. Kruegel, E. Kirda, H. Yin, , and D. Song.

Dynamic spyware analysis. InProceedings of the 2007
USENIX Annual Technical Conference (Usenix’07), June
2007.

[13] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and
W. Gong. Anomaly detection using call stack information. In
Proceedings of the 2003 IEEE Symposium on Security and
Privacy, 2003.

[14] J. T. Giffin, S. Jha, and B. P. Miller. Efficient
context-sensitive intrusion detection. InProceedings of the
Network and Distributed System Security Symposium
(NDSS’04), 2004.

[15] O. Greevy and S. Ducasse. Correlating features and code
using a compact two-sided trace analysis approach. In
Proceedings of the Ninth European Conference on Software
Maintenance and Reengineering (CSMR’05), pages
314–323, 2005.

[16] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls.J. Computer
Security, 6(3):151–180, 1998.

[17] G. H. Kim and E. H. Spafford. The design and
implementation of tripwire: a file system integrity checker.
In Proceedings of the 2nd ACM Conference on Computer
and communications security (CCS’94), pages 18–29, 1994.

[18] B. Korel and J. Laski. Dynamic program slicing.Information
Processing Letters, 29(3):155–163, 1988.

[19] Nergal. The advanced return-into-lib(c) exploits: Pax case
study.Phrack, 10(58), 2001.

[20] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. InPLDI ’07:
Proceedings of the ACM SIGPLAN 2007 conference on
Programming Language design and Implementation, San
Diego, CA, 2007.

[21] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. InIn Proceedings of the 13
th Symposium on Network and Distributed System Security
(NDSS’05), 2005.

[22] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program
behaviors. InProceedings of the 2001 IEEE Symposium on
Security and Privacy, 2001.

[23] H. Shacham. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In
Proceedings of the 14th ACM conference on Computer and
communications security, 2007.

[24] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space. InIn
Proceedings of the 11th ACM conference on Computer and
communications security (CCS’04), pages 298–307, 2004.

[25] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous
payload-based worm detection and signature generation. In
7th International Symposium on Recent Advances in
Intrusion Detection (RAID’05), pages 227–246, 2005.

[26] M. Weiser.Program slices: formal, psychological, and
practical investigations of an automatic program abstraction
method. PhD thesis, 1979. University of Michigan.

[27] W. E. Wong, S. S. Gokhale, and J. R. Horgan. Quantifying
the closeness between program components and features.J.
Syst. Softw., 54(2):87–98, 2000.

[28] H. Yin, D. Song, E. Manuel, C. Kruegel, and E. Kirda.
Panorama: Capturing system-wide information flow for
malware detection and analysis. InProceedings of the 14th
ACM Conferences on Computer and Communication
Security (CCS’07), October 2007.

[29] T. Zimmermann and A. Zeller. Visualizing memory graphs.
In Revised Lectures on Software Visualization, International
Seminar, pages 191–204, 2002.

11

