
1

Reusing Genetic Programming for Ensemble

Selection in Classification of Unbalanced Data
Urvesh Bhowan, Mark Johnston (Member IEEE), Mengjie Zhang (Senior Member IEEE)

and Xin Yao (Fellow IEEE)

Abstract—Classification algorithms can suffer from perfor-
mance degradation when the class distribution is unbalanced.
This paper develops a two-step approach to evolving ensembles
using genetic programming (GP) for unbalanced data. The
first step uses multi-objective (MO) GP to evolve a Pareto-
approximated front of GP classifiers to form the ensemble by
trading-off the minority and the majority class against each
other during learning. The MO component alleviates the reliance
on sampling to artificially re-balance the data. The second step,
which is the focus this paper, proposes a novel ensemble selection
approach using GP to automatically find/choose the best individ-
uals for the ensemble. This new GP approach combines multiple
Pareto-approximated front members into a single composite
genetic program solution to represent the (optimised) ensemble.
This ensemble representation has two main advantages/novelties
over traditional genetic algorithm (GA) approaches. Firstly, by
limiting the depth of the composite solution trees, we use selection
pressure during evolution to find small highly-cooperative groups
of individuals for the ensemble. This means that ensemble sizes
are not fixed a priori (as in GA), but vary depending on the
strength of the base learners. Secondly, we compare different
function set operators in the composite solution trees to explore
new ways to aggregate the member outputs and thus, control how
the ensemble computes its output. We show that the proposed GP
approach evolves smaller, more diverse ensembles compared to an
established ensemble selection algorithm, while still performing
as well as, or better than the established approach. The evolved
GP ensembles also perform well compared to other bagging and
boosting approaches, particularly on tasks with high levels of
class imbalance.

I. INTRODUCTION

Classification with unbalanced data represents a major chal-

lenge in machine learning (ML) [1][2][3][4][5]. Data sets are

unbalanced when the learning examples from one class are

rare (the minority class), while the larger class makes up the

rest (the majority class). Genetic Programming (GP) [6], like

other ML techniques, can evolve “biased” classifiers when

data is unbalanced, i.e., classifiers with strong majority class

accuracies but poor minority class accuracies [1][2][7][8]. As

the minority class typically represents the class of interest

in many real-world problems, building classifiers with good

U. Bhowan is with the Knowledge and Data Engineering Group, School
of Statistics and Computer Science, Trinity College, Dublin, Ireland; and
an associate member with the Evolutionary Computation Research Group,
Victoria University of Wellington, New Zealand.

M. Johnston and M. Zhang are with the Evolutionary Computation Research
Group, Victoria University of Wellington, New Zealand.

X. Yao is with CERCIA, School of Computer Science, The University of
Birmingham, UK.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

accuracy on both classes is an important area of research

[1][4][9][10].

The learning bias can occur because typical training criteria

(such as the overall classification accuracy in the fitness

function in GP) can be influenced by the majority class [1].

Approaches to addressing this involve sampling the data to

artificially re-balance the classes [9][4], and/or cost adjust-

ment within the learning algorithm to factor in importance

of the minority class [5][11]. This paper focuses on the

latter using evolutionary multi-objective optimisation (EMO)

to handle the class trade-off during learning. In EMO, a set

of the best trade-off solutions is evolved along the Pareto

front in a single optimisation run by keeping the objectives

separate/independent in the evolution [12]. This EMO ap-

proach has two main advantages over traditional sampling-

based approaches. Firstly, it allows the original unbalanced

data to be used “as is” during training (without a priori

sampling). Secondly, the combined knowledge of the evolved

classifiers along the Pareto-approximated front can then be

used cooperatively in an ensemble for better generalisation

compared to any single classifier alone.

This paper develops a two-step approach to evolving en-

sembles using GP. The first step uses EMO to evolve an

accurate and diverse set of base learners by trading-off the

minority and the majority class during learning, to form

the ensemble. We show that the evolved ensembles are still

vulnerable to the learning bias when the full Pareto set is

used directly in the ensemble (due to the influence of biased

members). The second step, which is the main focus this paper,

proposes a novel GP-based ensemble selection approach to

address this issue. Here we use GP to refine the ensemble

by automatically finding/choosing the best ensemble members

based on how well these members cooperate together. The

new approach evolves composite solutions to represent an

ensemble. These are single genetic programs which link to

multiple base learners (in this case, Pareto-approximated front

members).

The new GP approach to ensemble selection has two main

advantages over traditional genetic algorithm (GA) approaches

which fine-tune a large bit-string/weight-vector for ensemble

selection. Firstly, favouring small composite solution trees

during the evolution allows natural selection pressure to find

highly-cooperative groups of individuals in the ensemble (via

the few available positions in a GP tree). In contrast, fine-

tuning a large bit-string using GA can be time-consuming,

and may not reduce the original ensemble size unless sparsity

(of the GA chromosome) is encouraged or the chromosome

2

size is fixed a priori during optimisation. Secondly, exploring

different function set operators in the composite solution trees

allows the member outputs to be combined in different ways,

thereby controlling how the ensemble computes its output

(predicted class label). This incorporates the strategy of how to

aggregate/combine the member outputs into the GP ensemble

selection process, whereas most traditional GA approaches re-

quire that the ensemble aggregation strategy (usually majority

voting) be configured a priori (and which remains fixed during

the ensemble selection). This paper compares two ways to

combine member outputs: traditional majority voting, and a

new strategy using logical operators which give the ensembles

greater “decisions making” abilities.

Our approach is evaluated on 12 real-world (binary) un-

balanced data sets. We show that our GP approach evolves

smaller, more diverse ensembles compared to an established

approach, offline evolutionary ensemble selection algorithm

[13] (which arguably represents the current state-of-the-art

in GP), while still performing as well as, or better than the

established approach. We also show that the GP ensembles

perform well compared to several other bagging and boosting

ensemble approaches from the literature using Support Vector

Machines (SVM) and Naive Bayes (NB), and traditional

“single-classifier” learning algorithms on the tasks.

The rest of this paper is organised as follows. Section II

outlines the related work, and Section III outlines the MOGP

approach to evolving the base learners from the literature.

Section IV describes our new ensemble selection approach

using GP. Section V presents the experimental results on the

tasks, and Section VI makes further comparisons with other

methods. Section VII concludes this paper.

II. RELATED WORK

Approaches to classification with unbalanced data involve

three main aspects. The first uses sampling techniques to arti-

ficially re-balance the classes before the training process such

as over-sampling the minority class (to increase minority class

representation) [14], synthetic minority class over-sampling

(SMOTE) to artificially create “new” minority examples (from

several known examples) [15], and under-sampling the major-

ity class (to reduce majority class representation) [16]. The

second involves cost adjustment within the learning algorithm

to factor in the uneven class sizes during the training process.

In GP, this typically involves adapting the fitness function

to promote classifiers with good accuracy on both classes,

e.g., by using fixed misclassification costs for the minority

and the majority classes [17][8], or improved training criteria

that are sensitive to the unbalanced classes [7][5]. The third

aspect, which is the focus of this paper, uses ensemble methods

where multiple trained classifiers are aggregated together to

determine the final prediction. Ensemble learning uses aspects

from both sampling and cost adjustment, and can be advan-

tageous over canonical (“single-predictor”) algorithms due to

better generalisation from multiple classifiers [18][19][20][21].

In other words, ensembles are often more accurate than the

individual classifiers that make them up [19][22].

For an ensemble to perform better than its individual

members, the individual members must be diverse, i.e., not

make the same errors on the same inputs [19][22][23][24].

Ensemble diversity allows different members to “specialise”

on different parts of the input domain. For example, if one

member Si classifies an input instance X incorrectly and

its output is uncorrelated to two other ensemble members,

Sj and Sk, which produce the correct output on X , then

a majority vote of all three members in the ensemble will

ensure that X is correctly classified due to the influence of

Sj and Sk. Otherwise, without good diversity, the ensemble

members risk misclassifying all the same inputs together.

In the example above, if Sj and Sk have highly-correlated

outputs to Si, each will classify X incorrectly and, in turn,

the majority vote in the ensemble will also be incorrect;

thereby providing no additional benefit in combining together

the different classifiers.

In [19], a formal characterisation of this issue is pro-

vided, as well as several important techniques for promoting

diversity. Two popular techniques (among others described

in [19]) include bagging which samples the learning data

into smaller (usually balanced) subsets to train the individual

members [3][25][26][24], and injecting randomness into the

learning algorithm to generate diverse members [18][20][27].

The latter is favoured in EMO due to its inherent stochastic

and population-based nature [18][20][28][27]. Some EMO

approaches (such as this paper) also use a diversity objective

in fitness to promote cooperation between members, such as

Negative Correlation Learning (NCL) [29][28] and Pairwise

Failure Crediting (PFC) [20][18]. This allows the full training

set to be used during fitness evaluation, compared to bagging

and boosting which sample the training set. When data is

balanced, these EMO approaches typically trade-off a solu-

tion’s overall accuracy against their diversity (measured using

the NCL [29] or PFC [18]). Other mechanisms to promote

diversity in EMO include varying the size and/or structure of

the learnt models [28][12], or partitioning of the training set

[30][31].

A. Ensemble Approaches to Class Imbalance Classification

When data is unbalanced, ensemble systems are tradition-

ally used in conjunction with sampling (e.g. under-sampling,

over-sampling or SMOTE) to either create balanced bootstrap

samples in bagging [3][24][2], or re-balance the training data

prior to learning [4][26].

In [2], a taxonomy of the state-of-the-art in sampling-

based ensemble learning is outlined. Bagging with under-

sampling and boosting with SMOTE are recommended from

among 20 other algorithms evaluated on 44 binary benchmark

unbalanced tasks from KEEL [32]. In [26], a diversity term is

added to the weight update rule in AdaBoost to measure the

level of disagreement between classifiers. This method (and

AdaBoost with SMOTE) is found to outperform traditional

AdaBoost and AdaBoost using under- and over-sampling on

12 benchmark multi-class tasks. In [24], the bootstrap sample

sizes are varied for diversity using bagging, where better

ensemble diversity (measured by the Q statistic [33]) is found

to be beneficial for the minority class but harmful to majority

class on several (synthetic and benchmark) class imbalance

3

tasks. To address this, in [4], minority class diversity (measures

using NCL) is traded-off against the overall accuracy in EMO

(majority class is ignored) using neural network ensembles.

While this method (and traditional NCL) performed better on

the minority class than traditional bagging for eight benchmark

(binary and multi-class) tasks, accuracy on the majority class

suffered as a trade-off.

While effective, the main limitation of sampling to first

artificially re-balance the original unbalanced data set is that

the learnt models risk not learning/discovering the underlying

rarities in the unbalanced data set, particularly if the sampling

algorithm is not careful. This can lead to over-fitting, as

shown in [26] and [2]. To address this limitation in GP, [20]

combines the accuracy and diversity (measured separately) for

each class into a single value, and trades these off against

each other for all classes using EMO for cost adjustment

(no sampling). However, [20] uses the full evolved Pareto-

approximated front to form the ensemble. This can lead

to sub-optimal ensemble behaviour due to the influence of

some biased Pareto-approximated members in the ensemble.

This paper uses the EMO configuration from [20] to evolve

the ensemble base learners, but extends [20] by developing

a new ensemble selection approach using GP (to optimise

which members are chosen for ensemble) to further improve

classification performance.

Cooperative co-evolution is also used for ensemble learning

in GP [34][3]. In [35], grammatical evolution (GE) is used

to co-evolve two populations (binary classifiers and “points”

which are balanced bootstrap samples) for multi-class prob-

lems. In [34], “teams” of weak individuals that cooperate

strongly together are also evolved for multi-class problems.

However, a major difference between “teaming” and our work

is that teaming combines many weak individuals; while our

work in this paper focuses on ensemble selection of “strong”

GP classifiers.

B. Ensemble Selection

Ensemble selection chooses which base learners to include

in the final ensemble [13][21][36]. Most approaches assign a

weight to each base learner which specifies whether the indi-

vidual is included (or not) in the ensemble, or the individual’s

contribution in the ensemble [9][21][34][37]. Learning these

weights is typically accomplished in three ways. The first (and

simplest) method uses an individual’s fitness (on the training

set) as its weight [34][36]. A limitation of this method is that

these weights do not reflect how well an individual cooperates

with others in the ensemble. The second method co-evolves the

base learner and their weight values in parallel [13][34]. The

main limitation of this method is that co-evolving the weights

with the base learners can be prone to noise, particularly in

the early stages of the evolution (as shown in [13]). The third

method invokes a secondary training phase to optimise the

individual weights, typically using a genetic algorithm (GA)

and a bit-string representation where each bit specifies whether

a member is included or not in the ensemble [9][21]. This

method is favoured over co-evolutionary approaches as it de-

couples the initial training phase (to learn the base classifiers)

and the ensemble optimisation, allowing researchers to focus

on one aspect at a time.

While effective, this method has two main limitations.

Firstly, fine-tuning a weight-vector/bit-string can be time-

consuming and difficult (i.e. many weights to configure),

particularly when the pool of base classifiers is large [21].

Secondly, this method does not necessarily reduce the size of

the ensemble unless sparcity (of the vector/string) is explicitly

encouraged during optimisation, which is non-trivial, as shown

in [37]. In [37], an ensemble pruning approach is developed

using “expectation propagation” to approximate the member

weights with Bayesian inference, while explicitly encouraging

sparsity of the weight vector.

This paper develops a new GP approach to ensemble selec-

tion to avoid the limitations. We use a flexible size constraint

on the GP-optimised ensembles and selection pressure to

focus on finding small groups of highly diverse individuals

for the ensemble. While some preliminary results of this

new approach were recently presented at a local Artificial

Intelligence conference [38], this paper substantially extends

the work in [38] in four main areas. Firstly, this paper devel-

ops a new GP representation for the (optimised) ensembles

(called Composite Logical Solutions), and compares this to

the original representation in [38] (called Composite Voting

Solutions). Secondly, this paper improves the GP search by

evolving a pool of Composite Voting/Logical Solutions for

a given set of base learners; whereas in [38], only a single

Composite Voting Solution is evolved for a given run. Thirdly,

this paper compares an alternative training configuration to

evolve Composite Voting/Logical Solutions using a “selection

set” to improve generalisation. Lastly, this paper compares the

GP-optimised ensembles to several other ensemble learning

approaches from the literature (these comparisons are not

made in [38]), including an established ensemble selection

approach (off-EEL [13]), and several bagging and boosting

algorithms recommended in [2].

III. EVOLVING BASE LEARNERS USING MOGP

This section outlines the initial EMO process for evolving

the ensemble base learners which are used, as input, to the

new ensemble selection approach proposed in Section IV.

A. Representing Genetic Program Classifiers

A tree-based structure is used to represent the genetic

program solutions [6]. We use feature terminals (example

features) and constant terminals (randomly generated floating

point numbers), and a function set comprising of the four

standard arithmetic operators, +,−,×, and %, and the condi-

tional operator if. The +,− and × operators have their usual

meanings (addition, subtraction and multiplication) while %

is protected division (usual division except that a divide by

zero returns zero). The conditional if function takes three

arguments and returns either the second argument if the first

is negative, or the third argument otherwise. Each GP solution

represents a mathematical expression that outputs a (floating-

point) number for a given input (data example to be classified).

This number is mapped to the class labels using zero as the

4

threshold, i.e., minority class if the classifier output is zero or

positive, or majority class otherwise.

B. Multi-Objective GP (MOGP) Approach

In MOGP, the learning objectives are traded-off against each

other, where a set (or Pareto front) of individuals is evolved

along the objective trade-off surface in a single optimisation

run. This is different to traditional (“single-objective”) GP

where the single fittest individual from the evolved population

is returned from a given GP run. In this multi-Objective

formulation, the minority and the majority classes are traded-

off against each other for cost adjustment between the uneven

classes, allowing the unbalanced data to be used directly

in learning (without sampling). To accomplish this, MOGP

uses a Pareto-based fitness function and Pareto dominance

to rank the individuals in the population according to their

objective performances. This ranking is important as it affects

the way selection is performed if the different objectives are

to be treated separately in the optimisation process. Pareto

dominance between two individuals asserts that one individual

will dominate the other if it is at least as good as the other

on all the objectives but better on at least one objective [39],

as shown below for individuals Si and Sj , where x is an

objective.

Si ≻ Sj ⇔ ∀x[(Si)x ≥ (Sj)x] ∧ ∃k[(Si)k > (Sj)k]

1) Formulating the Objectives: In binary classification, the

simplest MOGP formulation would trade-off the minority and

the majority class accuracies against each other, as shown

below.

fc(Si) = 1− Err(c,Si)
Nc

Where Err(c, Si) is the number of errors made by individual

Si on class c, and Nc is the number of training examples

in class c. However, since the goal of MOGP is to evolve a

pool of GP classifiers to form an ensemble, diversity between

individuals must also be encouraged in the evolution. This is

to ensure that the same errors are not made on the same inputs.

To achieve this, a penalty function, pairwise failure crediting

(PFC)[18], is incorporated into the learning objectives for

diversity. This is shown by Eq. (1) which represents the final

MOGP objective formulation.

fc(Si) =
1−Err(c,Si)

Nc
+ PFCc,i (1)

where

PFCc,i =
1

Pop−1

∑Pop

j=1,j 6=i

HDc(Si,Sj)
Err(c,Si)+Err(c,Sj)

In Eq. (1), PFCc,i represents the diversity of individual Si

on class c where Pop is size of the population, and HD is the

Hamming distance between the outputs of two individual Si

and Sj on the examples from class c. So HD is the number of

outputs where the predicted class labels are different between

two solutions. PFC values range between 0 and 1 where higher

PFC values mean better diversity. The aim of the PFC function

is to reduce the overlap of common errors between individuals

in the population on a given class, to make the outputs of the

different individual uncorrelated to each other [18]. Eq. (1)

treats the accuracy and diversity on a given class as equally

important in fitness where the higher the objective value,

the better the accuracy and diversity. The PFC measure has

been shown to promote good diversity between individuals

in MOGP [20]. In [20], classifier diversity was shown found

to be better using PFC in fitness compared to the widely-

used NCL [29][28]. This is because PFC is a population-

based measure, whereas other measures such as NCL evaluate

diversity relative to the ensemble’s output (requiring that the

ensemble members are known a priori to obtain the ensemble

output).

2) Pareto Fitness using SPEA2: Once each individual

is evaluated on the objectives, MOGP uses the established

SPEA2 [39] algorithm for Pareto dominance ranking to deter-

mine the final fitness values, as shown below.

fitness(Si) =
∑Pop

j=1,Sj≻Si
Strength(Sj) (2)

where

Strength(Si) = |{j|j ∈ Pop ∧ Si ≻ Sj}|

In Eq. (2), the fitness of individual Si is calculated as the

sum of all strength values of all Si’s dominators, i.e., all

other individuals in the population (Pop) that dominate Si. An

individual’s strength value is the number of other individuals

it dominates in the population. The lower the SPEA2 fitness

value, the better the performance on the objectives. Non-

dominated individuals in the population have the best fitness

value of 0 since these solutions have no dominators.

The SPEA2 algorithm is chosen in MOGP for Pareto

ranking (from other popular algorithms such as NSGA-II [40])

due to certain properties in SPEA2 which are well-suited to

the objective formulation in Eq. (1) [20]. SPEA2 uses both

dominance count (i.e. number of others that a given individual

dominates) and dominance rank (i.e. number of others that

dominate a given individual) in the fitness calculation. Dom-

inance count is used as an individual’s strength value, while

dominance rank is used to find an individual’s dominators. In

contrast, other popular EMO algorithms such NSGA-II [40]

tend to use either dominance count or dominance rank alone.

This is important since these two aspects favour different

regions of the Pareto frontier: dominance rank tends to reward

exploration at the edges of the frontier, while dominance

count rewards exploitation in the middle of frontier [41]. Due

to these properties, it was shown in [20] that MOGP with

SPEA2 is better at pushing the Pareto front outwards toward

good performance on all objectives compared to NSGA-II,

which found a wider spread of individuals along the whole

of the frontier. The former is preferred using the objective

formulation in Eq. (1) since this represents individuals with

equally high accuracy and diversity on both classes, whereas

the latter represents individuals with very high accuracy and

diversity on one class alone.

C. MOGP Evolutionary Search Algorithm

A single MOGP run returns multiple evolved classifiers, i.e.,

the non-dominated set from the evolved population, as seen in

5

Evaluate ensemble on test set

Yesselection
ensemble

do

o
b
je

ct
iv

e
2

objective 1

All individuals in ensemble

Ensemble Selection Process

Evaluate ensemble

Search
TerminateNo

Choose ensemble

Yes

Output is best ensemble

Evaluate fitness

Terminate
evolution

No

Apply genetic operators

Yes

Create initial population

No

MOGP to evolve Pareto Front

Start
Pareto−approx. front
Output is evolved

(a) MOGP (b) Ensemble Selection

Fig. 1. Overview of MOGP and ensemble selection process.

Figure 1(a) for the two objectives. To facilitate the evolution

of this non-dominated set, MOGP uses the SPEA2 search

algorithm. In SPEA2, the parent and offspring populations

are merged together at every generation [39]. This combined

parent-child population is then sorted by fitness where the

fittest individuals are copied into a new population, called the

archive population. The archive serves as the parent population

in the next generation, and preserves elitism in the population

over generations. The offspring population at every generation

is generated using the traditional crossover and mutation

genetic operators using binary tournament selection.

The ramped half-and-half method is used for generating

genetic programs in the initial population and for the muta-

tion operator in MOGP [6] (similar to canonical GP). The

population size is 500, crossover and mutation rates are

60% and 40%, respectively, and tournament selection is used

with a tournament size of 2. These MOGP settings follow

those recommended in [39]. Due to the nature of the MOGP

approaches, and particularly the archive population, further

elitism is not required [39]. The maximum program depth is

8 to restrict very large programs in the population, and the

evolution is allowed to run for a maximum of 50 generations

or until a solution with the best fitness is found.

IV. COMPOSITE SOLUTIONS FOR ENSEMBLE SELECTION

This section outlines the second step in the classification

process, i.e., forming the GP ensembles and the ensemble

selection process, as seen in Figure 1(b). By aggregating the

evolved MOGP classifiers into an ensemble where members

can vote on class membership, we maximise the combined

knowledge of these learned classifiers for better generalisation

compared to any single classifier alone [20]. However, these

GP ensembles can still be vulnerable to the learning bias if

the full evolved non-dominated front is used directly in the

ensemble due to the influence of biased members, as shown

later (in Section V.B). We use ensemble selection here to find

groups of individuals which cooperate very well together in the

ensemble, ensuring good ensemble performance/generalisation

on both the minority and majority classes. This ensemble

selection process involves exploring and evaluating different

formulations of individuals in the ensemble, to find the group

which achieves the best ensemble performance. However, this

vf

Output Class Label

p2p1 p8 Ø

∧

∨

Ø

1
2

3
4

5

6

7
8

p6

Pareto Front

Minority Acc

M
aj

o
ri

ty
 A

cc
p5

Fig. 2. Subset of evolved Pareto-approximated front (from a given MOGP
run) forms a single GP composite solution representing the ensemble.

is a computationally expensive and time-consuming combi-

natorial problem, particularly if the non-dominated set or

the training set is large. An exhaustive search to explore

all combinations is impractical since this involves evaluating

2T − 1 different ensemble formulations (where T is the size

of the non-dominated set), and every evaluation requires one

pass through the training set.

A. Re-using GP for Ensemble Selection

To address this issue, we re-use GP for ensemble selection to

quickly explore and evaluate different ensemble formulations.

In this new approach, an (optimised) ensemble is represented

as a GP composite solution. A composite solution is a single

genetic program which links to multiple base learners (in this

case, evolved Pareto-approximated front classifiers), as shown

in Figure 2. Here the GP composite solution (right of Figure

2) is formed by linking several Pareto-approximated front

members (left). Evolving a population of composite solutions

using a traditional GP search is a means to efficiently explore

and evaluate different ensemble formulations.

This GP approach to ensemble selection has two main

advantages/novelties over other GA and GP approaches (as

discussed in Section II.B). Firstly, limiting the maximum

tree depth of the composite solutions during evolution forces

natural selection pressure to find small and diverse groups of

individuals for the ensemble (i.e. small high-fitness composite

solution trees), via the few available positions within a com-

posite solution tree. This means that the target ensemble sizes

are not fixed a priori during ensemble selection (as required

6

in GA), but can vary depending on the diversity/performance

of the base learners and the maximum tree depth.

Secondly, choosing different function set operators in the

composite solution representation allows the outputs of the

individual ensemble members to be aggregated and manip-

ulated in different ways. This controls how the composite

solution-based ensemble computes its output (final predicted

class label). This is important as it incorporates the strategy

of how to aggregate/combine the member outputs into the GP

search and ensemble selection process, whereas in traditional

GA approaches the ensemble aggregation strategy (usually

majority voting) must be configured a priori and remains fixed

during ensemble selection. This paper develops and compares

two composite solution representations using different func-

tion sets. The first, Composite Voting Solutions (CSVote),

uses the traditional majority vote operator to combine the

member outputs. The second, Composite Logical Solutions

(CSLogic), uses logical operators to aggregate the member

outputs, thereby giving the ensemble greater “decisions mak-

ing” abilities than traditional majority voting. One of the sub-

goals of this paper is to investigate whether the new logical

operators in CSLogic is better for ensemble generalisation

compared to traditional majority voting (used in CSVote).

The subsections below outline how the ensemble is repre-

sented as a GP composite solution, the two types of composite

solutions (CSVote and CSLogic), and the evolutionary search

parameters to evolve composite solutions.

B. Ensemble Representation as a GP Composite Solution

As mentioned above, an ensemble is represented as a single

tree-based GP composite solution which links to multiple base

classifiers, as seen in Figure 2. Here the terminal nodes in the

GP composite solution tree represent a base classifier (from

the evolved Pareto-approximated front), and the non-terminal

nodes represent an aggregation strategy on how to combine

the outputs of the base classifiers. The output of an evolved

composite solution (when evaluated on a given input instance)

is a class label, as determined by the ensemble members and

the aggregation strategy. This tree-based representation allows

us to re-use traditional GP search mechanisms such as using

the genetic operators to easy interchange which base classifiers

and aggregation functions are defined in the ensemble (to

explore ensemble formulations), and the fitness function to

evaluate these ensemble formulations and guide the evolu-

tionary search toward high-fitness composite solutions. By

measuring the geometric mean of a given composite solutions

on the minority and majority class accuracy in the fitness

function, ensembles with good and balanced classification

accuracy on both classes can be evolved.

1) Composite Solution Terminal Set: To incorporate multi-

ple base classifiers into a single GP composite solution tree,

and to allow the genetic operators to easy interchange which

base classifiers appear within a given composite solution, the

following terminal set is used:

{∅, p1, p2, ..., pT }
Here pi represents a link to the ith base classifier from the

Pareto-approximated front (of size T) from a given MOGP

run, as shown in Figure 2. The symbol ∅ represents a null-

valued terminal, used as a “blank” input argument to a

particular function node. Allowing null-valued terminals in

the composite solutions varies the number of base classifiers

within any given composite solution, rather than insisting

that every leaf-node in a composite solution maps to a base

classifier. For example, the composite solution in Figure 2(b)

uses five base classifiers even though there are seven leaf-

nodes, since two leaf-nodes are null-valued terminals.

When a composite solution is evaluated on a given input

instance, the ith base classifier representing terminal node pi
is first executed, and the predicted class label of this base

classifier is taken as the return value of the terminal node. As

there are exactly two classes in these data sets, binary values

0 or 1 are used to represent the two predicted class labels. As

the raw output of a base classifier (when evaluated on a given

input instance) is a real number, this number is mapped onto

the two class labels using zero as the class threshold, i.e., 1

(minority class) if the base classifier’s raw output is zero or

positive, or 0 (majority class) otherwise.

This composite solution representation is chosen for two im-

portant reasons. Firstly, the leaf-nodes in the terminal set pro-

vide a mechanism to link multiple base classifiers into a single

composite solution, irrespective of the type of underlying base

learner. This means that the composite solutions can be used in

conjunction with any underlying machine learning algorithm

to generate the base learners, since the composite solutions

take, as input, the predicted class labels of the base learners.

Secondly, the function set operators (discussed below) provide

a flexible mechanism to control how the outputs of the base

classifiers are processed within a composite solution and thus,

how the final output of the composite solution is computed.

Exploring different function set operators will explore different

stategies to combining/aggregating the member outputs in the

ensemble. The two function sets to evolve the CSVote and

CSLogic composite solutions are outlined below.

2) CSVote Function Set: To transform a composite solution

into an ensemble where members vote on the class label, the

function set consists of the single function vt. When vt is

the root node in a CSVote tree, the function computes the

majority vote of each base classifier within the tree. When vt

corresponds to an internal (non-leaf) node in a CSVote tree,

this function serves no purpose other than to join terminal

(leaf) nodes or other vt nodes to the root node. In this case,

these internal vt nodes simply pass each of its input arguments

up the tree to the root node. This function takes exactly 3 input

arguments, which can be other function nodes or terminals

nodes. By only allowing the root to process the majority vote

of all the base classifiers in the CSVote tree, each vote is

treated as equally important during voting.

Figure 3(a) shows an example CSVote tree. Assuming that

the predicted class labels of the five base classifiers in this

tree, p1, p2, p5, p6 and p8, are 1, 0, 0, 1, and 1, respectively

(when evaluated on a given input), Figure 3(b) shows how

this CSVote tree is evaluated to obtain its output. When this

CSVote tree is executed, the class labels of the base classifiers

are taken as the terminal node values, and the two internal

function nodes pass each of its input arguments up to the root

7

Label

p2p1 p8 p6 Ø

Øvt

vt

vt

Output Class

p5

= vt (vt(p5, p1, p8), ∅, vt(p6, p2, ∅))

= vt(p5, p1, p8, p6, p2)

= vt(0,1,1,1,0)

= 1

(a) CSVote Tree (b) Evaluating CSVote Tree

Fig. 3. Composite voting solution (CSVote) and evaluation of this CSVote
tree to obtain its output (class label 1).

node of the tree. When the ∅ terminal nodes are encountered,

no value is passed up to the root node. The root node then

computes a majority vote of these five class labels, and outputs

a class label of 1 (denoting the minority class). In the case of

a tie when the two classes have the same number of votes, the

minority class label (i.e. 1) is chosen.

3) CSLogic Function Set: To transform a composite solu-

tion into a logical expression, a function set consisting of three

functions is used: {∧,∨, vf}. All three functions take 3 input

arguments. The function ∨ represents a logical disjunction and

returns 1 whenever one or more of its input arguments is 1 (0

otherwise). The function ∧ represents a logical conjunction

and returns 1 only if all of its input arguments are 1 (0

otherwise). The function vf represents a majority vote of

all its input arguments, i.e., 1 is returned if two or more

input arguments are 1, or 0 is returned if two or more input

arguments are 0. In the case of a tie (e.g. when the three input

argument are: 0, 1 and the ∅ symbol), the minority class label

is returned (i.e. 1). This means that ∅-valued input arguments

are ignored in all three functions. Unlike the CSVote approach

where only the root node computes the majority vote of

all base classifiers, each internal node in this configuration

computes a new value (based on its input arguments) to

pass up the tree. This provides the internal function nodes

in the CSLogic trees some “decision making” ability when

processing the inputs.

Using the CSLogic tree in Figure 2(b) and the same

predicted class labels for the five base classifiers as discussed

above, Eq. (3) below shows how this tree is evaluated to obtain

its output (on an input instance).

vf(p5, p1, p8) ∨ ∅ ∨ (p6 ∧ p2 ∧ ∅)
= vf(0, 1, 1) ∨ ∅ ∨ (1 ∧ 0)
= 1 ∨ ∅ ∨ 0 = 1 ∨ 0 = 1

(3)

Here the ∅ symbol nodes are ignored when the CSLogic tree

is interpreted. The output of this tree is the class label 1,

determined as follows.

C. Evolutionary Parameters

1) Evolving Composite Solutions: The ramped half-and-

half method is used to generate an initial population of

composite solutions (similar to the MOGP configuration in

Section V-A). The crossover, mutation and elitism rates are

also 60%, 35% and 5%, respectively, and the tournament

selection size is 7 (these settings are recommended in the GP

literature [42]). To ensure that the training phase to evolve

(a) Tree of depth 2 (b) Tree of depth 3

Fig. 4. Fully formed composite trees of depth 2 and 3.

composite solutions is relatively fast, a population size of 300

is used, and the evolution is limited to 30 generations unless a

composite solution with 100% accuracy on both classes on the

training set is evolved (in which case the evolution is stopped).

This corresponds to the termination criteria step in Figure

1(b) for ensemble selection. Since GP is a stochastic search

algorithm, multiple GP runs (30) are executed for each input

set of base learners (i.e. each evolved Pareto-approximated

front from a given MOGP run), each using a different random

starting seed. After 30 runs, the composite solution with the

highest average accuracy on the minority and the majority

classes (on the training set) is taken as the final optimised

ensemble (for a given MOGP run).

These parameters are chosen as they generally performed

well across all the tasks and for the different composite

solutions based on preliminary experiments. These prelimi-

nary experiments were predicated on the knowledge that this

ensemble optimisation step is only a further refinement process

rather than a fully independent training process (like MOGP),

and so requires a smaller population size and lower generation

count than MOGP. However, it should be mentioned that the

optimal parameter values may be different depending on the

problem and representation of the composite solutions (e.g.

CSVote and CSLogic).

2) Tree size: As the goal of the composite solutions is to

discover small but highly cooperative subsets of base learners

to represent the ensemble, a limit is imposed on the maxi-

mum tree depth allowed in the evolution. Smaller composite

solutions are preferred (over larger trees) as these use fewer

base classifiers in the ensembles and the selection pressure

for the (limited) positions within the composite solutions is

increased. This reduces the risk of individuals that do not

positively contribute to the ensemble accuracy being included

in the composite solutions. To achieve this, two maximum

tree depth settings are compared in the evolution: 2 and 3.

When the maximum tree depth is 2, a composite solution can

include, at most, nine members since the function nodes take

exactly three input arguments, as shown in Figure 4(a). When

the maximum tree depth is 3, a composite solution can use,

at most, 27 members, as shown in Figure 4(b). The composite

solutions of depths 2 and 3 can contain fewer than 9 and

27 members, respectively, due to the null-valued terminal set

symbol ∅, since this represents a “blank” input argument to

a given function node. Composite solutions with only one

terminal node (that is not the ∅ symbol) are permitted in

the evolution. These are akin to a “winner-takes-all” strategy

where the ensemble output depends on the output of a single

8

member.

This paper compares these two pre-defined maximum tree

depths to study the effects of the different ensemble sizes

on performance for the two GP configurations. While we

expect that small but diverse ensembles (of depth 2) will

perform better than larger ensembles (of depth 3) due to

better cooperation between members, we also investigate the

following issues related to ensemble size. Firstly, whether

the maximum tree depth of 2 is too small for good en-

semble generalisation compared to depth 3 for the CSVote

and CSLogic approaches. Secondly, whether smaller CSLogic

ensembles also perform better than larger CSLogic ensembles

since the latter represents more complex and arguably more

expressive logical expressions. An alternative to pre-defining

the maximum GP tree depth would be to add a parsimony

constraint in the fitness function which rewards smaller GP

trees with better fitness values (such as [43]). This would also

force the natural selection pressure to find smaller groups of

individuals for the ensemble. However, allowing the evolution

to automatically choose the ensemble size would not allow

us to investigate the two above-mentioned issues, and so falls

outside the scope of this work but will be considered in future

work.

D. Extra Discussion: Multiple Classes

The two-phase GP framework proposed in this paper can be

easily extended to perform classification with multiple classes

by extending each of the two main GP steps as follows.

The MOGP approach (first step) can readily evolve a Pareto-

approximated front along a multi-dimensional trade-off surface

(three or more objectives), since each class (objective) is

treated independently in the multi-objective optimisation, pro-

vided that a multiple-class classification strategy can translate

the numeric genetic program output value to a set of class

labels. Some multiple-class classification strategies include

static class boundary determination (CBD) where fixed regions

along the number-line are pre-assigned to each class [44][45],

dynamic CBD where the class regions are dynamically learned

using the program output values for each class [44], or class

enumeration where the class labels are represented as terminal

nodes and evolved along with the GP tree [46]. However, the

performance of some MO algorithms may deteriorate when

the number of learning objectives in a problem increases, due

to a large number of candidate (trade-off) solutions along

the objectives [47][48] (these works suggest some useful

approaches to address the issue of scalability in MO learning).

Alternatively, a problem-decomposition based approach can

also be used to transform a multi-class task with k classes

into k binary tasks [3][49]. A direct comparison between these

approaches is beyond the scope of this work.

In the second step (ensemble selection), the CSVote com-

posite solutions are also applicable with multiple classes, since

the majority voting strategy in CSVote counts the number

of votes for each class, regardless of the number of classes

and class value, then returns the class with most votes. The

functions used in CSLogic, in particular ∧ and ∨, can be

extended for multiple classes (since these assume binary class

TABLE I
UNBALANCED CLASSIFICATION TASKS USED IN THE EXPERIMENTS

(WHERE IR IS CLASS IMBALANCE RATIO).

Name Description Total
Minority Class

IR
Feat.

Num % # Type

Ion Ionosphere radar signal [50] 351 126 35.8% 1:3 34 R

Spt Tomography scan [50] 267 55 20.6% 1:4 22 B
Ped Pedestrian Image [51] 24800 4800 19.4% 1:4 22 R

Eco1 Ecoli protein* (eim) [50] 336 77 22.9% 1:4 7 R

Eco2 Ecoli protein* (epp) [50] 336 52 15.5% 1:6 7 R

Yst1 Yeast protein* (mit) [50] 1482 244 16.5% 1:6 8 R

Yst2 Yeast protein* (me3) [50] 1482 163 10.9% 1:9 8 R

Vow Vowel* (class0) [32] 988 90 9.1% 1:10 13 R

Led LED display* (class1) [32] 443 37 8.4% 1:11 7 R

Bal Balance scale* (classB) [50] 625 49 7.8% 1:12 4 Z

Aba Abalone* (9 v 18) [32] 731 42 5.7% 1:17 8 R

Shut Statlog Shuttle* (c2 v c4) [32] 129 6 4.7% 1:20 9 Z

labels) using a new function (e.g. isClass) to convert each input

argument (nominal class label) to a binary value (required by

∧ and ∨). This new function isClass would take two inputs,

a class label and target class label, and return a boolean value

depending on whether a given class matches the target class

(these inputs will be evolved along with the GP tree).

However, since the scope of this paper is on binary classifi-

cation with unbalanced data, we leave the multi-class problems

to the future work.

V. EXPERIMENTAL RESULTS

This section presents the experimental results on the 12

tasks with essential discussions.

A. Unbalanced Data Sets

The experiments use 12 binary classification problems with

unbalanced data, summarised in Table I. Tasks with * rep-

resent multiple-class classification problems which have been

decomposed into binary problems where one class is chosen

as the “main” (minority) class and some/all other classes form

the majority class (the decomposed class name is given is

parenthesis). In Ped, which is an image data set, pixel statistics

corresponding to the mean and variance of the raw pixel values

around local regions in the images are used as features (see

[5] for details). The feature types are real (R), binary (B) or

integer (Z).

The tasks in Table I are carefully selected to represent class

imbalance problems of varying difficulty, dimensionality, size

and (feature) types reasonably well. Minority classes range

between 5% and 35% of total examples, and some tasks

are more complex (easily separable) than others. The tasks

also range from being well-represented (e.g. Ped) to sparsely-

represented (e.g. Shut), and use different numbers of features.

Half the examples in each class are randomly chosen for

the training and the test sets, where both sets preserve the

same (original) class imbalance ratio. In this way, the training

and test sets are similar in size and more representative of

the underlying knowledge, allowing meaningful performance

results to be obtained in the experimental results. Tasks where

the class distributions between training and test sets differ is

considered beyond the scope of this work. These tasks also

contain no missing attributes.

9

TABLE II
AVERAGE ENSEMBLE SIZES, GEOMETRIC MEAN ACCURACIES, AND INDIVIDUAL CLASS ACCURACIES OVER 50 RUNS (± STANDARD DEVIATIONS). Rank

IDENTIFIES WHICH APPROACH HAS A STATISTICALLY SIGNIFICANTLY BETTER (TEST) GEOMETRIC MEAN ACCURACY ON A TASK. BEST RANK IS 1.

Average Test Set Training Set

Task Approach Ensemble Geomean Accuracy % Statistical Significance Class Accuracy % Geomean

Sizes Best Average Rank Beats p-value Minority Majority Accuracy %

Ion

CSVote2 8.9 ± 0.4 95.5 90.1 ± 2.2 1 {3, 4}

p=5.1×10−31

85.2 ± 4.1 95.5 ± 2.6 96.5 ± 1.8

off-EEL 21.2 ± 7.4 95.9 89.8 ± 2.9 1 {3, 4} 83.6 ± 5.3 96.6 ± 2.8 98.4 ± 0.9

FULL 28.1 ± 4.5 94.7 88.4 ± 3.0 2 {4} 84.9 ± 5.1 92.4 ± 6.5 97.5 ± 1.2

CSVote3 21.6 ± 6.3 94.6 86.6 ± 3.5 3 {4} 81.9 ± 5.4 91.9 ± 6.3 99.3 ± 0.6

CSLogic2 8.3 ± 1.0 93.0 86.2 ± 3.4 3 {4} 80.6 ± 5.8 92.4 ± 4.5 99.5 ± 0.5

CSLogic3 26.5 ± 9.2 88.8 60.9 ± 17.0 4 {} 67.6 ± 30.3 70.7 ± 32.6 99.4 ± 0.5

Spt

off-EEL 10.7 ± 5.2 79.0 72.4 ± 3.0 1 {2 − 4}

p=8.2×10−36

66.3 ± 8.6 79.9 ± 6.7 94.7 ± 1.3

CSVote2 8.7 ± 0.8 78.5 72.2 ± 2.6 1 {2 − 4} 64.6 ± 6.3 81.0 ± 4.9 92.8 ± 3.0

CSVote3 17.7 ± 7.8 76.6 68.8 ± 3.5 2 {4} 55.7 ± 7.4 85.7 ± 4.0 96.0 ± 0.5

CSLogic2 9.0 ± 0.1 74.8 67.3 ± 3.1 3 {4} 54.9 ± 6.0 82.9 ± 4.0 95.3 ± 0.7

FULL 27.3 ± 4.0 71.3 63.5 ± 3.7 4 {} 44.6 ± 5.5 90.8 ± 2.4 91.9 ± 2.5

CSLogic3 23.3 ± 10.8 72.7 43.7 ± 28.3 4 {} 41.1 ± 32.2 81.2 ± 23.4 96.4 ± 0.4

Ped

CSVote2 8.7 ± 0.1 92.0 89.4 ± 2.1 1 {3}

p=1.2×10−8

90.7 ± 2.3 88.1 ± 2.4 93.3 ± 2.6

CSVote3 22.7 ± 1.8 91.7 89.2 ± 2.2 1 {3} 88.1 ± 2.2 90.4 ± 3.0 91.8 ± 1.7

off-EEL 55.2 ± 5.0 91.7 89.2 ± 1.5 1 {3} 90.6 ± 1.5 87.9 ± 1.4 91.3 ± 1.6

CSLogic2 9.0 ± 0.0 91.3 88.3 ± 2.4 1 {3} 87.8 ± 1.6 88.8 ± 3.1 88.0 ± 2.1

FULL 71.6 ± 10.2 91.2 87.1 ± 2.6 2 {} 82.4 ± 4.6 92.1 ± 2.5 86.7 ± 1.9

CSLogic3 24.0 ± 3.5 88.5 85.9 ± 2.4 3 {} 85.0 ± 2.1 86.9 ± 2.4 88.1 ± 2.6

Eco1

CSVote2 7.6 ± 1.2 82.0 77.8 ± 2.9 1 {3 − 6}

p=2.0×10−38

91.5 ± 5.0 66.2 ± 4.1 98.8 ± 1.2

CSVote3 18.3 ± 9.1 82.9 77.1 ± 4.0 2 {4 − 6} 93.7 ± 3.9 63.7 ± 6.2 99.2 ± 0.9

off-EEL 7.9 ± 2.5 83.3 75.0 ± 4.4 3 {6} 90.9 ± 5.0 62.1 ± 7.0 99.9 ± 0.2

CSLogic2 8.4 ± 1.2 80.6 72.5 ± 7.0 4 {6} 88.2 ± 7.0 60.2 ± 10.1 99.9 ± 0.2

FULL 8.3 ± 1.8 81.0 71.7 ± 6.0 5 {} 91.5 ± 5.1 56.8 ± 9.9 99.5 ± 0.5

CSLogic3 12.6 ± 4.6 82.2 60.9 ± 16.3 6 {} 82.9 ± 18.3 52.2 ± 26.1 99.9 ± 0.2

Eco2

CSVote2 8.6 ± 1.1 100.0 99.9 ± 0.3 1 {3, 4}

p=8.9×10−17

99.9 ± 0.5 99.8 ± 0.4 98.8 ± 1.6

CSVote3 23.7 ± 6.5 100.0 99.8 ± 0.5 1 {3, 4} 99.8 ± 0.8 99.7 ± 0.6 98.5 ± 1.5

off-EEL 10.6 ± 3.8 100.0 99.8 ± 0.4 1 {3, 4} 99.9 ± 0.5 99.6 ± 0.5 99.8 ± 0.4

CSLogic2 7.1 ± 1.5 100.0 99.4 ± 0.8 2 {4} 99.5 ± 1.3 99.3 ± 1.1 99.9 ± 0.2

FULL 15.4 ± 2.7 100.0 98.8 ± 1.5 3 {4} 97.9 ± 3.1 99.6 ± 0.6 98.8 ± 1.5

CSLogic3 16.2 ± 4.2 98.1 84.2 ± 15.1 4 {} 80.6 ± 23.7 92.5 ± 12.5 99.9 ± 0.2

Yst1

off-EEL 29.2 ± 9.3 77.6 74.4 ± 1.1 1 {3 − 4}

p=9.6×10−17

70.6 ± 5.4 78.8 ± 5.6 85.3 ± 1.0

CSVote2 9.0 ± 0.0 76.9 72.9 ± 1.5 2 {4} 78.7 ± 5.8 66.6 ± 7.7 81.7 ± 4.2

FULL 39.7 ± 5.1 75.6 72.1 ± 2.4 2 {4} 64.6 ± 4.8 82.5 ± 4.3 83.9 ± 1.1

CSVote3 17.5 ± 6.3 75.0 72.5 ± 1.3 3 {4} 67.8 ± 5.1 77.9 ± 4.9 86.6 ± 0.8

CSLogic2 8.9 ± 0.3 75.8 72.5 ± 1.7 3 {4} 64.6 ± 3.9 81.4 ± 3.1 87.8 ± 0.9

CSLogic3 28.9 ± 8.9 73.2 47.6 ± 17.6 4 {} 56.5 ± 36.8 65.9 ± 34.3 87.7 ± 0.9

Yst2

off-EEL 17.2 ± 4.5 93.4 92.1 ± 0.9 1 {3 − 5}

p=3.0×10−34

93.1 ± 2.7 90.8 ± 2.4 94.9 ± 0.7

CSVote2 9.0 ± 0.0 94.2 91.8 ± 1.1 2 {4 − 5} 92.8 ± 2.5 90.9 ± 2.4 94.1 ± 1.5

CSVote3 16.4 ± 5.5 93.2 88.6 ± 3.6 3 {4 − 5} 88.8 ± 7.9 90.2 ± 3.9 96.0 ± 0.6

CSLogic2 9.0 ± 0.4 93.7 88.3 ± 1.8 3 {4 − 5} 86.1 ± 4.3 93.4 ± 1.9 96.2 ± 0.6

FULL 27.9 ± 3.7 91.6 85.0 ± 2.3 4 {5} 81.2 ± 5.0 95.5 ± 1.5 93.5 ± 1.1

CSLogic3 19.2 ± 7.2 91.1 72.4 ± 7.7 5 {} 76.0 ± 28.2 78.7 ± 23.7 96.1 ± 0.6

Vow

CSVote2 9.0 ± 0.0 98.2 84.6 ± 8.5 1 {}

p=0.1621

74.9 ± 13.2 96.2 ± 7.5 99.4 ± 0.9

CSLogic2 6.2 ± 1.6 98.7 84.4 ± 9.2 1 {} 75.9 ± 14.0 95.3 ± 8.0 98.3 ± 1.3

CSLogic3 12.3 ± 3.8 97.9 84.2 ± 8.9 1 {} 75.2 ± 13.1 95.3 ± 8.4 98.3 ± 1.3

CSVote3 19.9 ± 9.0 97.9 82.7 ± 12.0 1 {} 73.1 ± 14.0 95.1 ± 13.2 99.7 ± 0.7

off-EEL 13.2 ± 2.0 97.9 82.4 ± 9.0 1 {} 71.3 ± 13.3 96.2 ± 7.4 100.0 ± 0.0

FULL 15.2 ± 1.6 95.4 79.4 ± 12.9 1 {} 69.5 ± 16.2 93.1 ± 14.8 99.9 ± 0.2

Led

CSLogic3 13.2 ± 3.1 89.5 81.8 ± 4.5 1 {2}

p=3.7×10−7

77.6 ± 8.2 86.9 ± 7.7 92.7 ± 4.0

CSLogic2 6.2 ± 1.2 89.5 81.5 ± 3.7 1 {2} 76.0 ± 8.3 88.1 ± 7.7 92.7 ± 4.0

CSVote2 9.0 ± 0.0 90.0 81.3 ± 4.2 1 {2} 74.9 ± 7.9 88.8 ± 7.3 97.6 ± 1.2

CSVote3 27.0 ± 0.0 89.5 80.1 ± 4.7 1 {2} 74.7 ± 8.9 86.4 ± 7.3 98.0 ± 0.9

off-EEL 3.8 ± 2.8 88.5 79.3 ± 4.6 1 {2} 73.7 ± 8.8 86.0 ± 7.5 98.4 ± 0.4

FULL 11.0 ± 2.0 85.5 76.3 ± 5.2 2 {} 70.6 ± 10.1 83.2 ± 6.3 98.3 ± 0.5

Bal

CSVote2 8.9 ± 0.5 97.5 84.3 ± 7.6 1 {2}

p=9.8×10−31

81.4 ± 12.2 86.2 ± 9.2 95.3 ± 2.4

off-EEL 13.9 ± 2.5 99.3 83.3 ± 6.8 1 {2} 81.3 ± 9.4 87.9 ± 7.6 94.8 ± 3.2

CSLogic2 9.0 ± 0.0 93.6 80.3 ± 9.7 1 {2} 71.1 ± 14.9 91.7 ± 4.7 96.7 ± 1.9

CSVote3 12.6 ± 6.8 93.9 79.9 ± 7.7 1 {2} 74.3 ± 13.1 86.8 ± 7.6 97.2 ± 1.8

FULL 20.8 ± 5.1 93.4 69.1 ± 12.5 2 {} 51.7 ± 18.4 95.4 ± 3.5 91.9 ± 3.5

CSLogic3 17.1 ± 7.5 97.5 55.1 ± 25.0 2 {} 54.5 ± 36.7 79.4 ± 23.5 98.4 ± 1.1

Aba

off-EEL 7.3 ± 3.4 85.4 76.4 ± 5.1 1 {4 − 5}

p=7.2×10−3

71.3 ± 9.9 82.6 ± 7.2 92.5 ± 3.2

CSVote2 5.5 ± 1.3 84.6 74.5 ± 5.8 2 {5} 67.0 ± 10.2 83.8 ± 8.1 85.8 ± 8.4

CSVote3 10.2 ± 4.7 86.2 74.1 ± 6.5 3 {} 66.6 ± 12.6 83.8 ± 8.5 72.4 ± 17.5

CSLogic3 10.0 ± 7.5 86.2 73.5 ± 7.9 3 {} 64.4 ± 13.9 85.5 ± 7.6 89.6 ± 4.6

CSLogic2 6.5 ± 2.0 86.2 72.0 ± 10.2 4 {} 64.8 ± 17.1 82.9 ± 9.8 72.4 ± 17.5

FULL 9.0 ± 3.6 83.6 69.7 ± 9.9 5 {} 63.8 ± 18.2 79.5 ± 13.0 87.8 ± 4.3

Shut

CSLogic3 11.7 ± 2.8 100.0 96.1 ± 6.7 1 {3}

p=0.013

94.8 ± 12.2 97.8 ± 2.1 93.4 ± 11.8

CSLogic2 6.2 ± 1.5 100.0 95.8 ± 7.0 2 {} 94.1 ± 12.8 98.0 ± 1.9 93.4 ± 11.8

CSVote2 9.0 ± 0.0 100.0 95.5 ± 7.3 2 {} 93.5 ± 13.4 98.1 ± 2.0 96.7 ± 7.1

CSVote3 23.9 ± 8.5 100.0 95.0 ± 8.8 2 {} 92.8 ± 15.4 98.0 ± 1.9 96.4 ± 7.4

off-EEL 8.1 ± 0.5 100.0 94.2 ± 7.7 2 {} 93.3 ± 16.5 96.0 ± 4.3 98.0 ± 5.7

FULL 12.6 ± 0.7 100.0 91.1 ± 6.8 3 {} 87.3 ± 21.2 97.0 ± 3.1 99.6 ± 2.6

B. Main Ensemble Results

Table II shows the average ensemble results (± standard

deviations) for the different ensemble approaches on the

test and training sets over 50 runs. For convenience, the

four composite solution approaches are denoted as CSVote2,

CSVote3, CSLogic2 and CSLogic3, where the subscript (2

and 3) denotes to the maximum enforced tree depth. For a

comparison, Table II also includes: (a) the full ensembles

10

without ensemble selection (denoted by FULL) where all non-

dominate front members (for a given MOGP run) form the

ensemble, and (b) another successful GP ensemble selection

from the literature, off-EEL [13]. In off-EEL, the base learners

are first sorted by their fitness values on the training set.

Each individual is then iteratively copied into the ensemble

where, at each step, this intermediate ensemble is evaluated.

The members in the best-performing intermediate ensemble

are then chosen for the final ensemble.

The geometric mean of the minority and the majority class

accuracy is used as the primary evaluation criterion (and in

the statistical significance tests discussed below) since this

measure is sensitive to minority class when data is unbalanced.

The geometric mean accuracy is calculated using Eq. (4) where

A and B represent the accuracies of the two classes.

meangeometric =
√
AB (4)

In contrast, traditional performance measures such as the

overall classification accuracy or error rate can be influenced

by the larger majority class when data is unbalanced. Another

advantage of the geometric mean is the desirable property that

poorer accuracy on one class alone can give a lower overall

mean than the traditional arithmetic mean, since the product of

the component factors are computed. This means that biased

results toward one class alone will be reflected with lower

geometric mean values than arithmetic mean values.

To compare which approaches achieve statistically signifi-

cant geometric mean accuracies on the test set than others, two

statistical tests are performed. Firstly, an ANOVA F-test [52]

is used to test the null hypothesis, i.e., no significant differ-

ence between the approaches over 50 runs (95% confidence

level). The p-values from the F-test, shown in Table II, are

extremely low for each task (except Vow). This indicates a

statistically significant difference in performance between the

different approaches (null hypothesis rejected), since smaller

p-values mean greater statistical difference. Secondly, a post-

hoc multiple comparisons test using Tukey’s Honestly Sig-

nificant Difference (HSD) [53] is then used to determine

the statistically significant differences between group means.

Tukey’s HSD test conducts a series of pairwise comparisons1

between the different ensemble approaches, and outputs a set

of 95% confidence intervals for each comparison based on

the studentized range distribution (similar to a Students t-test)

[53]. See [5] for more details on Tukey’s HSD test.

Table II summarises the outcomes of Tukey’s multiple

comparisons test by ranking and grouping together those

ensemble approaches that achieve statistically significantly

better geometric mean accuracies than others. This is shown

by the ensemble Rank in Table II where the higher the

rank, the better the ensemble’s performance (rank 1 is best).

Ensemble approaches with identical ranks imply very similar

geometric mean accuracies on a particular task. The column

Beats shows other groups (identified by their rank) that are

statistically significantly worse on a particular task; the empty

set denotes that a given approach is not statistically better

1There are
k(k−1)

2
total comparisons where k is the number of different

ensemble approaches.

than any other group. For example, in Table II for the Ion

task, CSVote2 and off-EEL both achieve the best rank of 1,

meaning that both approaches are not statistically different to

each other. However, both are significantly better than those

with ranks 3 and 4 (CSVote3, CSLogic2 and CSLogic3), but

not significantly better than FULL (which has rank 2).

Table II shows that CSVote2 and off-EEL generally achieved

the best geometric mean accuracies on the test sets. CSVote2
appears in the top-ranked position in six tasks, while off-EEL

appears in the top position in the four other tasks (Spt, Yst1,

Yst2 and Aba). In the remaining two tasks (Led and Shut),

CSLogic3 has the best geometric mean accuracy on the test

set. These three approaches, in particular, CSVote2 and off-

EEL, clearly outperform the FULL ensemble (no ensemble

selection) in most tasks.

Here CSVote2 is statistically significantly better than FULL

in seven tasks (Spt, Eco1, Eco2, Yst2, Led, Bal and Aba), and

off-EEL is statistically significantly better than FULL in six

tasks (Spt, Eco2, Yst2, Led, Bal and Aba). Since CSVote2 and

off-EEL have smaller ensemble sizes than FULL in all tasks,

this shows that better performance can be achieved using fewer

(but more diverse) ensemble members chosen during ensemble

selection.

CSVote2 and off-EEL show no statistically significant dif-

ference in performance compared to each other in all tasks

except Eco1 (where CSVote2 is significantly better than off-

EEL). This is not surprising since both are greedy ensemble

selection algorithms. However, ensemble sizes for CSVote2
are much smaller than off-EEL on all tasks, particularly Ped,

Yst1, Ion and Yst2. This shows that the ensemble members

found using CSVote2 are more diverse than those found using

off-EEL on these tasks, since the smaller CSVote2 ensembles

generally perform as well as, or better than, the larger off-EEL

ensembles. This highlights the usefulness of the evolutionary

search to finding small diverse groups of individuals that

cooperate well together in the ensemble. In addition to having

better diversity, smaller ensembles also take less time to

evaluate since fewer members must be evaluated to obtain the

final ensemble output.

1) Why Ensemble Selection is Needed: The poorer perfor-

mance by FULL (compared to CSVote2 and off-EEL) is due

to a slight performance bias (higher majority class accuracies

than minority class accuracies) in nearly all tasks. While

minority class accuracies for FULL are still relatively good

in some tasks (e.g. Ion, Ped and Yst2), these are much worse

than CSVote2 and off-EEL in some others (e.g. Spt, Yst1,

Bal and Aba). This shows that FULL contains more members

which have a stronger majority class bias than the opposite

case since these members influence the ensemble vote on these

tasks. Only in one task (Eco1) is the opposite behaviour be

seen, where FULL contains more members that are biased

toward the minority class. In contrast, CSVote2 and off-EEL

achieve much more balanced class accuracies, with noticeably

better minority class accuracies compared to FULL in nearly

all tasks.

Further analysis of the FULL ensemble results reveals

that more individuals with a stronger majority class bias

achieve non-dominated status as the evolution progresses over

11

0 10 20 30 40 50
0.7

0.75

0.8

0.85

0.9

Generation

A
cc

ur
ac

y

Ion

Minority
Majority

10 20 30 40 50

0.7

0.8

0.9

Generation

Yst2

Minority
Majority

10 20 30 40 50
0.5

0.6

0.7

0.8

Generation

Yst1

Minority
Majority

Fig. 5. FULL ensemble performance on the minority and the majority classes across 50 generations (average over 50 runs).

generations, compared to individuals with either a stronger

minority class bias or middle-region individuals. This genetic

drift in the population (toward non-dominated individuals

biased toward the majority class objective) can be seen, to

varying degrees, in Figure 5. This figure shows the minority

class and majority class accuracies (on the test set) for FULL

across 50 generations (averaged over 50 runs). These three

figures (for Ion, Yst1 and Yst2) show that the majority class

receives more votes from the different members than the

minority class. The remaining tasks are omitted for brevity but

reflects similar behaviours to Figure 5 (except Eco2 where the

two classes are balanced). These results show that ensemble

selection can successfully exclude biased individuals from

the ensemble, thereby improving ensemble accuracy on the

important minority class.

2) Configuration of Composite Solutions: Table II con-

firms that smaller composite solution ensemble configura-

tions, in particular CSVote2, also generally perform better

than larger composite solution ensemble configurations (such

as CSVote3) on most tasks. Here CSVote2 and CSLogic2
outperform CSVote3 and CSLogic3, respectively, in nearly all

tasks (except Led and Shut), where CSVote2 and CSLogic2
both have smaller ensemble sizes than CSVote3 and CSLogic3.

This suggests that limiting the maximum tree depth to 2,

particularly for CSVote, is sufficient for allowing good ensem-

ble generalisation (i.e. tree depth not too small), since these

ensembles are generally better able to find small and highly

diverse groups of individuals which cooperate well together in

the ensemble compared to the maximum tree depth of 3.

However, it must be mentioned that these conclusions

are only valid using the current GP parameter configuration

(from Section IV.C), and that performances for CSVote3 (and

CSLogic3) may be improved on these tasks using different

GP parameters. For example, the number of generations in

both CSVote2 and CSVote3 is limited to 30 to ensure that the

evolution is relatively fast. This means that it may have been

more difficult for GP to find good CSVote3 solutions in 30

generations since these have many more possible combinations

than CSVote2. As null-valued terminals are allowed in the

composite solution trees, we expect that CSVote3 should also

eventually be able to discover the same solutions as CSVote2
in more generations. However, these results nevertheless show

that the smaller CSVote2 ensembles achieve good ensemble

results when the goal of ensemble selection is to reduce

ensemble size and improve diversity while also keeping this

GP refinement process relatively fast.

TABLE III
AVERAGE MOGP ENSEMBLE TRAINING TIMES (± STANDARD DEVIATION)
(OVER 50 RUNS) IN SECONDS (S) OR MINUTES (M) IN ASCENDING ORDER.

Task Times Task Times Task Times

Shut 26.3s ± 3.4 Spt 29.5s ± 1.6 Ion 30.4s ± 2.6
Eco1 40.1s ± 3.5 Bal 45.1s ± 3.2 Led 47.3s ± 7.4
Yst2 68.5s ± 5.9 Eco2 71.2s ± 24.0 Yst1 73.6s ± 4.5
Aba 90.3s ± 4.9 Vow 96.4s ± 9.2 Ped 17.7m ± 24.8

In Led and Shut, the larger CSLogic3 shows the best (test)

geometric mean accuracies, but CSLogic3 is not statistically

significantly better than the other composite solutions nor

off-EEL in these two tasks. The reason CSLogic3 achieves

slightly better results than the other GP approaches on these

tasks may be because the large, complex logical expressions

represented by CSLogic3 is more suited to difficult class

imbalance problems (e.g. Led and Shut have a very sparse

minority class representation from Table I with only 37 and 6

total minority class instances, respectively).

However, in the general case (as seen in the other 10

tasks), both CSVote2 and CSVote3 have better performance

on the test set than CSLogic2 and CSLogic3. This suggests

that the majority voting strategy (in CSVote, off-EEL and

FULL) can be better for ensemble generalisation in these tasks

than the logical operators in CSLogic, particularly in larger,

more complex CSLogic3 ensembles. This may be because the

logical expressions may be overly sensitive to the training data

on these tasks or that some evolutionary parameters can be

improved (as mentioned above).

The evolutionary search to evolve composite solutions is

also reasonably fast with a single GP run taking only between

0.2 and 5 seconds on the tasks (similar for off-EEL). This is

approximately 2–10% of the training time to evolve a FULL

ensemble in MOGP, as shown in Table III.

3) Ensemble Training Results: Table II also includes the

geometric mean accuracies on the training sets to provide

an indication of the overall effectiveness of the GP training

process. These results show that the training performance for

the ensemble selection approaches is good (achieving near-

perfect accuracy) in nearly all tasks. None of the individual

ensemble members (i.e. evolved GP classifiers), nor the FULL

ensembles accomplishes this in training. However, some ap-

proaches such as CSVote3, CSLogic2 and CSLogic3, have

much higher geometric mean accuracies on the training set

than the test set in some tasks (e.g. Spt, Eco1 and Vow),

suggesting that over-fitting has occurred. This may be due

to the logic operators or evolutionary parameters in CSLogic

(as previously discussed), or to the second training phase for

12

TABLE IV
GEOMETRIC MEAN ACCURACIES USING SELECTION SET OVER 50 RUNS.

THE STATISTICALLY SIGNIFICANTLY BETTER PERFORMANCE ON A GIVEN

SET IS SHOWN IN BOLD.

Task
Test Set (TE40) Selection Set (SL20)

CSVote2 Off-EEL CSVote2 Off-EEL

Ion 90.4 ± 2.5 82.9 ± 3.6 99.6 ± 0.9 95.8 ± 2.5
Spt 72.9 ± 3.0 67.8 ± 5.5 90.0 ± 3.2 86.7 ± 3.6
Eco1 86.3 ± 3.2 84.6 ± 4.0 96.5 ± 2.3 94.5 ± 2.7
Yst1 78.1 ± 1.9 75.6 ± 2.0 78.2 ± 1.6 75.3 ± 2.2
Yst2 91.8 ± 1.0 91.1 ± 1.2 93.7 ± 0.7 91.4 ± 1.0
Vow 86.2 ± 4.5 83.1 ± 5.1 96.0 ± 1.1 96.3 ± 0.5
Led 82.0 ± 4.6 79.2 ± 3.4 89.4 ± 5.6 88.1 ± 2.0
Bal 87.1 ± 5.5 80.7 ± 7.8 94.3 ± 4.3 92.6 ± 4.8
Aba 74.5 ± 3.8 75.4 ± 6.1 87.8 ± 2.4 86.2 ± 7.4

ensemble selection (since the same training data is used to

evolve the initial GP classifiers and composite solutions). Off-

EEL and CSVote2 have better generalisation (than CSVote3,

CSLogic2 and CSLogic3), as their training performance is not

as good as the other approaches but their test performance

is much better. In Ped, Eco2 and Shut, the ensemble ap-

proaches generally show similar training and test performance,

suggesting that good generalisation is achieved. These results

nevertheless show that the composite solutions, in particular

CSVote, may be particularly useful in optimisation problems

or online learning which does not use an unseen test set.

C. Ensemble Selection using a “Selection Set”

To reduce over-fitting, we also investigate using an extra

“selection” set in the secondary GP search to learn/evolve

the composite solutions. In this alternative configuration, the

original data sets are randomly split into three non-overlapping

subsets which all preserve the same class imbalance ratio as

the original data set: a training set containing 40% of the data

instances (called TR40), a test set containing 40% of the data

instances (called TE40), and a second training set (or selection

set) containing the remaining 20% (called SL20). The TR40

training set is used in MOGP to train the base learners (not

used in ensembles selection), whereas the SL20 selection set

is used to evolve the composite solutions in the ensembles

selection phase. Note that evolving composite solutions is

a further refinement process rather than a fully independent

training process from the original MOGP training process, and

the goal is to avoid overfitting. The TE40 test set is then used

to evaluate the ensembles on unseen input instances.

We chose this configuration over cross-validation for two

main reasons. Firstly, to keep the “selection” set is relatively

small, so that the TE40 test set is not substantially larger

than the both training sets (i.e. TR40 and SL20). This ensures

that the test set is still highly representative of the underlying

concepts/rarities in the data. Secondly, to ensure that the TE40

test set is not substantially smaller than the original test set

from the previous section (i.e. using the 50/50% split), so

that meaningful ensemble comparisons can made across these

two test sets. In contrast, when cross-validation is used with

unbalanced data, the minority class can be under-represented

in the test set, particularly when the number of folds is large.

For example, 10-fold cross-validation on a task with only

10% minority class representation means a given fold will

only contain one minority class instance if the different folds

preserve the same class imbalance ratio.

Table IV shows the geometric mean accuracies on the

selection set (SL20) and test set (TE40) for CSVote2 and off-

EEL over 50 runs. We focus on CSVote2 and off-EEL only

since these ensemble approaches generally perform the best on

the tasks (as discussed in Section V-B). Note that the results

on the selection set are presented (and not TR40) since the

former is used in ensemble ensemble selection (and the latter

in not). Ped, Eco2 and Shut are omitted from Table IV since

no over-fitting occurs on these two tasks (as seen in Section

V-B3). In Table IV, the ensemble approach with a statistically

significantly better geometric mean accuracy on a given set

(using a 95% confidence level) is highlighted in bold.

Table IV shows that the TE40 test set results for CSVote2 in

Table IV are as good as, or slightly better than, the previous

test results in Table II (using no selection set) in nearly all

tasks (except Ion). Similarly, the ensemble training results on

SL20 for CSVote2 are also slightly lower compared to the

previous ensemble training results (in Table II). This shows

that using the selection set to evolve the CSVote2 ensembles

can reduce overfitting. However, this is not also the case for

off-EEL, where performance on the TE40 test set is worse than

the previous test results in Table II (using no selection set) on

three tasks (Ion, Spt and Bal). As a result, CSVote2 training

is statistically significantly better than off-EEL in four tasks

(on TE40) using the selection set. This shows the advantage

of using GP to further refine/improve the ensembles. In future

work we will explore other evolutionary parameters and train-

ing configurations to further improve ensemble performance.

VI. COMPARISONS WITH OTHER APPROACHES

This paper also compares the GP approaches to several

other successful ensemble-based approaches for unbalanced

data as recommended in [2], as well as traditional “single-

classifier” approaches (where the learnt model is single clas-

sifier). Furthermore, both the ensemble-based and traditional

“single-classifier” approaches are evaluated using GP, SVM

and NB. Table V shows the geometric mean accuracies on the

test sets (use the initial 50/50% training and test set split),

and the training times in seconds (s) or minutes (m) for the

different approaches2. Experiments using NB and SVM are

generated using WEKA machine learning software [54].

The ensemble-based approaches include: (a) bagging with

balanced bootstrap sampling using GP, NB and SVM as the

base learners, and (b) AdaBoost [55] with under-sampling

and SMOTE using NB and SVM as the base learners. Since

bagging requires that the number of bootstrap samples B be

configured a priori (where the final ensemble size is B),

we use B = 25. This configuration generally gave the best

performance from preliminary experiments using B values of

15, 25 and 50 on the tasks. Each balanced bootstrap sample

uses all minority class instances and a random sampling

of majority class instances (the sampling algorithm uses a

different random starting seed for each sample). In AdaBoost,

experiments are repeated 50 times (also using a different

random starting seed) using 25 AdaBoost iterations for each

2No standard deviation values are available for AdaBoost (from WEKA)
for the training times.

13

TABLE V
GEOMETRIC MEAN ACCURACIES ON THE TEST SET (AND TRAINING TIMES BELOW) FOR THE DIFFERENT APPROACHES ON THE TASKS. BOLD TEXT

HIGHLIGHTS COMPETITIVE RESULTS COMPARED THE GP ENSEMBLE APPROACHES WHILE UNDERLINED TEXT HIGHLIGHTS POOR RESULTS.

Task
Ensemble Bagging AdaBoost Methods Traditional (“Single-Classifier”) Learners

GP SVM NB
SVM NB SGP

SVM NB
Under SMOTE Under SMOTE ACC GM AUC

Ion 91.4 ± 3.4 74.4 74.5 75.6 ± 3.3 78.4 ± 1.1 91.2 ± 3.3 90.9 ± 2.4 83.9 ± 5.5 83.6 ± 6.2 84.1 ± 6.1 93.1 75.1
Spt 72.7 ± 3.4 58.8 73.8 56.9 ± 10.8 58.8 ± 0.0 73.0 ± 4.8 73.5 ± 2.2 64.7 ± 4.8 68.5 ± 5.5 72.2 ± 10.0 59.1 74.4
Ped 61.0 ± 15.2 89.9 82.1 98.3 ± 0.3 98.1 ± 0.2 89.4 ± 1.6 89.1 ± 0.6 64.7 ± 4.8 86.6 ± 2.5 92.1 ± 1.8 70.5 82.5

Eco1 73.4 ± 7.2 56.2 76.3 59.5 ± 9.1 75.9 ± 1.0 74.2 ± 5.5 77.3 ± 2.2 59.2 ± 3.8 68.5 ± 3.8 79.4 ± 3.4 75.1 74.6
Eco2 95.0 ± 1.6 91.0 87.3 80.0 ± 15.6 81.5 ± 2.5 82.4 ± 8.5 68.9 ± 4.9 74.9 ± 1.9 88.6 ± 1.9 93.0 ± 2.9 87.6 51.8
Yst1 73.8 ± 2.0 74.0 76.2 70.2 ± 3.9 66.9 ± 1.6 75.0 ± 3.5 71.9 ± 0.8 62.1 ± 2.4 70.7 ± 4.2 77.1 ± 4.8 56.5 64.7
Yst2 92.4 ± 1.5 88.3 88.9 84.9 ± 2.9 79.0 ± 1.1 88.7 ± 2.9 82.8 ± 0.5 79.0 ± 2.2 89.4 ± 2.9 90.8 ± 2.9 75.4 80.8
Vow 92.4 ± 8.6 25.9 91.8 25.9 ± 0.0 25.9 ± 0.0 64.6 ± 3.7 64.9 ± 3.2 74.3 ± 12.0 83.3 ± 6.8 91.9 ± 7.2 25.9 87.5
Led 79.3 ± 11.8 73.1 78.8 73.1 ± 0.0 73.1 ± 0.0 78.3 ± 2.2 77.8 ± 1.2 74.0 ± 5.9 72.3 ± 6.6 78.8 ± 8.3 73.1 71.1
Bal 86.2 ± 7.1 63.3 38.5 59.0 ± 10.7 25.7 ± 2.1 44.2 ± 9.4 0.0 ± 0.0 29.8 ± 4.4 85.1 ± 11.5 82.3 ± 12.7 0.0 0.0
Aba 80.5 ± 4.2 66.7 64.6 60.8 ± 10.8 46.9 ± 3.1 70.7 ± 9.0 73.6 ± 7.4 38.1 ± 2.5 76.9 ± 8.0 84.8 ± 7.4 0.0 63.2
Shut 63.1 ± 13.9 57.7 98.3 78.6 ± 20.9 57.7 ± 0.0 93.3 ± 0.0 98.5 ± 0.0 91.5 ± 10.5 93.6 ± 7.0 98.0 ± 0.5 57.7 98.3

TRAINING TIMES

Ion 72.4s ± 7.2 3.0s 2.0s 0.5s 1.0s 1.0s 1.3s 2.7s ± 0.8 2.8s ± 0.9 3.1s ± 0.9 <0.1s 0.1s
Spt 48.5s ± 4.4 2.0s 1.0s 0.9s 2.3s 0.6s 0.7s 2.3s ± 0.6 2.6s ± 1.0 2.8s ± 0.9 0.2s 0.1s
Ped 22.8m ± 3.6 5.7m 35s 31m 144m 5.3m 11.5m 5.4m ± 1.8 5.0m ± 3.0 5.8m ± 1.9 3.8m 20.1s

Eco1 87.1s ± 7.7 2.0s 2.0s 0.7s 0.9s 0.5s 0.5s 4.1s ± 0.9 3.8s ± 1.2 71.8s ± 3.3 0.1s 0.1s
Eco2 93.2s ± 2.4 2.0s 2.0s 0.9s 1.9s 0.4s 0.5s 4.4s ± 1.9 4.6s ± 1.3 70.9s ± 3.4 0.1s 0.1s
Yst1 4.4m ± 3.8 4.0s 3.0s 5.3s 30.7s 0.6s 1.1s 13.5s ± 5.7 13.3s ± 4.7 13.3s ± 3.3 1.2s 0.3s
Yst2 3.8m ± 2.8 4.0s 3.0s 3.2s 19.7s 0.7s 1.1s 11.5s ± 3.5 12.6s ± 7.9 15.2s ± 5.3 1.4s 0.1s
Vow 17.5s ± 1.9 4.0s 1.0s 1.5s 1.8s 1.7s 4.3s 2.8s ± 1.1 2.0s ± 0.8 64.2s ± 10.5 3.0s 8.0s
Led 15.7s ± 1.0 7.0s <1s 0.7s 8.9s 0.5s 0.6s 3.3s ± 3.2 2.9s ± 3.3 27.7s ± 31.5 1.0s 1.0s
Bal 1.9m ± 0.3 2.0s 1.0s 1.0s 4.0s 0.4s 0.5s 5.1s ± 2 4.7s ± 1.5 5.0s ± 1.3 0.1s 0.1s
Aba 13.6s ± 2.0 4.0s 3.0s 2.1s 12.1s 1.5s 0.9s 1.9s ± 0.8 6.3s ± 3.2 35.0m ± 9.2 <1s 2.0s
Shut 24.0s ± 1.9 1.0s 1.0s 0.4s 0.5s 0.4s 0.4s 1.1s ± 0.8 1.2s ± 0.9 50.9s ± 51.2 <1s 1.0s

run. The SMOTE algorithm uses 5 nearest neighbours to

create “new” minority examples. The SVM base learners use a

sequential minimal optimisation algorithm with an RBF kernel

and Gamma value of 10 (this value generally gave the best

performance from experiments using 0.1, 1, 10, and 100).

“Single-classifier” GP (or SGP) is evaluated using three

different fitness functions, where all SGP experiments are

repeated 50 times. The first, ACC, represents the traditional

measure, the overall accuracy. The second, GM, uses the

geometric mean accuracy of the minority and the majority

classes. The third, AUC, calculates the area under the Re-

ceiver Operating Characteristics (ROC) curve [56]. These SGP

approaches use the same genetic program representation as

MOGP (as outlined in Section III-A). This means that the same

GP complexity constraints (e.g. a maximum depth of 8) are

placed on the SGP classifiers, bagging-based GP classifiers,

and the CSVote2 (and off-EEL) ensemble members. Where

possible, the SGP evolutionary parameters are kept the same

as MOGP except for the tournament size which is 7 in SGP,

and the mutation and elitism rates which are 35% and 5%,

respectively (as these are recommended in the GP literature

and elitism is not used in MOGP).

Table V shows that while the bagging and boosting ap-

proaches perform well compared to CSVote2 and off-EEL (in

Table II) in some tasks, these are much worse than CSVote2
and off-EEL in some others. For example, while NB+bagging

and NB+AdaBoost achieves competitive geometric mean ac-

curacies compared to CSVote2 and off-EEL on Spt and Yst1
and very good results on Shut (but not better than the best-

of-run 100% accuracy achieved by all GP approaches), these

NB approaches perform worse than GP on Eco2, Yst2, Vow,

Led, Aba and Bal. On Bal in particular (which has a high

class imbalance ratio), nearly all other bagging and boosting

methods have very poor performance with minority class

accuracies as low as 0% (these are underlined in Table V).

Similarly, SVM+AdaBoost outperforms CSVote2 and off-EEL

on Ped (highlighted in bold) but performs much worse on all

the remaining tasks, particularly Vow where all the SVM-

based approaches show very poor results (underlined). On

this task in particular, SVM+AdaBoost incurs much longer

training times than GP on this task (taking roughly 9 times

longer). In contrast, CSVote2 and off-EEL generally show

good results (in Table II) across all tasks, suggesting that

MOGP in combination with CSVote2 and/or off-EEL for

ensemble selection achieves good generality on these tasks.

We expect the GP approaches developed in this paper to adapt

well to new class imbalance tasks.

Interestingly, GP+bagging shows competitive results to

CSVote2 and off-EEL in two tasks (Spt and Yst2), and even

performs slightly better than CSVote2 and off-EEL in four

tasks (Ion, Vow, Bal and Aba). These six tasks for GP+bagging

are highlighted in bold in Table V. In the remaining six tasks,

CSVote2 and off-EEL both outperform GP+bagging. This

suggests that classification results for GP+bagging might be

further improved on these tasks with ensemble selection using

CSVote and/or off-EEL. This represents a useful new direction

for future work. However, GP+bagging has longer training

times than MOGP, which takes twice as long as MOGP

(from Table III) in most tasks (e.g. Ion, Eco1, Yst1, Yst2 and

Bal underlined in Table V). This is because N different GP

classifiers must be evolved using different (balanced) training

samples to form a single ensemble. In contrast, all ensemble

members are evolved simultaneously in one MOGP run using

the full training set.

As expected, Table V also shows that the traditional “single-

classifier” approaches which are not adapted for unbalanced

14

data sets (SGP+ACC, NB and SVM), generally perform poorly

on the tasks with low minority class accuracies, particularly

as the level of class imbalance increases. On some task such

as Led, Bal and Aba (which have some of the highest class

imbalance levels), these approaches cannot discriminate very

well between the two classes at all, scoring as low as 0%

minority class accuracy (underlined in Table V). The improved

(class-sensitive) fitness functions in SGP (namely, SGP+GM

and SGP+AUC) generally perform better on the tasks than the

traditional approaches. However, SGP+GM does not perform

better than CSVote2 on any task, and SGP+AUC achieves

competitive performance compared to CSVote2 in only some

tasks (e.g. Ped, Eco1, Yst1, Vow, Aba and Shut, shown in bold

in Table V) but not others. This demonstrates that multiple

GP classifiers working together in the CSVote2 ensembles

have better generalisation than “single-classifier” GP in these

tasks, since the model complexities of the ensemble mem-

bers in CSVote2 and the evolved SGP classifiers are the

same. This is a well-established concept in ensemble learning

[18][19][20][21].

VII. CONCLUSIONS

The two main goals of this paper were to develop an

ensemble learning approach for classification with unbalanced

data using multi-objective GP, and develop a new ensemble

selection strategy to prune the ensembles using GP. This

is the first paper using GP for ensemble selection which

combines multiple evolved GP classifiers along the Pareto-

approximated front into a single composite genetic program

solution to represent the ensemble. The two main novelties of

this approach include using selection pressure in the evolution

to quickly find small groups of highly cooperative individuals

for the ensemble, and exploring different GP function sets to

manipulate the outputs of the individual members to control

how the ensemble determines its final classification decision.

Two GP function sets are compared to evolve composite voting

solutions (CSVote) and composite logical solutions (CSLogic).

These goals have been achieved by evaluating the classifi-

cation performances of the full and pruned ensembles on 12

(binary) tasks, and comparing these results to an established

ensemble selection algorithm (off-EEL [13]); bagging and

boosting methods; and canonical GP, NB and SVM. We show

that without ensemble selection, ensembles formed using the

full Pareto-approximated front are vulnerable to the learning

bias (due to the influence of biased members). As the ensemble

sizes are automatically reduced during ensemble selection,

ensemble performance improves on the tasks, particularly on

the important minority class. The new GP approach to ensem-

ble selection finds smaller and more diverse ensembles which

perform as well as, or better than, off-EEL (and also better than

canonical GP), particularly on tasks with high levels of class

imbalance. Traditional majority voting (used in CSVote) is

found to be better for good ensemble generalisation compared

to the logical operators (used in CSLogic) in most tasks;

whereas larger, more complex logical expressions represented

by CSLogic performed slightly better than CSVote on two

tasks with very sparse minority class representation. When an

extra selection set is used in the composite solution evolution,

performance improves for CSVote. The GP ensembles show

good generality across all tasks, whereas the other bagging

and boosting approaches (using NB and SVM) perform well

on some tasks but also have difficulties on some others.

This paper focuses on ensemble performance and does not

explicitly examine the diversity of the evolved ensembles. In

future work we will analyse the relationships between diversity

and ensemble performance, and investigate other techniques

for promoting diversity between individuals in the evolution.

We will also develop new composite solution representations,

investigate using a parsimony objective in the fitness function

to automatically evolve smaller composite solutions, refine

the evolutionary parameters to further improve performance,

and evaluate these approaches on multiple-class problems with

unbalanced data in the future.

ACKNOWLEDGEMENTS

This work is supported in part by the Marsden Fund of New

Zealand Government (under contract number VUW0806) ad-

ministrated by the Royal Society of New Zealand, and a NSFC

grant (No. 61329302). Xin Yao’s research received funding

from the European Union Seventh Framework Programme

(grant agreement no. 270428). He was also supported by a

Royal Society Wolfson Research Merit Award.

REFERENCES

[1] G. M. Weiss and F. Provost, “Learning when training data are costly:
The effect of class distribution on tree induction,” Journal of Artificial

Intelligence Research, vol. 19, pp. 315–354, 2003.
[2] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,

“A review on ensembles for the class imbalance problem: Bagging-,
boosting-, and hybrid-based approaches,” IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, vol. 42, no. 4,
pp. 463–484, 2012.

[3] A. McIntyre and M. Heywood, “Classification as clustering: A
pareto cooperative-competitive GP approach,” Evolutionary Computa-

tion, vol. 19, no. 1, pp. 137–166, 2011.
[4] S. Wang, K. Tang, and X. Yao, “Diversity exploration and negative

correlation learning on imbalanced data sets,” in International Joint

Conference on Neural Networks, pp. 3259–3266, 2009.
[5] U. Bhowan, M. Johnston, and M. Zhang, “Developing new fitness

functions in genetic programming for classification with unbalanced
data,” IEEE Transactions on Systems, Man, and Cybernetics – Part B,
vol. 42, no. 2, pp. 406 –421, 2011.

[6] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, 1992.
[7] J. Doucette and M. I. Heywood, “GP classification under imbalanced

data sets: Active sub-sampling and AUC approximation,” in Proceedings

of 11th European Conference in Genetic Programming (EuroGP 08),
pp. 266–277, 2008.

[8] J. H. Holmes, “Differential negative reinforcement improves classifier
system learning rate in two-class problems with unequal base rates,” in
Proceedings of the Third Annual Conference on Genetic Programming,
pp. 635–644, 1998.

[9] N. Chawla and J. Sylvester, “Exploiting diversity in ensembles: improv-
ing the performance on unbalanced datasets,” in Proceedings of the 7th

International Conference on Multiple Classifier Systems, MCS, pp. 397–
406, Springer-Verlag, 2007.

[10] G. Patterson and M. Zhang, “Fitness functions in genetic programming
for classification with unbalanced data,” in Proceedings of the 20th

Australasian Joint Conference on Artificial Intelligence, vol. 4830 of
LNCS, pp. 769–775, 2007.

[11] U. Bhowan, M. Johnston, and M. Zhang, “Differentiating between
individual class performance in genetic programming fitness for clas-
sification with unbalanced data,” in Proceedings of the IEEE Congress

on Evolutionary Computation, pp. 2802–2809, IEEE Press, 2009.

15

[12] Y. Jin and B. Sendhoff, “Pareto-based multiobjective machine learning:
An overview and case studies,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, vol. 38, no. 3, pp. 397–
415, 2008.

[13] C. Gagné, M. Sebag, M. Schoenauer, and M. Tomassini, “Ensemble
learning for free with evolutionary algorithms?,” in Proceedings of

Genetic and Evolutionary Computation Conference, pp. 1782–1789,
ACM Press, 2007.

[14] R. Barandela, J. Sanchez, V. Garcia, and E. Rangel, “Strategies for
learning in class imbalance problems,” Pattern Recognition, vol. 36,
no. 3, pp. 849–851, 2003.

[15] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of Artificial Intel-

ligence Research, vol. 16, no. 1, pp. 321–357, 2002.

[16] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 39, no. 2, pp. 539–550, 2009.

[17] U. Bhowan, M. Zhang, and M. Johnston, “Genetic programming for
classification with unbalanced data,” in Proceedings of the 13th Euro-

pean Conference on Genetic Programming, vol. 6021 of LNCS, pp. 1–13,
Springer, 2010.

[18] A. Chandra and X. Yao, “Ensemble learning using multi-objective evolu-
tionary algorithms,” Journal of Mathematical Modelling and Algorithms,
vol. 5, pp. 417–445, 2006.

[19] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple

Classifier Systems, LNCS, vol. 1857, pp. 1–15, Springer-Verlag, 2000.

[20] U. Bhowan, M. Johnston, M. Zhang, and X. Yao, “Evolving diverse
ensembles using genetic programming for classification with unbalanced
data,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 3,
pp. 368 – 386, 2012.

[21] X. Yao and Y. Liu, “Making use of population information in evolution-
ary artificial neural networks,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 28, no. 3, pp. 417–425, 1998.

[22] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, issue 2,
pp. 123–140, 1996.

[23] E. K. Tang, P. N. Suganthan, and X. Yao, “An analysis of diversity
measures,” Machine Learning, vol. 65, no. 1, pp. 247–271, 2006.

[24] S. Wang and X. Yao, “Relationships between diversity of classification
ensembles and single-class performance measures,” IEEE Transactions

on Knowledge and Data Engineering, vol. 25, no. 1, pp. 206–219, 2013.

[25] S. Wang and X. Yao, “Theoretical study of the relationship between
diversity and single-class measures for class imbalance learning,” in
Proceedings of the IEEE International Conference on Data Mining

Workshops, ICDMW, pp. 76–81, 2009.

[26] S. Wang and X. Yao, “Multi-class imbalance problems: Analysis and po-
tential solutions,” IEEE Transactions on Systems, Man and Cybernetics,

Part B, vol. 42, no. 4, pp. 1119–1130, 2012.

[27] A. Chandra and X. Yao, “Divace: Diverse and accurate ensemble
learning algorithm,” in Intelligent Data Engineering and Automated

Learning, vol. 3177 of LNCS, pp. 619–625, Springer, 2004.

[28] H. Chen and X. Yao, “Multiobjective neural network ensembles based
on regularized negative correlation learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 12, pp. 1738–1751, 2010.

[29] Y. Liu and X. Yao, “Negatively correlated neural networks can produce
best ensembles,” Australian Journal of Intelligent Information Process-

ing Systems, vol. 4, pp. 176–185, 1997.

[30] H. Abbass, “Pareto-optimal approaches to neuro-ensemble learning,” in
Multi-Objective Machine Learning (Y. Jin, ed.), vol. 16 of Studies in

Computational Intelligence, pp. 407–427, 2006.

[31] H. Abbass, “Pareto neuro-evolution: constructing ensemble of neural
networks using multi-objective optimization,” in IEEE Congress on

Evolutionary Computation, vol. 3, pp. 2074–2080, 2003.

[32] J. Alcal-Fdez, A. Fernandez, J. Luengo, J. Derrac, L. S. S. Garca, and
F. Herrera., “Keel: a software tool to assess evolutionary algorithms for
data mining problems,” Soft Computing, vol. 13, no. 3, pp. 307–318,
2008.

[33] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy,” Machine

Learning, vol. 51, pp. 181–207, 2003.

[34] M. Brameier and W. Banzhaf, “Evolving teams of predictors with linear
genetic programming,” Genetic Programming and Evolvable Machines,
vol. 2, no. 4, pp. 381–407, 2001.

[35] A. McIntyre and M. Heywood, “Multi-objective competitive coevolution
for efficient GP classifier problem decomposition,” in IEEE International

Conference on Systems, Man and Cybernetics, pp. 1930 –1937, 2007.

[36] D. W. Opitz and J. W. Shavlik, “Generating accurate and diverse mem-
bers of a neural-network ensemble,” in Advances in Neural Information

Processing Systems, pp. 535–541, MIT Press, 1996.
[37] H. Chen, P. Tino, and X. Yao, “Predictive ensemble pruning by ex-

pectation propagation,” IEEE Transactions on Knowledge and Data

Engineering, vol. 21, pp. 999–1013, 2009.
[38] U. Bhowan, M. Johnston, and M. Zhang, “Ensemble learning and

pruning in multi-objective genetic programming for classification with
unbalanced data,” in Proceedings of the 24th Australasian Joint Con-

ference on Artificial Intelligence (D. Wang and M. Reynolds, eds.),
vol. 7106 of LNCS, pp. 192–202, Springer, 2011.

[39] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
pareto evolutionary algorithm for multiobjective optimization,” tech.
rep., 2001. TIK-Report 103, Department of Electrical Engineering,
Swiss Federal Institute of Technology.

[40] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist
multi-objective genetic algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, pp. 182–197, 2000.
[41] C. Coello Coello, G. Lamont, and D. Veldhuizen, Evolutionary Algo-

rithms for Solving Multi-Objective Problems (Genetic & Evolutionary

Computation Series). Springer, 2007.
[42] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to genetic

programming. Published via http://lulu.com, 2008.
[43] M. Zhang and U. Bhowan, “Program size and pixel statistics in genetic

programming for object detection,” in Applications of Evolutionary

Computing, vol. 3005 of Lecture Notes in Computer Science, pp. 379–
388, Springer Berlin Heidelberg, 2004.

[44] M. Zhang and W. Smart, “Multiclass object classification using genetic
programming,” in Applications of Evolutionary Computing, vol. 3005 of
LNCS, pp. 369–378, Springer Berlin / Heidelberg, 2004.

[45] M. Zhang and W. Smart, “Genetic programming with gradient descent
search for multiclass object classification,” in Genetic Programming,
vol. 3003 of Lecture Notes in Computer Science, pp. 399–408, Springer
Berlin Heidelberg, 2004.

[46] T. Loveard and V. Ciesielski, “Representing classification problems
in genetic programming,” in Proceedings of the 2001 Congress on

Evolutionary Computation, vol. 12, pp. 1070–1077, IEEE Press, 2001.
[47] V. Khare, X. Yao, and K. Deb, “Performance scaling of multi-

objective evolutionary algorithms,” in Proceedings of the second in-

ternational conference on Evolutionary multi-criterion optimization,
EMO’03, pp. 376–390, Springer-Verlag, 2003.

[48] J. Knowles and D. Corne, “Quantifying the effects of objective space
dimension in evolutionary multiobjective optimization,” in Evolutionary

Multi-Criterion Optimization, vol. 4403 of Lecture Notes in Computer

Science, pp. 757–771, 2007.
[49] W. Smart and M. Zhang, “Using genetic programming for multiclass

classification by simultaneously solving component binary classification
problems,” in Proceedings of the 8th European conference on Genetic

Programming, vol. 3447, pp. 227–239, 2005.
[50] A. Asuncion and D. Newman, “UCI Machine Learn-

ing Repository,” 2007. University of California,
Irvine, School of Information and Computer Sciences.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[51] S. Munder and D. Gavrila, “An experimental study on pedestrian
classification,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 28, no. 11, pp. 1863–1868, 2006.
[52] D. C. Hoaglin, F. Mosteller, and J. W. Tukey, Fundamentals of Ex-

ploratory Analysis of Variance. Wiley, 1991.
[53] J. W. Tukey, “Components in regression,” Biometrics, vol. 7, pp. 33–69,

1951.
[54] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and

I. H. Witten, “The WEKA data mining software: An update,” SIGKDD

Explorations, vol. 11 (1), 2009.
[55] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of

on-line learning and an application to boosting,” in Proceedings of

the Second European Conference on Computational Learning Theory,
EuroCOLT ’95, pp. 23–37, Springer-Verlag, 1995.

[56] A. P. Bradley, “The use of the area under the ROC curve in the evaluation
of machine learning algorithms,” Pattern Recognition, vol. 30, pp. 1145–
1159, 1997.

16

Dr Urvesh Bhowan holds a BSc (Honours) degree
and a PhD in in computer science from Victoria Uni-
versity of Wellington, New Zealand. After complet-
ing his study, Urvesh has held postdoctoral research
roles in both Victoria University of Wellington and
Trinity College Dublin, where he is currently based.
His research interests include evolutionary computa-
tion, particularly genetic programming, classification
with unbalanced data, data mining, natural language
processing, and semantic search.

Dr Mark Johnston holds a BSc in mathematics and
computer science and a PhD in operations research
from Massey University, New Zealand. Since 2005
he has working at Victoria University of Wellington,
New Zealand, and is now a senior lecturer where he
teaches various operations research courses. He is
a key member of the interdisciplinary Evolutionary
Computation Research Group. His research is pri-
marily in combinatorial optimisation and evolution-
ary computation, with particular interest in schedul-
ing, routing, image analysis, feature reduction, ge-

netic programming, particle swarm optimisation, classification and multiple-
objective optimisation. He has over 80 refereed publications in international
journals and conferences. Dr Johnston is a member of IEEE.

Dr Mengjie Zhang Mengjie Zhang received a BE
and an ME in 1989 and 1992 from Artificial Intel-
ligence Research Center, Agricultural University of
Hebei, China, and a PhD in computer science from
RMIT University, Australia in 2000.

Since 2000, he has been working at Victoria
University of Wellington, New Zealand. He is cur-
rently Professor of Computer Science and heads
the Evolutionary Computation Research Group. His
research is mainly focused on evolutionary compu-
tation, particularly genetic programming and particle

swarm optimisation with application areas of image analysis, multi-objective
optimisation, classification with unbalanced data, and feature selection and
dimension reduction for classification with high dimensions. He has published
over 250 research papers in refereed international journals and conferences.
He has been serving as an associated editor or editorial board member
for five international journals (including IEEE Transactions on Evolutionary
Computation and the Evolutionary Computation Journal) and as a reviewer of
over fifteen international journals. He has been serving as a steering committee
member and a program committee member for over eighty international
conferences. He has supervised over thirty postgraduate research students.

Dr Zhang is a senior member of IEEE, a member of the IEEE Computer
Society, the IEEE CI Society and the IEEE SMC Society. He is also a member
of the IEEE CIS Evolutionary Computation Technical Committee, a vice-
chair of the IEEE CIS Task Force on Evolutionary Computer Vision and
Image Processing, and a committee member of the IEEE New Zealand Central
Section. He is a member of ACM and the ACM SIGEVO group.

Dr Xin Yao (M’91-SM’96-F’03) is a Chair (Pro-
fessor) of Computer Science and the Director of
CERCIA (the Centre of Excellence for Research in
Computational Intelligence and Applications), Uni-
versity of Birmingham, UK. He is an IEEE Fellow
and a Distinguished Lecturer of IEEE Computational
Intelligence Society (CIS). His work won the 2001
IEEE Donald G. Fink Prize Paper Award, 2010
IEEE Transactions on Evolutionary Computation
Outstanding Paper Award, 2010 BT Gordon Radley
Award for Best Author of Innovation (Finalist), 2011

IEEE Transactions on Neural Networks Outstanding Paper Award, and many
other best paper awards at conferences. He won the prestigious Royal Society
Wolfson Research Merit Award in 2012 and was selected to receive the 2013
IEEE CIS Evolutionary Computation Pioneer Award. He was the Editor-in-
Chief (2003-08) of IEEE Transactions on Evolutionary Computation. He has
been invited to give more than 70 keynote/plenary speeches at international
conferences. His major research interests include evolutionary computation
and ensemble learning. He has more than 400 refereed publications in
international journals and conferences.

