
INFORMATICA, 2007, Vol. 18, No. 4, 585–602 585
© 2007 Institute of Mathematics and Informatics, Vilnius

Reusing Ontological Knowledge about Business
Processes in IS Engineering: Process Configuration
Problem

Donatas CIUKSYS
Faculty of Mathematics and Informatics, Vilnius University
Naugarduko 24, LT-03225 Vilnius, Lithuania
e-mail: donatas.ciuksys@mif.vu.lt

Albertas CAPLINSKAS
Institute of Mathematics and Informatics
A. Goštauto 12, LT-01108 Vilnius, Lithuania
e-mail: alcapl@ktl.mii.lt

Received: May 2006

Abstract. Business process engineering is an important part of the advanced enterprise engineer-
ing. One of the still open issues is the question how in the enterprise system design to reuse on-
tological knowledge about business processes. The paper proposes to consider a family of similar
business processes as a generic process and to represent knowledge about generic processes in a
domain independent way. It describes the main scheme for reuse of such a domain independent
knowledge when developing enterprise-wide information systems (IS). The main attention is paid
to the process configuration problem. In order to solve this problem, a configurator (human being
or machine) must find a set of components that fit together to satisfy the problem specification. An
approach based on Description Logics is proposed for this aim. The main contribution of the paper
is the proposed process configuration technique.

Key words: business process, knowledge reuse, ontology, description logics.

Introduction

The issues of business process engineering are an important part of advanced enterprise
engineering methodology. In particular, Business Process Management (Smith, 2003) and
Service-Oriented Architecture (Erl, 2005) are increasingly gaining interest lately. Both
approaches facilitate software reuse. However representing the knowledge about fami-
lies of similar business processes and reusing this knowledge in enterprise engineering
projects still remains an open problem. The paper proposes an approach how to deal
with this problem. The proposed approach combines together reuse techniques devel-
oped in domain engineering (Czarnecki, 2000), knowledge engineering (Chandrasekaran,
1986), and ontology-based systems engineering (Davies, 2006). The main idea behind

586 D. Ciuksys, A. Caplinskas

this approach is that the principle of separation of concerns (also known as “divide-and-
conquer” strategy (Damaševičius, 2002)) should be used to separate process knowledge
and domain knowledge. Two separate ontologies are proposed to describe this knowledge.
As a result process ontology can be reused in different application domains. Similar ap-
proach is used in knowledge engineering where task knowledge and domain knowledge
have been separated.

Reusing of process knowledge requires the process to be configured taking into ac-
count peculiarities of the particular application domain. In order to solve the process con-
figuration problem, a configurator (human being or machine) must find a set of mandatory
and optional process parts that fit together to satisfy the problem specification. It is one
of the hardest problems in reusing of process knowledge.

The paper proposes a Description Logics (Baader, 2003) based approach to solve
the process configuration problem. It is assumed that all process parts (mandatory and
optional ones) are described by the process ontology. OWL (Web Ontology Language,
Description Logics based ontology specification language) is used to represent the knowl-
edge. OWL knowledge base (KB) consists of three separate parts: TBox, ABox and
RBox. In our case, TBox contains definitions of concepts (process parts) and structural
relationships (mostly part-of) between them, ABox contains the process parts chosen by
process engineer as necessary for the resulting business process, and RBox contains de-
scriptions of the dependencies between optional process parts in the form of so-called
DL-safe rules (Motik, 2005). Model-based approach is used to check the consistency of
KB. Some semantic reasoner should be used for this aim. The KB is consistent if the
reasoner is able to built successfully at least one model of this base. In other words, the
ABox should be built that contains all required parts of the resulting process. So, any
model of the given KB is regarded as the solution to the process configuration problem.
The model building process is iterative one and process engineer is allowed to control
this process in an interactive mode. It means that he can to add/remove optional process
parts on the fly and re-check KB consistency.

The rest of the paper proceeds as follows. Section 1 discusses the notion of generic
business process. Sections 2 and 3 introduce engineering of process domain and process
engineering respectively. Reusable upper-level ontologies are proposed in Sections 4–6.
Section 7 is dedicated to the analysis of process configuration problem and its possible
solution using Description Logics (DL). Finally, paper ends with conclusions.

The paper develops further, refines and improves ideas proposed in (Caplinskas, 2004;
Ciuksys, 2006).

1. Notion of a Generic Business Process

A business process is a partially ordered set of linked activities that create value by trans-
forming an input into a more valuable output. Both input and output can be artefacts
and/or information and the transformation can be performed by human actors, machines,
or both. A generic business process is an abstraction of a family of similar business pro-
cesses. All members of this family include a set of common core parts (commonalities)

Business Process Knowledge Reuse in IS Engineering 587

and each particular member includes some additional parts (variabilities), which may
differ for different members of the family. A generic business process is described by a
kind of feature model (Kang, 1990) and by ontology. The feature model can be seen as a
view of generic process ontology (Czarnecki, 2006). The generic business process does
not include any control knowledge about the sequencing of business activities. Control
knowledge is added later, reusing process ontology in a particular application domain.

We suggest that generic processes should be expressed in terms of abstract roles (ac-
tors, inputs, outputs, resources, capabilities). Generic processes are used to generate par-
ticular processes (i.e., members of family) that then are located in chosen application
domain. The purpose of generation is to produce the required configuration of the pro-
cess or, in other words, to decide which variabilities are not relevant to this particular
member of family and reject them. After that, roles should be replaced by the entities
of application domain in which this member of process family is located. We call this
activity role assignment.

Thus, the proposed approach provides two main activities: engineering of process
domain and process engineering. The term “process domain” is used here to denote a
group of particular processes that exhibit similar behaviour and are used to achieve similar
goals. Indeed, it is a synonym for the term “generic business process”.

2. Engineering of Process Domain

Engineering of process domain is an activity that is analogous to the domain engineering
activity in the two life cycles model (Czarnecki, 2000). Similarly as metaprogramming
is used to manage variability in a domain, develop generic domain software components,
and describe generation of customised software component instances (Czarnecki, 2000;
Štuikys, 2004), we use metamodelling to manage variability in a process domain, model
generic processes and describe generation of particular processes. The purpose of process
domain engineering is to develop particular process domain. This activity includes three
sub-activities referred as analysis, design and implementation of process domain (Fig. 1).

Analysis of process domain provides domain scoping (definition of the boundaries
of process family) and discovering commonalities and variabilities among the processes
in this domain. The result of analysis is a feature model that describes variabilities and
commonalities within business process family. Design of process produces generic busi-
ness process ontology. It refines terms defined by feature model and adds to ontology
epistemic knowledge. It is important to point out that the resulting ontology is based on

Fig. 1. Engineering of process domain.

588 D. Ciuksys, A. Caplinskas

the upper business process ontology defining concepts such as activity, input, output, re-
source, capability, etc. required to model any generic business process. Upper business
process ontology is described in detail in Section 6.

The purpose of implementation of process domain is to create reusable assets from
feature model and process ontology. The process ontology as a reusable asset is repre-
sented using Web-Ontology Language (OWL) (W3C, 2004).

3. Process Engineering

Process engineering is an activity that is analogous to the application engineering activity
in the two life cycles model (Czarnecki, 2000). Its purpose is to generate a particular busi-
ness process and to locate it in a chosen application domain. Process engineering starts
with two parallel activities – analysis of application domain and configuration of generic
business process (Fig. 2). The result of analysis is application domain ontology. This on-
tology is based on the upper application domain ontology that defines concepts required
to model application domains, such as active entity (e.g., job position, application system,
organisational unit, etc.), provided capabilities possessed by active entity, passive entity,
state, etc. Process configuration rejects variable parts of the process that are not relevant
for chosen application domain and produces final configuration of the located process.
A software tool (configurator) is used to support this activity. The main responsibility of
this tool is to prevent violation of dependencies between variants of feature model.

The configured process and application domain ontology are inputs for the next step,
role assignment. Business process is still described in terms of roles (actors executing
process’s activities). Requirements for actors that can pretend to play these roles are ex-
pressed in form of required capabilities. Application domain ontology defines active en-
tities and their provided capabilities. So, both roles and entities are characterised in terms
of capabilities. Role assignment is done by matching required capabilities to provided
capabilities. If an active entity is too coarse-grained for business process role (provided
capabilities subsume required capabilities), this entity must be re-engineered and splitted
into several more fine-grained entities (so called capability specialisation). If an entity is

Fig. 2. Business process knowledge reuse – process engineering.

Business Process Knowledge Reuse in IS Engineering 589

too fine-grained (provided capabilities are subsumed by required capabilities), then usu-
ally there will be some number of them and, in this case, these entities have to be com-
posed to one, more coarse-grained, composite entity (so called capability generalisation).
If no active entity candidates to play some role, a new entity must be created, for exam-
ple, by employing a new person or by developing a new application system (not shown
in Fig. 2). Iteration “role assignment – capability specialisation/generalisation” is being
repeated until all roles are assigned. The result is located business process. However, the
control knowledge is still undefined. Next activity “control flow definition” adds control
knowledge that defines execution order of business activities. As a result executable busi-
ness process model is produced. It is described in WS-BPEL language (OASIS, 2007) and
can be executed by some workflow management system. This system orchestrates exe-
cution of business process activities and at certain times (as defined in business process
model) requests services provided by appropriate active entities. Capabilities provided
by application systems are requested through Web Services interfaces. Human service
providers are requested through special user interfaces (UI). They are informed about
pending activities that must be performed.

4. Upper-Level Ontology

Application domain ontology captures domain knowledge independently of its use. Both
application domain ontology and process ontology should be described by some common
system of metaconcepts. It means that some higher-level ontology is required. We call this
ontology upper-level ontology (Fig. 3).

This ontology introduces generic concepts that are shared by all lower-level ontologies
and reflect underlying theory about the nature of enterprise’s social reality (discourse of
interest). Our upper level ontology has been influenced strongly by Uschold’s enterprise
ontology (Uschold, 1998). The most important difference between Uschold’s and our
ontologies is that descriptions of roles in our ontologies allow specifying states that limit

Fig. 3. Upper-level ontology.

590 D. Ciuksys, A. Caplinskas

possible set of entities that may candidate to play such a roles. Entities allowed to perform
such a role must support defined states.

Upper-level ontology (Fig. 3) is two-level ontology. The top level provides the only
concept “Concept” that is used to define second level concepts “Entity”, “Relationship”,
“Role”, and “State-of-affairs”. These concepts, in turn, are used to define third level con-
cepts in application domain ontology and in process ontology. It means that we follow
scheme provided by MOF standard (OMG, 2006). According to this approach, instances
of metaconcepts are concepts themselves.

In this paper upper-level ontology and others, described below, are represented using
informal UML-like diagrams. Process engineering tool deals with ontologies specified in
formal OWL language.

5. Upper Application Domain Ontology

Let us consider now the upper application domain ontology that serves as a basis to define
concepts in particular application domain ontologies (Fig. 4).

All concepts defined by this ontology are instances of concepts defined by upper-level
ontology. The ontology refines the notion of entity and classifies all entities into: active
entities and passive entities (Fig. 4). They may overlap. Active entities must provide ca-
pabilities required to achieve some business goals or subgoals. Business goal is a state
of passive entity that candidates to play output role in some business activity. Such an
organisation of concepts is introduced in order to facilitate role assignment. Active enti-
ties are further subtyped into job positions, application systems, and organisational units
(“OrgUnit” in Fig. 4). All of them possess provided capabilities and may candidate to
play roles defined by process ontology. Being active entities they can change states of
passive entities. For example, a job position may provide writing capability and conse-
quently be able to prepare a document (change its state). Similarly an application system

Fig. 4. Upper application domain ontology.

Business Process Knowledge Reuse in IS Engineering 591

may provide order-processing capability and be able to change the state of order from
unprocessed to processed one.

Finally, concept “goal” models business goals. They form a hierarchy. It means that
we make assumption that an application domain (as a specific area of business) should ex-
plicitly state business goals. These goals must be achieved to ensure successful operation
of enterprise in this business area.

6. Upper Process Ontology

Up until very recently there was no widely accepted and standardised business process
conceptualisation. Common approach was to develop a new business process conceptu-
alisation each time when a new business process related project was started or a new tool
was developed. In 2003 OMG consortium announced an initiative that aims to standard-
ise the conceptualisation of business processes and to develop so called Business Process
Definition Metamodel (BPDM). The draft that candidates to be the final submission is
already prepared (OMG, 2007). It describes following groups of concepts:

1. course model: introduces control flow concepts, such as transition, gateway, fork,
join, etc.;

2. activity model: introduces structuring concepts, such as process, activity,
sub-activity, etc.;

3. interaction protocol model: introduces interaction and data flow concepts, such as
interaction and data (documents) being exchanged with these interactions;

4. event model: introduces concepts, describing events that happen during the course
of business process, such as start, finish, error, abort, etc.

BPDM defines more than 100 concepts. Our upper process ontology is subset of
BPDM. Included are only those concepts, that describe all kinds of roles provided by
business processes (Fig. 5). Actors, inputs, outputs and resources are all modelled as
roles. Domain entities must be assigned to these roles when business process is located
in a particular application domain: active entities may candidate to actor roles, passive
entities – to input, output and resource roles.

Fig. 5. Upper process ontology (process conceptualisation).

592 D. Ciuksys, A. Caplinskas

These concepts are not sufficient to represent variabilities provided by process feature
model. So, concepts such as variability, variant, variation point, etc. must be included
into upper process ontology.

Our conceptualisation of variability is based largely on a general model of variabil-
ity in product families proposed by Becker in (Becker, 2003). Simplified version of this
model is shown in (Fig. 6). Let us discuss this model shortly. Variability represents a
capability to change or adapt system (Gurp, 2001). In our context, process with variabil-
ities can be adopted in various application domains. According to Becker, “a variation
point is a spot in a software asset where variation will occur” (Jacobson, 1997; Gurp,
2001; Becker, 2003). Variability specifies a set of variation points and a set of variants,
that define the extent of variability (i.e., the higher the number of variants, the higher the
degree of system’s adaptability). A variability resolution is a choice of suitable variant.
This choice must be performed for each of variabilities. Dependencies constrain choices
of variants, for example, choice of one variant may require choice or removal of the other
one (e.g., the choice of payment type “Credit card” within e-shop business process may
render optional activity “Connect with bank” as required). Final choices of variants are
saved in derivation profile. Chosen variant must be integrated within system at the vari-
ation point. The implementation mechanisms specify techniques how to do this. These
techniques depend on the kind of variants and on the kind of assets that contain variation
points.

By fixing particular variability occurrence context, we can give more specific inter-
pretation to variability concepts. In the case of business processes variabilities may occur
in inputs, outputs and activities. However, for the matter of simplicity, we consider the
variations that occur only in activities. We will use the term generic activities to refer
to activities with variabilities. The reason for this simplification is that majority of pro-
cess variabilities are found namely in activities. Therefore generic activities are the only
kind of variation points that we consider or, in other words, the concept GenericActivity
specialises the concept Variant (Fig. 7). Both Activity and GenericActivity specialise the

Fig. 6. Variability conceptualisation.

Business Process Knowledge Reuse in IS Engineering 593

Fig. 7. Process variability conceptualisation.

concept AbstractActivity. This allows them to be interchangeable, that is, during process
domain analysis process engineer will replace some activities by generic ones, and during
process configuration generic activities will be replaced by non-generic activities, which
comprise the chosen variant. As a consequence we have only one kind of variants, namely
abstract activities, i.e., the concept AbstractActivity extends the concept Variant (Fig. 7).

Generic activity represents the family of activities. This family may consist of sim-
ple as well as generic activities. As a consequence we can build hierarchies of generic
activities. We conceptualise this ability as an aggregation association between generic
activity and abstract activity (Fig. 7). Thus abstract activity, activity and generic activity
instantiate Composite design pattern.

In process domain design step process engineer has to specify how activities will
be derived from generic activities (i.e., how variability will be resolved), that is, choose
variability implementation mechanisms. Puhlmann discusses following variability imple-
mentation mechanisms suitable for business processes (Puhlmann, 2005):

1. Parameterisation allows introducing the variability to the behaviour of the
generic activity by putting parameters in certain places. Then, we can resolve the
variability by assigning values to these parameters.

2. Inheritance allows for the replacement of generic activity by specialised one.
Specialised activity must conform to the interface of the generic activity (at least
inputs and outputs must match) and usually provides additional behaviour.

3. Design Patterns based on information hiding and inheritance like the Strategy
design pattern can be represented in processes using inheritance. For example,
Strategy design pattern comprises so called abstract activity that defines interface
(inputs and outputs) and several implementing activities. One of these activities
must be chosen and will replace the abstract activity.

4. Extensions/Extension Points. Extension points are places where the process can
be extended with additional behaviour. They may be represented by so called null
activities – activities without behaviour. Extensions (non empty activities) may be
chosen to replace the null activity. An extending activity must have a compatible
interface in order to be integrable into the process at the corresponding extension
point.

The configurator guided by business process analyst should be able to resolve all
variabilities (i.e., to choose exactly one variant for each of the variabilities) and integrate

594 D. Ciuksys, A. Caplinskas

chosen variants into process using appropriate variability implementation mechanisms.
As a result, a description of fully configured process is produced (i.e., without variabili-
ties) and stored in derivation profile.

7. Process Configuration

7.1. Process Configuration Problem

In the proposed approach a generic business process should be described by a kind of fea-
ture model (Kang, 1990) that, as stated above, is a view of upper process ontology. Fig. 8
shows example of a feature model for ordering process of e-shop. Ordering process in
this example includes three mandatory parts (Basket, Transaction and Fulfilment) and
one optional part – Approval. A generic activity Basket has a variation point that spec-
ifies two exclusive (XOR) alternatives – the variants Temporal and Persistent – one of
which must be selected. A generic activity Payment has three range (OR) variants – Pay-
ByBill, PayOnDelivery, and CreditCard. Any non empty group of them must be selected
as payment type. Besides, three dependencies between variants are defined in this exam-
ple. Choice of activity Shipping requires choosing activity PrintedInvoice and choice of
activity ElectronicDelivery requires choosing activities CreditCard and OnlineDisplay.
These dependencies are examples of requires dependencies. In addition, feature models
often have mutually exclusive dependencies, when choice of one variant forbids choosing
other variants.

So, business process configuration should be designed that satisfies all mentioned de-
pendencies. Configuration design problem is a problem where a set of pre-defined com-
ponents is given and an assembly of selected components should be find that satisfies
a set of requirements and obeys a set of constraints (Wielinga, 1997). In order to solve
the configuration problem, a configurator (human being or machine) must find a set of
components that fit together to satisfy the problem specification. Typically, it means that

Fig. 8. Example – feature model for ordering process.

Business Process Knowledge Reuse in IS Engineering 595

the solution will be arrangement of components, which satisfy all constraints provided
by the specification.

In our case, treating the activities as components and the dependencies as constraints,
we are dealing with the configuration design problem. The aim is to resolve all variabil-
ities and to obtain such configuration of the business process that satisfies dependencies
stated by the feature model.

Similarly as in (Czarnecki, 2006), we consider feature model as a view of generic
process ontology. It means that feature model generally shows only those activities that
have variabilities (i.e., generic activities). We argue that it is purposeful to consider fea-
ture model as a view of ontology because in this case the feature model hides unnecessary
information and consequently it can be more effectively processed by configurator’s soft-
ware. The main purpose of the configurator is to guide process engineer through selection
of variants until all variabilities will be resolved. This tool should also prevent violation
of dependencies between variants of feature model.

A number of approaches including constraints, expert systems, model-based reason-
ing, case-based reasoning, Propose, Critique and Modify (PCM) methods, hierarchi-
cal methods, binary decision diagrams (BDD) (Bryant, 1986) and Description Logics
(Baader, 2003) have been proposed to solve the configuration problem. These methods
are shortly discussed in (Wielinga, 1997) and in (Baader, 2003). We use an approach
based on Description Logics, because we define all proposed ontologies using OWL DL.

7.2. Description Logics and language SHOIN (D)

Description Logics (DL) is a family of concept-based knowledge representation for-
malisms. DL formalisms provide reasoning apparatus that emphasises the decidability
of key reasoning problems. Any DL knowledge base includes two components: the TBox
and the ABox. The first one is used to define the hierarchy of concepts of application
domain, more exactly, a lattice-like structure of concepts. Concepts denote sets of in-
dividuals. The formalism also allows defining roles of concepts. Roles denote binary
relationships between individuals. There are elementary and complex descriptions. Ele-
mentary descriptions define atomic concepts and atomic roles. Complex descriptions are
built inductively applying concept constructors (union, intersection, negation, etc.). Dif-
ferent DL formalisms (i.e., description languages) differ mainly by the constructors they
provide. Any description language allows building complex descriptions of concepts and
roles and assigning names to these descriptions (Baader, 2003). It has a model-theoretic
semantics. Thus, TBox is used to define intensional knowledge about the application do-
main.

The ABox is used to define extensional knowledge or, in other words, knowledge
that is specific to the individuals of the domain of discourse (Baader, 2003). Extensional
knowledge often is referred also as assertional knowledge because the knowledge about
the individuals is presented in the form of assertions.

DL allows reasoning about concepts, individuals and assertions. For example, it is
possible to determine whether a description is satisfiable (i.e., non-contradictory), or

596 D. Ciuksys, A. Caplinskas

whether one description subsumes another one. It is possible also to check whether asser-
tions defined in ABox are consistent (i.e., whether the set of assertions has a model), and
whether a particular individual is an instance of a given concept description. Such rea-
soning helps to determine whether a knowledge base is meaningful at all. The reasoning
also can be used to check subsumption of given concepts (Baader, 2003).

We use SHOIN (D) description language. This language is at the core of Web On-
tology Language OWL DL (Horrocks, 2003). It belongs to the family of so-called AL-
languages. All languages belonging to this family are some extensions of AL (attributive
language) introduced in (Schmidt-Schauß, 1991). It is a minimal language that is of prac-
tical interest. The notation and Tarski-style semantics of AL is given in Fig. 9 where
letters A and B are used for atomic concepts, the letter R for atomic roles, the letters
C and D for concept descriptions, and the letter I for interpretation function (Baader,
2003).

To give an example of what can be expressed in AL, let’s assume that Activity and
Generic are atomic concepts. Then Activity � Generic and Activity � ¬Generic are AL-
concepts describing, intuitively, generic activities and not generic ones. If, in addition,
we suppose that hasSubactivity is an atomic role, we can form the concepts Activity �
∃hasSubactivity.� and Activity � ∀hasSubactivity.Generic, denoting those activities that
have a sub-activity, and those activities all of whose sub-activities are generic, corre-
spondingly. Using the bottom concept, we can also describe those activities without any
sub-activities by the concept Activity � ∀hasSubactivity.⊥ .

SHOIN (D) adds to the AL negation of arbitrary concepts, transitive roles, role hier-
archies, nominals, inverse roles, number restrictions, and data types. It is sound, complete
and decidable description language. The semantic of this language is described in (Hor-
rocks, 2003).

According to (Tobies, 2001), the inference in SHOIN (D) (and in OWL DL as well)
is of worst-case nondeterministic exponential time (NExpTime) complexity. A related
logic, SHIQ(D) (Horrocks, 2000), distinguished from SHOIN (D) mainly by not sup-
porting nominals (or named objects), is ExpTime-complete (Tobies, 2001). Inference in
SHIQ(D) logic extended with DL-safe rules still is of deterministic exponential time
(Motik, 2005).

A | (atomic concept)

� | (universal concept) �I = ΔI

⊥ | (bottom concept) ⊥I = ∅
¬A | (atomic negation) (¬A)I = ΔI\AI

C � D | (intersection) (C � D)I = CI ∩ DI

∀R.C | (value restriction) (∀R.C)I = {a ∈ ΔI | ∀b : (a, b) ∈ RI → b ∈ CI}

∃R.� (limited existential

quantification)
(∃R.�)I = {a ∈ ΔI | ∀b : (a, b) ∈ RI}

Fig. 9. Notation and Tarski-style semantics of basic Description Logics.

Business Process Knowledge Reuse in IS Engineering 597

7.3. Process Configuration Problem Solving: DL-based Approach

According to (Klein, 1994), a solution of a configuration problem can be defined to be
a model of the given DL-style knowledge base. In this case, the configuration space is
defined by the TBox that describes both the concept hierarchy and the role hierarchy.
Initial ABox includes mandatory variants only. Using this approach, the choice of op-
tional, alternative or range variants entails that ABox is augmented with corresponding
individuals and the OWL DL reasoner is asked to check whether ABox is consistent with
respect to configuration space. The test succeeds if model of the knowledge base can be
built. In the case of inconsistency the choice must be undone. It is important that in our
case, the process configuration problem is solved in the interactive mode and that the
problem solving process is iterative. It means that the user is not forced to resolve all the
variabilities at once. In addition, the user can ask the configurator to resolve unimportant
variabilities automatically and in this way minimise the number of required decisions. It
is possible because consistency checking requires that a model must be build. In which
way unresolved variabilities will be resolved depends on reasoning strategy used by the
reasoner.

Let us demonstrate the proposed approach using an example (Fig. 10). The figure
shows a part of configuration space for previously described ordering process configu-
ration problem. Only generic activity Fulfilment and its two range variants Shipping and

FulfilmentPart � (Shipping � ElectronicDelivery)

� =1 part_of � ∀ part_ of.Fulfilment

Shipping � ¬ElectronicDelivery (1)

ElectronicDelivery � ¬Shipping

has_fulfilment_part � has_part

has_shipping � has_fulfilment_part (2)

has_electronic_delivery � has_ fulfilment_part

� � ∀ has_fulfilment_ part.FulfilmentPart
� � ∀ has_shipping.Shipping
� � ∀ has_electronic_ delivery.ElectronicDelivery

(3)

Fulfilment � OrderProcessPart
� ∀ has_part.FulfilmentPart
� �1 has_fulfilment_part
� �1 has_shipping
� �1 has_electronic_delivery

(4)

Fig. 10. Configuration space (TBox) for Fulfilment configuration problem.

598 D. Ciuksys, A. Caplinskas

ElectronicDelivery are included. Furthermore, let = 1R be an abbreviation for � 1R

� � 1R. The TBox starts by giving so-called cover axiom for concept FulfilmentPart,
as well as requiring FulfilmentPart to be part of and only of Fulfilment. Additional
axioms ensure the disjointness of concepts Shipping and ElectronicDelivery (1). Then
TBox introduces role hierarchy, stating that role has_fulfilment_ part is sub-role of role
has_part, and both roles has_ shipping and has_electronic_delivery are sub-roles of role
has_fulfilment_part (2). The TBox follows by imposing range restrictions for the roles
(3). Finally requirements for concept Fulfilment are stated (4). It must be OrderProcess-
Part (not introduced here), all the parts it has must be instances of concept FulfilmentPart,
and it must have at least one FulfilmentPart, at most one Shipping, and at most one Elec-
tronicDelivery.

In our example the initial ABox is very simple: A = {f : Fulfilment}. If
user would choose alternative variant Shipping (and resolves variability present in ac-
tivity Fulfilment), ABox would become: A = {f : Fulfilment, s : Shipping,

has shipping(f, s)}. The knowledge base would be tested for consistency and conse-
quently user’s choice would be validated.

Our knowledge base still misses dependencies between variants. As we can see in fea-
ture model (Fig. 8), choice of variant Shipping requires choosing variant PrintedInvoice.
To capture such a constraint within our knowledge base we need rules. One of decidable
and often used rule-based formalisms is function-free Horn rules (Motik, 2005). Exam-
ple of Horn rule is: hasParent(x, y) & hasBrother(y, z) → hasUncle(x, z). The left
side of implication is called the rule body, the right side – the rule head. Description
language OWL-DL was extended with Horn rules in (Horrocks, 2004), but this extension
is undecidable (Horrocks, 2004). In (Motik, 2005) a decidable combination of OWL-DL
with rules has been proposed, where decidability is obtained by restricting the rules to
so-called DL-safe ones. In DL-safe rules, concepts and roles are allowed to occur in both
rule bodies and heads as unary and binary predicates, but each variable of a rule is re-
quired to be bound only to individuals present in ABox (Motik, 2005). In other words,
the above “Uncle” rule will be DL-safe, if reasoning will be performed over the set of
ABox individuals only.

Let’s add rules to knowledge base of our example. The rule that the choice of vari-
ant ElectronicDelivery requires choosing variants OnlineDisplay and CreditCard (Fig. 8)
may be written as follows:

has electronic delivery(f, ed) → has online display(i, od)
& has credit card(p, cc)

Here f , ed, i, od, p, cc are individuals of concepts Fulfilment, ElectronicDelivery,
Invoice, OnlineDisplay, Payment and CreditCard respectively. Similarly all requires de-
pendencies may be encoded as rules. Mutually-exclusive dependencies are encoded by
adding negation to all roles in rules head.

The presence of rules in the knowledge base means that reasoner must be capable to
understand them and execute them as needed.

Business Process Knowledge Reuse in IS Engineering 599

8. Conclusions

The proposed approach demonstrates that it is possible in the context of enterprise engi-
neering to separate the ontological knowledge about business processes, generalise this
knowledge and present it in a reusable form. Business process ontology should be build
for this aim. This ontology should be based on the small number of very abstract upper-
level concepts. We argue that it is purposeful to use for this aim the meta-ontology of
Uschold’s enterprise ontology (Uschold, 1998). It is important that Business Process Def-
inition Metamodel (OMG, 2007) also is consistent with this meta-ontology. So, concepts
required to model business processes can be borrowed from BPDM. However BPDM
does not provide any concepts required to model variabilities of generic business pro-
cesses and should be augmented in an appropriate way. We argue that a framework of
terminology and concepts regarding variability proposed in (Gurp, 2001) can be used for
this aim successfully.

In order to reuse ontological knowledge about business processes the configuration of
the resulting business process should be designed. Most natural way to deal with config-
uration design problem stated in terms of ontological knowledge is to use model-based
reasoning in Description Logics. Although the complexity of this approach is exponen-
tial one, optimisation techniques developed in the recent decade proved to be effective
enough to build reasoners that can successfully deal with KB describing tens of thou-
sands of concepts and individuals (Baader, 2003) that is fully sufficient to describe any
reasonable business process.

One more problem that should be solved in order to reuse ontological knowledge
about business processes is the role assignment problem. The paper only sketches shortly
the method of solution of this problem. The details of this method are out of the scope of
this paper and will be described in further works.

References

Baader, F., D. Calvanese, D.L. Mcguinness, D. Nardi and P.F. Patel–Schneider (2003). The Description Logic
Handbook; Theory, Implementation, and Applications. Cambridge University Press.

Becker, M. (2003). Towards a general model of variability in product families. In J. van Gurp, J. Bosch (Eds.),
Proceedings of the 1st Workshop on Software Variability Management, Groningen, The Netherlands. pp.
19–27.

Bryant, R. (1986). Graph-based algorithms for boolean function manipulation. IEEE Trans. on Computers,
C-35(8), 677–691.

Caplinskas, A., and D. Ciuksys (2004). Ontologies, knowledge reuse and domain engineering techniques in
information system engineering. In O. Vasilecas, A. Caplinskas, W. Wojtkowski, W.G. Wojtkowski, J. Zu-
pancic, S. Wrycza (Eds.), Proceedings of the Thirteenth International Conference on Information Systems
Development, Vol. 1. Technika, Vilnius. pp. 264–270.

Chandrasekaran, B. (1986). Generic tasks in knowledge-based reasoning: High-level building blocks for expert
system design. IEEE Expert: Intelligent Systems and their Applications, 1(3), 23–30.

Ciuksys, D., and A. Caplinskas (2006). Modelling of reusable business processes: an ontology-based approach.
In A.G. Nilsson, R. Gustas, W. Wojtkowski, W.G. Wojtkowski, S. Wrycza, and J. Zupancic (Eds.), Advances
in Information Systems Development, Vol. 1. Springer. pp. 71–82.

Czarnecki, K., and U. Eisenecker (2000). Generative Programming: Methods, Tools, and Applications.
Addison-Wesley Professional.

600 D. Ciuksys, A. Caplinskas

Czarnecki, K., C.H.P. Kim and K.T. Kalleberg (2006). Feature models are views on ontologies. In Proceedings
of the 10th International on Software Product Line Conference. IEEE Computer Society, Washington. pp.
41–51.

Damaševičius, R., and V. Štuikys (2002). Separation of concerns in multi-language specifications. Informatica,
13(3), 255–274.

Davies, J., R. Studer and P. Warren (2006). Semantic Web Technologies: Trends and Research in Ontology-based
Systems. Wiley.

Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR, Upper
Saddle River.

Van Gurp, J., J. Bosch, M. Svahnberg (2001). On the notion of variability in software product lines. In R.
Kazman, P. Kruchten, C. Verhoef and H. van Vliet (Eds.), Proceedings of the Working IEEE/IFIP Conference
on Software Architecture. IEEE Computer Society Press. pp. 45–54.

Horrocks, I., and P.F. Patel–Schneider (2004). A proposal for an owl rules language. In Proceedings of the 13th
International Conference on World Wide Web, ACM, New York. pp. 723–731.

Horrocks, I., P.F. Patel–Schneider and F. van Harmelen (2003). From SHIQ and RDF to OWL: The making of
a web ontology language. Journal of Web Semantics, 1(1), 7–26.

Horrocks, I., U. Sattler and S. Tobies (2000). Practical reasoning for very expressive description logics. Logic
Journal of the IGPL, 8(3), 239–263.

Jacobson, I., M. Griss, P. Jonsson (1997). Software Reuse – Architecture, Process and Organisation for Business
Success. ACM Press/Addison-Wesley Publishing Co., New York.

Kang, K., S. Cohen, J. Hess, W. Novak and A. Peterson (1990). Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-21, SEI, Carnegie Mellon University, Pittsburgh, Penn-
sylvania.

Klein, R., M. Buchheit and W. Nutt (1994). Configuration as model construction: The constructive problem
solving approach. In Proceedings Artificial Intelligence in Design ’94, Kluwer. pp. 201–218.

Motik B., U. Sattler and R. Studer (2005). Query answering for OWL-DL with rules. Journal of Web Semantics:
Science, Services and Agents on the World Wide Web, 3(1), 41–60.

OASIS (2007). Web Services Business Process Execution Language v2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

Object Management Group, Inc. (2007). Business Process Definition MetaModel (BPDM).
http://www.omg.org/cgi-bin/doc?bmi/2007-03-01

Object Management Group, Inc. (2006). Meta Object Facility (MOF) Core Specification, version 2.0.
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

Puhlmann, F., A. Schnieders, J. Weiland and M. Weske (2005). Variability mechanisms for process models.
PESOA-Report No. 17/2005. http://www.pesoa.org/pages/Publications-en.html

Schmidt-Schauß, M., and G. Smolka (1991). Attributive concept descriptions with complements. Artificial In-
telligence, 48(1), 1–26.

Smith, H. and P. Fingar (2003). Business Process Management (BPM): The Third Wave. Meghan-Kiffer Press.
Štuikys, V. and R. Damaševičius (2004). Soft IP customisation model based on metaprogramming techniques.

Informatica, 15(1), 111–126.
Tobies, S. (2001). Complexity results and practical algorithms for logics in knowledge representation. PhD

Thesis, LuFG Theoretical Computer Science, RWTH Aachen, Germany.
Uschold, M., M. King, S. Moralee and Y. Zorgios (1998). The enterprise ontology. In M. Uschold and A.

Tate (Eds.) The Knowledge Engineering Review, Vol. 13. Cambridge University Press, United Kingdom. pp.
31–89.

Wielinga, B. J., and A. Schreiber (1997). Configuration design problem solving. IEEE Expert, Special issue on
AI and design, 12(2), 49–56.

World Wide Web Consortium (2004). OWL Web Ontology Language Guide.
http://www.w3.org/TR/owl-guide/

Business Process Knowledge Reuse in IS Engineering 601

D. Ciuksys is a lecturer at the Vilnius University, Lithuania. His research area encom-
passes applying domain engineering techniques to business process knowledge reuse
problem.

A. Caplinskas is a principal researcher and a head of the Software Engineering Depart-
ment at the Institute of Informatics and Mathematics, Vilnius, Lithuania. At present pos-
sesses the Habit. Doctor’s Degree, professor. His main research interests include software
engineering, information system engineering, legislative engineering, and knowledge-
based systems.

602 D. Ciuksys, A. Caplinskas

Ontologini ↪u žini ↪u apie verslo procesus pakartotinis naudojimas IS
inžinerijoje: proceso konfigūravimo problema

Donatas ČIUKŠYS, Albertas ČAPLINSKAS

Straipsnyje pristatomas verslo proces ↪u žini ↪u pakartotinio naudojimo metodas, grindžiamas da-
lykini ↪u sriči ↪u inžinerija, žini ↪u inžinerija ir ontologijomis grindžiama sistem ↪u inžinerija. Pagrindinė
siūlomo metodo idėja yra atskirti verslo proceso ontologij ↪a nuo dalykinės srities ontologijos ir
pakartotinai naudoti proceso ontologij ↪a skirtingose dalykinėse srityse. Pasiūloma apibendrinto
verslo proceso s ↪avoka, apibrėžiama kaip panaši ↪u verslo proces ↪u šeima. Straipsnyje aptariamas
apibendrinto verslo proceso nuleidimas ↪i dalykin ↪e srit↪i, susidedantis iš dviej ↪u gyvavimo cikl ↪u. Pir-
mame cikle yra atliekama apibendrinto proceso inžinerija, antrame – konkretaus proceso inžiner-
ija. Pastaroji susideda iš trij ↪u žingsni ↪u: proceso konfigūravimo, dalykinės srities esybi ↪u priskyrimo
proceso vaidmenims ir valdymo sraut ↪u tarp proceso veikl ↪u apibrėžimo. Didžiausias dėmesys straip-
snyje skiriamas proceso konfigūravimo problemai, kuri ↪a siūloma spr ↪esti pasinaudojant aprašomo-
siomis logikomis (angl. Description Logics).

