
C. Gacek (Ed.): ICSR-7, LNCS 2319, pp. 123�136, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Reusing Open-Source Software and Practices:
The Impact of Open-Source on Commercial Vendors

Alan W. Brown and Grady Booch

Rational Software,
8383 158th Avenue NE, Redmond WA 98052

abrown@rational.com, egb@rational.com

Abstract. One of the most intriguing ways that commercial developers of
software can become more efficient is to reuse not only software but also best
practices from the open-source movement. The open-source movement
encompasses a wide collection of ideas, knowledge, techniques, and solutions.
Commercial software vendors have an opportunity to both learn from the open-
source community, as well as leverage that knowledge for the benefit of its
commercial clients. This paper looks at a number of the characteristics of the
open-source movement, offers a categorization of open-source dimensions, and
provides an analysis of the opportunities available to commercial software
vendors when applying the lessons from the open-source movement.

Introduction

Open-source represents one of the most interesting and influential trends in the
software industry over the past decade. Today, many organizations are looking toward
open-source as a way to provide greater flexibility in their development practices,
jump-start their development efforts by reusing existing code, and provide access to a
much broader market of users [1].

However, what is widely referred to as the �open-source movement� is in reality a
plethora of relative independent initiatives representing a variety of technology
innovations and approaches. Elements of the movement�s best practices include
broadening the notion of a project team, frequent release of new software builds,
greater collaboration across geographically dispersed teams enabled by the Internet,
and creation of publicly available source code for adaptation and reuse. While a few
common threads and community voices have emerged (e.g., Richard Stallman, Eric
Raymond, Linus Torvalds, and Tim O�Reilly), the �community� remains essentially a
collection of different activities galvanized by a recognition of the benefits of broader,
more open access to the software development process, and to the results of that
process.

A number of these innovations and approaches have a direct impact on commercial
software vendors. There are some aspects on which these vendors can build, others
that are in direct competition, and some that offer partnering opportunities in the spirit
of �coopetition�.

124 Alan W. Brown and Grady Booch

In this paper we examine the relationship between commercial software vendors
and open-source. While there is a great deal that could be said, here we concentrate on
a few of the major threads with an eye toward the business and economic aspects of
this relationship. Many more aspects of the technical and legal relationships require
further exploration. Additionally, this paper assumes that the reader does not require
too much background or motivation for commercial software vendors� interest in
open-source.

Many commercial software perspectives could be adopted in this analysis of open-
source, each with its own peculiarities and concerns. However, in this paper the
authors assume the perspective of one particular class of commercial software vendor
� vendors of software development methods and tools. This is the community with
which the authors are most familiar, and in many respects this view is representative
of the broader set of perspectives. Hence, the term �commercial software vendor� can
be interpreted to refer to this narrow definition, although with obvious application in
most cases to the broader commercial software vendor community.

Reuse and Open-Source

It can be argued that the open-source approach is the software industry�s most
successful form of large-scale software reuse. Open-source software offers the most
astounding range of reusable assets for any software project. Open-source software is
available for virtually all activities, runs on every platform, and can be used in almost
every business domain for which software is written. The open-source movement is
predicated on reuse, in many cases with licensing that insists that derived products are
themselves released into the public domain.

Two kinds of open-source software reuse can be observed. In the first case, the
reuse of open-source software is a planned strategy to augment a popular free product,
taking advantage of the wide informal network of open-source developers and users
and thus minimizing internal development resources. Often these efforts focus around
highly popular open-source products such as Linux, Apache, or StarOffice. Similarly,
efforts may be specifically designed in this way through industry consortia. An
interesting example of this is the group of commercial software development
organizations who have committed to using the Eclipse platform as the basis for
software development tools.1 Eclipse provides an open-source tools framework with
an extensible plug-in architecture. As a result, commercial tool vendors do not have to
re-implement common functions for managing menus and toolbars, file explorers, and
drawing surface manipulation. Rather, they can concentrate on extending this
framework with their own value-added domain-specific behavior.

In the second case, reuse of open source is more ad hoc. Particularly in terms of the
infrastructure of software development, there are many open-source software products
that are so pervasive that they have become part of the fabric of most development
organizations. Examples of such products include EMACS, the GNU compilers, build
tools such as Ant, and scripting languages such as Perl, PHP, and TCL.

1 The Eclipse consortium includes IBM, WebGain, Borland, TogetherSoft, Merant and Rational

Software. See www.eclipse.org for details.

Reusing Open-Source Software and Practices 125

We observe that the reuse of open-source software is just as prevalent in the
commercial world as it is in the academic world. Many commercial software
organizations would simply not be able to function without some open-source
software.

What Is Open-Source?

There are many different views on open-source. A great deal of confusion and
misunderstanding often results because discussions on open-source and its impact are
frequently not grounded in some common context.

However, as with many topics, describing a laundry list of different definitions of
open-source and then positing a new one is not particularly fruitful. Rather than
attempt that here, in this section we simply characterize some of the main elements of
an open-source approach, and identify some of the issues that arise from those
characteristics.

In particular, we focus here on two aspects of open-source that are of special
interest to commercial software vendors: the open-source business model, and the
open-source development process. The first - the open-source business model - is
relevant because it allows us to discuss why mainstream software engineers2 are
looking toward open-source and what they hope to achieve from it.3 The second - the
open-source development process - is equally important because any development
environment offering tools for a software engineering community must be well-
matched to the development process being followed. With the growing influence of
open-source initiatives on all aspects of software engineering it is important to
understand open-source development as it offers insight into the requirements for any
set of services aimed at the software development community.

Definition and Reality

There does exist a common definition for open-source used by the open-source
community (see http://www.opensource.org/osd.html) that is succinct and well
crafted. However, it is rather narrow in scope, referring most particularly to the kind
of licensing used in a released product, and the rights of third parties to be able to
extend, customize, and reuse that product.

However, in reality most individuals and organizations claiming some affinity or
use of open-source see it far more broadly than a licensing issue. They frequently see
it in terms of:
• Releasing (part of) the source code for a product to broaden its usage base, and

encouraging a 3rd party developer community around that product. This is the
essential tenet of the Open Software Foundation (OSF).

2 We hesitate to talk about �mainstream� in this context as too pejorative a term. But

alternatives such as �traditional� or �commercial� do not seem any better!
3 This really refers to project managers and decision makers, rather that practitioners per se.

126 Alan W. Brown and Grady Booch

• A way to break the stranglehold on software development held by a few large
software vendors � or more likely a way to �keep them honest� through the
presence of competition

• A philosophy that aims at leveraging the skills of a wider base of talented
software engineers over the Internet.

• Not building new systems from scratch, or with only proprietary code.
• An approach to releasing systems more frequently in line with users expectations

for greater responsiveness and shorter cycle times associated with doing business
at �Internet speed�.

For many commercial organizations interested in open-source the issue of licensing and
public release of source code is a secondary consideration. In some cases it is considered a
necessary evil to achieve the other goals. At best it is considered a means to an end, not an end
in itself. This is confirmed, in fact, in a recent survey of Linux developers [2] in which half of
the people developing Linux application said that less than 25% of the Linux based applications
they developed were being released and licensed as open-source.

This begs the question: what is open-source? Because of this diversity of opinion, it may be
useful to consider the following categories in place of the general term �open-source�4:
• Open-software � release of source code with a product, and use of an open-source license

to encourage or ensure further source distribution, licensing, and redistribution.
• Open-collaboration � Internet-based communication and synchronization involving

discussion groups, virtual meeting rooms, shared access to development assets, and so on.
• Open-process � external visibility of development and release processes, including

external auctioning of some aspects of a project, with coordination of multiple resources
from within and outside the organization.

• Open-releases � use of frequent product releases (at least weekly, if not more often) that
gives access for developers to the latest enhancements, and allows early testing and
hardening of fixes and enhancements.

• Open-deployment � targeting new product releases to a platform that consists (mostly) of
open-source products (such as Linux, Apache, Samba, Postfix, etc.).

• Open-environment � development of systems using tools and utilities that consist
(mostly) of open-source products (such as emacs, GCC, CVS, GNATS, etc.).

Of course, many of these ideas are not unique to the open-source movement. For example,
the ideas of open-process are fundamental to approaches such as extreme programming (XP),
and open-deployment is arguably the key motivation for Sun�s Java initiative (which is not
currently open-software according to the definition above).

Note also that these categories are frequently seen in some combination. For example, it
seems that the Printer Group at HP are primarily motivated by a move toward open-releases
and an open-process, but not open-source or open-software as defined above. The development
may use proprietary tools and services, and the results of these efforts will still be included in
proprietary product releases.

The Open-Source Business Model

If the open-source approach � actually, if any approach - is to be considered a viable
way to develop commercial software, it is important to understand the business model

4 We are not proposing all these new terms to be used formally. Rather, in discussions and

readings we find it valuable to keep this set of �virtual categories� in our head to gain a
deeper understanding of priorities and expectations.

Reusing Open-Source Software and Practices 127

that allows this to occur. The basic premise of an open-source approach is that by
�giving away� part of the company�s intellectual property, you receive the benefits of
access to a much larger market. These users then become the source of additions and
enhancements to the product to increase its value, and become the target for a range
of revenue-generating products and services associated with the product.

The key, then, is in deciding which projects and products make good candidates for
an open-source approach. In [3], Brian Behlendorf5 suggests that open-source can be a
successful business model for commercial projects only within a limited scope. In any
such project the following consideration must be taken into account:
• Characteristics as a software platform. As a base for developing other

applications, a platform fulfils a key role. Because a platform performs a strategic
role in those solutions, it is frequently undesirable to have the platform controlled
by a single organization. Hence, an open-source approach is particularly
appropriate for software that can become a key platform for others to build upon.
It makes the platform widely available, encourages its use across the widest
possible user community, and fosters a rich set of 3rd party solutions using the
platform.

• Impact on your revenue model. The financial impact of giving away core parts of
an existing product as open-source must be carefully considered. The financial
argument typically made is that by doing this it makes the software much more
widely available, offering a much larger base of users for additional products,
courses, training, and consulting. Such economic forecasts must be validated
before a company should be willing to bet its business on an open-source model.

• Identified market need. Making (part of) a product open source is only effective if
the product is found to be useful. Providing source code is not in itself sufficient
to displace a well-entrenched commercial product, or a rival open-source product.
Before an open-source decision is made a full analysis of its value to others must
be made.

• Emphasis on server-focused services. Successful open-source software has
tended to implement infrastructure or server-side services. That is because server-
side solutions tend to be more pervasive and stable than desktop solutions,
incremental additions to functionality are more easily managed, and the
developers using open-source solutions tend to be more knowledgeable in these
domains (due to their engineering backgrounds). Another factor is the dominance
of Microsoft technology on the desktop � something Microsoft is trying to repeat
on the server-side.

• Choosing the right open-source license. Many kinds of open-source license exist.
These vary based on who and how extensions to the software can be made, and
whether those extensions also become public domain. Care needs to be taken
choosing the appropriate license, and selecting the open-source software on
which you build.

• Making sure you gain momentum. Early momentum is needed to form a vibrant
community of developers and users. Open-source does not mean that no
resources are needed to make the software successful. Typical tasks to be
managed include active use of discussion groups, provision of management and

5 Brian Behlendorf is a leader of the Apache web server project, and founder of Collab.net.

128 Alan W. Brown and Grady Booch

infrastructure of open-source tools and software, frequent communication
through a web site, responding to many enquiries and suggestions, and so on. An
open-source project splits into different factions, or falls into disrepute, if the
original developers fail to respond to suggestions, do not interact with the user
community, or fail to incorporate submitted fixes and updates.

• Using appropriate tools. A suitable environment for sharing, synchronizing, and
managing the open-source is required. Typically, many different issues and
requests will be made, and new fixes and updates will occur from people all over
the globe. In addition, users will expect to be able to have visibility into the
tracking and management process. In open-source projects these are often
managed using tools such as CVS and GNATS.

In summary, we see that a successful, economically-viable open-source approach
requires a number of rather stringent requirements be met. Candidate projects for an
open-source approach must be very carefully examined based on these requirements.
An interesting illustration of this business decision being made in practice is found in
[5]. Here, the authors reached the decision that making key parts of their web
authoring toolkit open-source increased the value of their company many-fold due to
the much wider market access it provided. It allowed them to build their product�s
position as a widely used platform for web development from which they can gain
revenue in add-on products and services.

The Open-Source Development Model

The common, public image of an open-source project is that of a chaotic series of
development �accidents� that by some miracle of nature results in a software that
compiles and executes. The reality, of course, is very different. The open-source
movement has evolved toward a well-defined development process geared to the
unique requirements placed upon it � coordination of large numbers of people across
the Internet bound together by common interests and goals. The main characteristics
of this process include:
• Encouraging a wide community of users, testers, and developers. Much of the

power of an open-source approach arises from the fact that a large community of
people are available to use and exercise the software. This contributes to early
diagnosis of problems, consolidation on which new features provide value, and
helps to encourage development of patches, updates, and enhancements to the
software.

• Communicating with developers frequently and vigorously. Open-source projects
are renowned for their open forums containing lively technical exchanges.
Requirements, designs, and work arounds are widely discussed. New ideas must
be proposed and vigorously defended to ensure that they are accepted and
introduced into the code base. In addition, e-mail exchanges are frequently the
basis for much of the project�s history and design documentation.

• Releasing new software often. Due to the large developer base, fixes and updates
are submitted daily, if not even more frequently. In many open-source projects
this new code is typically baselined into the released software on a daily basis.

Reusing Open-Source Software and Practices 129

For example, it is not unusual in some open-source projects to have multiple
releases of a code base each week. Often, this is controlled by also maintaining a
stable build on a longer time cycle (say, monthly). This quick release of updates
ensures that users who choose to can immediately take advantage fixes and new
functionality. With this approach any bad fixes or ill-conceived additions are
quickly found and removed.

• Applying strong coordination. To support frequent releases there must be a strong
coordination model. Often this is due to tight control exerted by the open-source
coordinator. Their responsibility is to maintain design authority over the code,
make decisions on the appropriateness of each addition, and to apply proper
configuration control to the builds. This is the most important role in the open-
source development process. It can be argued that every interesting open-source
product has a strong intellectual leader and hard-core developer behind it. Each
wields a strong hand in the content of that product, making these development
projects more like a benign dictatorship than a true bazaar.

• Being responsive. The developers involved in an open-source project are not
generally motivated by salary, or career enhancement. They tend to get involved
due to their need to solve problems, work with their peers in a collaborative
environment, and demonstrate their development prowess.6 It is important that
their ideas are examined, analyzed, and considered for inclusion. This requires
those in charge of an open-source project to be intelligent, diligent, and
responsive. It is the least that the development community expects.

• Ensuring visibility into the process. One of the expectations about an open-source
project is that there is some measure of openness in the process that is used for
development. That requires a set of tools and services that allow developers to
submit requests and changes, view their status, and interact with the open-source
coordinators to ensure appropriate decisions have been made. This is most often
carried out using mailing lists, discussion forums and Internet-based developer
portals. Additionally, for larger projects there are meetings, workshops, and
developer conferences.

Each of these characteristics contributes to the open-source development process to
create a highly interactive approach. In many ways these projects represent the
antithesis of the large, �waterfall�-style projects that in the past dominated
mainstream software engineering.

When (and When Not) to Reuse Open-Source Software

The discussion above is useful for highlighting the diversity of perspectives on open-
source. However, it does little to illustrate the practical considerations faced by many
organizations in the most prevalent form of reuse involving open-source � when
reusing open-source software as part of a non-open-source software development
project. In such situations there are many important considerations.

6 The motivation and ethics of open-source development is complex topic in its own right, and

discussed in detail in [3].

130 Alan W. Brown and Grady Booch

Typically, during the project�s conception or early analysis phases there are some
aspects of the proposed solution that appear to be candidates for reuse of open-source
software. At this point all the traditional reuse techniques for evaluating, adapting,
and including the open-source software into the new system are applicable. However,
due to the open-source nature of the reused software, there are a number of special
considerations that must be taken into account. While the functionality and
accessibility of the open-course software may be ideally suited for reuse in this new
context, these additional considerations are frequently dominant in the decision
process concerning whether the open-source software can be reused.

Based on the authors� practical experiences, we have found two issues to be the
most difficult and complex to consider: licensing and security. It can rightly be argued
that both of these must be considered in any reuse situation. However, practical
experience leads us to conclude that they take on disproportionately more significance
when open-source software is involved.

It is interesting to note that these concerns are in-line with other commercial
software vendors. The most prominent warnings about the problems of reusing open-
source software in a commercial context have come from Microsoft. In a recent
speech7 Craig Mundie, a Microsoft Senior Vice President, stated that:

�The [open-source software] development model � has inherent security risks
and can force intellectual property into the public domain.�
This concern has led to Microsoft labeling open-source software as �viral�

software, and to warnings that open-source software licensing approach such as the
GNU Public License (GPL) has a viral nature that poses a threat to the intellectual
property of any organization that derives its products from GPL source. We explore
these concerns in more detail below.

Licensing

Open-source software licenses are typically rather straightforward, but their
implications on any systems reusing that software can be rather profound. The main
concern often hinges on the notion of whether the system reusing the open-source
software is considered to be a �derived work�. If so, according to many open-source
licenses the system reusing the software must also be considered open-source
software and subject to the same licensing agreements. This is a basic tenet, for
example, in the GNU Public License (GPL).

Commercial software development efforts are at most risk from license violations,
and of course large commercial organizations are the most attractive targets for being
sued for infringements of any licensing agreements. Even the remote possibility that a
large-scale commercial product could be claimed to be risking its commercial
viability by reusing open-source software frequently results in most commercial
organizations insisting on an �open-source review� before the release of any new
commercial product. Indeed, most large commercial software organizations have legal

7 See �Prepared Text of Remarks by Craig Mundie, Microsoft Senior Vice President, The

Commercial Software Model, The New York University Stern School of Business, May 3,
2001� - http://www.microsoft.com/presspass/exec/craig/05-03sharedsource.asp.

Reusing Open-Source Software and Practices 131

experts on call who specialize in ensuring the legal ramifications of reuse of open-
source software are well understood.

From a legal perspective there seem to be four possible strategies to consider when
reusing open-source software:

1. Don�t reuse open-source software;
2. Clearly separate (architecturally) the pieces of the system that rely on

open-source software from independent layers that leverage them � the
independent layers can then be considered proprietary;

3. Hire a good open-source software lawyer;
4. Place all the resulting software in the public domain too!

Security

Recent publicity has highlighted the inherent insecurity of many of the software-based
systems that we all rely on everyday. These concerns have increased the scrutiny on
how software is developed, and in particular the origins of much of this software.
Reuse of open-source software has raised the most concern. The media makes a great
deal of the fact there can often be many individual contributors to a single open-
source software system. As a result, they ask �if you don�t know who developed your
software, how do you know what it will do?�

Clearly, there is some substance to this argument. Large software systems involve
millions of lines of code developed over an extended period of time by literally
hundreds of developers. Verifying that there are no hidden security flaws (whether
intended or otherwise) is practically impossible. When part of the system is a piece of
reused open-source software, the risk of security problems increases.

Of course everyone does not hold this view. As open-source advocates point out,
open-source software such as Linux and Apache is probably the most widely known
and used code base in existence. The wide availability of the source code has meant
that many thousands of programmers around the world have at some stage looked at
and examined parts of the software. In contrast, large commercial systems are rarely
released as source code. Therefore, as a consumer you have no ability to find out what
that system really does.

Regardless of many company�s positions on this debate, the possibility of security
issues by reusing open-source software has itself been sufficient to ensure that many
companies do not reuse open-source software in their systems. Instead, they rely on
the support provided by commercial systems.

From a security perspective there seem to be three strategies you can take when
reusing open-source software:

1. Don�t reuse open source software;
2. Only reuse open-source software that has been through extensive internal

code reviews typical of all software you develop;
3. Foster a strong relationship and understanding of the open-source

software community, closely follow the newsgroups for open-source
software that you reuse, and get involved in the development of that open-
source software!

132 Alan W. Brown and Grady Booch

Taking Advantage of Open-Source in a Commercial Setting

Commercial software is rarely released as open-source, simply because there is no
sustainable economic business case for such a practice. Typically in commercial
settings there is no intention to release the developed software into the public domain
using one of the open-source licenses. In fact, in many cases it would be impossible to
do so given that at its core many such solutions aggregate, integrate, and extend
commercially acquired tools and services.

However, commercial software vendors have been significantly influenced by
open-source initiatives, and leverage open-source products in a number of areas. This
can be seen through inclusion of open-source software, in the targeting of open-source
technologies for deployment, in support for the creation and management of
interactive open communities, and in the move to supporting open styles of
collaborative software engineering.

Here we review how commercial software organizations can best take advantage of
the open-source movement. In the discussion below we focus on a specific class of
commercial software vendors � the commercial software tools vendors, as represented
by companies such as Rational Software.

Targeting an Open-Source Deployment Platform

Almost all organizations have standardized on (some flavor of) Microsoft Windows
as the platform for the desktop, running client applications such as Microsoft Office
Suite. However, many commercial organizations are now looking to deploy server-
side solutions to a target platform containing a number of open-source products.
Typically, this refers to the Linux operating system and Apache web server. Much of
the demand for server-side open-source deployment is due to the perceived lack of
reliability and speed offered by Microsoft, and the failure to offer low priced
commercial server-side solutions by Microsoft�s main rivals. As a consequence,
commercial organizations are attracted by the low cost of setting up powerful server
farms of Intel-based machines running open-source software.

However, there are many elements required to achieve success in the deployment
of solutions to an open-source platform. Currently there appear to be three major
barriers to success:
• Few development tools. While the open-source community provides a number of

code-centric development tools, in general there are few robust, team-based tools
supporting the broader software life-cycle. A wider range of tools for deploying
applications to open-source platform is required.

• Lack of practical advice on open-source deployment in a commercial setting.
There is little available knowledge on how to design, implement, and manage
server farms constructed from groups of open-source products. In this context
commercial organizations require a great deal of guidance and advice on many
aspects of the software development process, models and �how-to� guides
defining common architectural solutions, and heuristics and metrics on
performance.

Reusing Open-Source Software and Practices 133

• Scarcity of available skills. There are few people currently with the skills to
develop robust open-source deployment platforms for use in a commercial
setting. To be successful requires not only greater training and education, it also
requires access to a broader community of open-source expertise, and the
opportunity to share knowledge and experiences with other organizations
following a similar approach.

Commercial software vendors are in an excellent position to provide solutions to
each of these three barriers.

First, commercial software vendors offer a range of best-of-breed development
services covering the complete life-cycle. The tools offered by commercial software
vendors are far in advance of anything currently available in the open-source
community.

Second, the commercial software vendors approach to content management is to
allow practical advice and information to be made available to the right people at the
appropriate time in the development process. It would be an excellent basis on which
to create a body of knowledge on deployment to an open-source platform in a
commercial setting.

Third, the commercial software vendors� community activities and infrastructure
support communication, and asset sharing among organizations using the commercial
software vendors services. Many of these mechanisms could be focused on providing
access to a range of expertise to commercial organizations targeting open-source
deployment.

However, to support these communities effectively requires commercial software
vendors to take a number of initiatives directly aimed at making progress in this area.

Measuring Up to the Open-Source Bar

There are already a number of organizations offering hosted development and
collaboration services to the open-source community. The three main contenders here
are Collab.net, OpenAvenue (which includes SourceXchange), and SourceForge.8

Other sites not directly targeting the open-source community also offer free hosted
services frequently used by open-source projects (e.g., egroups). Their primary
services are in the areas of collaboration and discussion forums, code-centric tools,
and project hosting.

To a large extent it can be said that these organizations have already �set the bar�
with respect to a minimum set of services expected by organizations today as
collaborative tool support for distributed teams of developers. The sites offer the
standard against which other commercial software vendors will be measured. As a
result, it is essential that commercial software vendors understand the services they
offer, and can articulate their offering in relation to them. In this sense, the open-

8 There are also many sites focused on information exchange (e.g., slashdot as well as platform-

specific portals such as MSDN and developerWorks).

134 Alan W. Brown and Grady Booch

source offerings already available provide an important �touchstone� that the
commercial software vendors can use to measure their services and capabilities.

Leveraging the Open-Source Community

One of the most intriguing questions concerns how commercial software vendors
should leverage the open-source community. In particular, the open-source
community represents a large body of software developers who are themselves
potential clients for the commercial software vendors� offerings. Furthermore, they
represent a significant set of influencers, trendsetters, and thought leaders in the
software engineering community. There appear to be at least 3 possible opportunities
for commercial software vendors to leverage the open-source community:
• Target the open-source community as clients of commercial software products. It

is possible to consider integrating open-source artifacts to provide access to
commercial software vendors services, and to encourage interaction between the
open-source community and the commercial community. This has many
attractions for both commercial software vendors and its clients. However, it
must be balanced with the knowledge that there is little chance of direct revenue
from this strategy because commercial software vendors will be in direct
competition with the freely available open-source solutions. This may do more to
expose commercial software vendors� weaknesses and gaps, rather than highlight
its strengths.

• Actively attract the open-source community to visit, take part in discussions, and
share expertise. While not integrating open-source projects, it is still desirable to
attract the open-source community to commercial software vendor communities.
They offer a perspective on software development that is essential to today�s
commercial organizations. Additionally, they may provide a marketplace for
commercial organizations to obtain consulting and development resources.
Commercial software vendors could position themselves as the place where
�open-source meets the commercial market� for the benefit of both parties.

• Provide a synthesis of open-source knowledge, technology, and techniques for
use in a commercial setting. A valuable service that commercial software vendors
could offer would be to offer a synthesis of the open-source community for
commercial software developers. There is so much knowledge and assets
available for use, the commercial world has a great deal of trouble deciding what
may be useful. Commercial software vendors could be sufficiently �plugged-in�
to the open-source community to offer the best advice, knowledge, techniques,
and solutions. This would be of tremendous value to the commercial community.
It gives commercial software vendors a clear role, and does not directly compete
with other open-source offerings.

Reusing Open-Source Software and Practices 135

Summary

As a result of the open-source movement there is now a great deal of reusable
software available in the public domain. This offers significant functionality that
commercial software vendors can use in their software projects. Open-source
approaches to software development have illustrated that complex, mission critical
software can be developed by distributed teams of developers sharing a common goal.

Commercial software vendors have an opportunity to both learn from the open-
source community as well as leverage that knowledge for the benefit of its
commercial clients. Nonetheless, the open-source movement is a diverse collection of
ideas, knowledge, techniques, and solutions. As a result, it is far from clear how these
approaches should be applied to commercial software engineering. This paper has
looked at many of the dimensions of the open-source movement, and provided an
analysis of the different opportunities available to commercial software vendors.

References and Notes

1. It can be argued that the open-source community has produced really only two essential
products9 -- Apache (undeniably the most popular web server) and Linux � although both
are essentially reincarnations of prior systems. Both are also somewhat products of their
times: Apache filled a hole in the then emerging Web, at a time no platform vendor really
knew how to step in, and Linux filled a hole in the fragmented Unix market, colored by the
community�s general anger against Microsoft.

2. Evans Marketing Services, �Linux Developers Survey�, Volume 1, March 2000.
This provides a number of interesting statistics on the current practices of open-source
developers.

3. Eric Raymond, �The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary�, O�Reilly Press, 2000.
Raymond positions open-source as a logical evolution of previous development practices. In
particular, argues that there is a strong sense of control, ownership, and process that is
common to open-source projects.

4. Chris DiBona et al. (eds.), �Open Sources: Voices from The Open Source Revolution�, O�
Reilly Press, 1999.
A selection of papers from the most prominent people in the open-source movement.

5. Paul Everitt, �How We Reached the Open Source Business Decision�, Zope,
http://www.zope.com/Members/paul/BusinessDecision, 1999.
An enlightening case study on the business decision to go open-source, driven by the need to
create a platform for web development.

6. David Brauer, �Toyota to save $3M a year with the help of Linux�, Enterprise Linux Today,
http://eltoday.com, October 24, 2000.
The reason that Toyota chose Linux and Apache to connect their 1200 dealerships. Focuses

9 Of course, there is Emacs, sendmail and all sorts of related products, but most of these are the

products of a single person with contributions from various Darwinian-selected contributors.
There are also products such as Sun�s open source office product, but those did not rise
organically from the primordial seas of the open source community, but rather were seeded
by their patrons to serve some larger business goal.

136 Alan W. Brown and Grady Booch

on the small footprint, connectivity, and the deal between Redhat and Gateway to produce
Linux boxes.

7. David Brauer, �Stocktalklive.com � A Business Case for Linux�, Enterprise Linux Today,
http://eltoday.com, July 17, 2000.
A case study of stocktalklive.com and their use of Linux.

8. Alan MacCormack and M. Iansiti, �Developing Products on Internet Time�, Harvard
Business Review, 75th Anniversary Edition, Sep-Oct 1997.
A look at the changing business practices in the software community due to the need to
create systems more quickly and with greater flexibility. An extract from McCormack�s
Ph.D. thesis on this topic.

9. George Lawton, �Opening the Gates to a New Era�, ADT Magazine, October 2000.
A general discussion of the move to open-source. It contains a couple of interesting short
case studies, and some industry opinions.

10.Ming-Wei Wu and Ying-Dar Lin, �Open Source Software Development: An Introduction�,
IEEE Computer, Vol. 34 No. 6, June 2001.
A useful overview of open source initiatives, concentrating on the various kinds of licenses.

11.Haiquing Wang and Chen Wang, �Open Source Software Adoption: A Status Report�, IEEE
Computer, Vol. 18 No. 2, March/April 2001.
A review of various open source software available, and a framework for evaluating the
appropriateness of various open source software systems.s

	Introduction
	Reuse and Open-Source
	Definition and Reality

	What Is Open-Source?
	The Open-Source Business Model
	The Open-Source Development Model

	When (and When Not) to Reuse Open-Source Software
	Licensing
	Security

	Taking Advantage of Open-Source in a Commercial Setting
	Targeting an Open-Source Deployment Platform
	Measuring Up to the Open-Source Bar
	Leveraging the Open-Source Community

	Summary
	References and Notes

