
Received July 3, 2020, accepted July 8, 2020, date of publication July 15, 2020, date of current version July 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3009456

Reusing Preconditioners in Projection Based
Model Order Reduction Algorithms

NAVNEET PRATAP SINGH AND KAPIL AHUJA
Data and Computational Sciences Laboratory, IIT Indore, Indore 453552, India

Corresponding authors: Navneet Pratap Singh (navneet.diat@gmail.com) and Kapil Ahuja (kapsahuja22@gmail.com)

The work of Kapil Ahuja was supported by the Mathematical Research Impact Centric Support (MATRICS) Scheme of Department of

Science and Technology-Science and Engineering Research Board (DST-SERB), India, under Grant MTR/2017/001023.

ABSTRACT Dynamical systems are pervasive in almost all engineering and scientific applications. Simulat-

ing such systems is computationally very intensive. Hence, Model Order Reduction (MOR) is used to reduce

them to a lower dimension. Most of the MOR algorithms require solving large sparse sequences of linear

systems. Since using direct methods for solving such systems does not scale well in time with respect to the

increase in the input dimension, efficient preconditioned iterative methods are commonly used. In one of

our previous works, we have shown substantial improvements by reusing preconditioners for the parametric

MOR (Singh et al. 2019). Here, we had proposed techniques for both, the non-parametric and the parametric

cases, but had applied them only to the latter. We have three main contributions here. First, we demonstrate

that preconditioners can be reused more effectively in the non-parametric case as compared to the parametric

one. Second, we show that reusing preconditioners is an art via detailed algorithmic implementations in

multiple MOR algorithms. Third and final, we demonstrate that reusing preconditioners for reducing a real-

life industrial problem (of size 1.2 million), leads to relative savings of up to 64% in the total computation

time (in absolute terms a saving of 5 days).

INDEX TERMS Model order reduction, moment matching, iterative methods, preconditioners, reusing

preconditioners.

I. INTRODUCTION

Dynamical systems arise in many engineering and scientific

applications such as weather prediction, machine design,

circuit simulation, biomedical engineering, etc. Generally,

dynamical systems corresponding to real-world applications

are extremely large in size. A set of equations describing

a parametric nonlinear second-order dynamical system is

represented as

g(ẍ(t), p) = f (ẋ(t), p) + h(x(t), p, u(t)),

y(t) = CT x(t), (1)

where t is the time variable, x(t) : R → R
n is the state, p =

(p1, p2, . . . , pk) is the set of parameters (with pj ∈ R; forj=

1, . . . , k), u(t) : R → R
m is the input, y(t) : R → R

q is the

output, CT ∈ R
q×n is the output matrix, and g(·) : Rn+k →

R
n, f (·) : Rn+k → R

n and h(·) : Rn+k+m → R
n are some

nonlinear functions [1]–[6]. If m and q both are equal to one,

then we have a Single-Input Single-Output (SISO) system.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yan-Jun Liu.

Otherwise, it is called a Multi-Input Multi-Output (MIMO)

(m and q > 1) system. The functions g(·), f (·), and h(·) are

usually simplified as [2], [6]

g(ẍ(t), p) =

k
∑

j=1

gj(p)g(ẍ(t)),

f (ẋ(t), p) =

k
∑

j=1

fj(p)f(ẋ(t)),

h(x(t), p, u(t)) =

k
∑

j=1

hj(p)h(x(t), u(t)), (2)

where gj(·), fj(·), hj(·) : R
k → R are scalar-valued

functions while g(·), f(·) : Rn → R
n, and h(·) : Rn+m →

R
n are vector-valued. Next, we look at simplifications to (1)

based upon the three predicates; the presence of parameters;

the degree of non-linearity, and the order of the system.

• If gj(p), fj(p), and hj(p) are independent of the param-

eters, then (1) becomes a non-parametric dynamical

system.

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 133233

https://orcid.org/0000-0001-6403-2229
https://orcid.org/0000-0001-9640-4437

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 1. MOR Algorithms.

• Bilinear systems are one of the common types of nonlin-

ear dynamical systems. Here, there is a product between

the state variables and the input variables. Another

important class of nonlinear dynamical systems is the

quadratic systems. Here, there is product among the state

variables. If g(·) andf(·) are linear functions of the state

variables, and h(·) is a linear function of the state and

the input variables, then (1) is called a linear dynamical

system.

• Finally, if the second derivative term in (1) is not present,

then (1) becomes a first-order dynamical system.

Simulation of large dynamical systems can be unman-

ageable due to high demands on computational resources.

These large systems can be reduced into a smaller dimen-

sion by using Model Order Reduction (MOR) techniques

[4], [7]–[11]. The reduced system has approximately the

same characteristics as the original system but it requires

significantly less computational effort in simulation. MOR

can be done in many ways such as balanced trunca-

tion, Hankel approximations, and Krylov projection [4], [7],

[8], [11]. Among these, the projection methods are quite

popular, and hence, we focus on them.

Some of the commonly used projection-based MOR

algorithms for different types of dynamical systems are sum-

marized in Table 1.

In the above mentioned MOR algorithms, sequences of

very large and sparse linear systems arise during the model

reduction process. Solving such linear systems is the main

computational bottleneck in efficient scaling of these MOR

algorithms for reducing extremely large dynamical systems.

Preconditioned iterative methods are commonly used for

solving such linear systems [25], [26]. In most of the above

listed MOR algorithms, the change from one linear system

to the next is usually very small, and hence, the applied

preconditioner could be reused.

Next, we briefly summarize the past work that has been

done in the field of reusing preconditioners. References [27]

and [28] first applied this technique in the quantum Monte

Carlo context, where it is referred to as recycling precon-

ditioners. For the case when the linear system coefficient

matrices are perturbed by a varying constant times the identity

matrix, efficient preconditioners have also been developed.

These preconditioners are independent of the underlying

application and are referred to as preconditioner updates

(see [29] for Symmetric Positive Definite (SPD) coefficient

matrices and [30] for general coefficient matrices).

This approach has been used in the optimization context

in [31], where it is again termed as preconditioner updates.

In the MOR context, [12] and [32] have used this technique

for MOR of non-parametric linear first-order dynamical sys-

tems (part of the first category above).

The main goal of this paper is to demonstrate the reuse of

preconditioners in the remainder of the algorithms for the first

category above (MOR of non-parametric linear second-order

dynamical systems) as well as the algorithms for the second

category above (MOR of non-parametric bilinear/ quadratic-

bilinear dynamical systems).

In one of our recent works [33], we had proposed a gen-

eral framework for reuse of preconditioners during MOR

of both non-parametric and parametric dynamical systems.

However, in [33] we had demonstrated application of this

framework for the parametric case only. That is, the third cat-

egory above (MOR of parametric linear dynamical systems).

We are currently (and separately) working on the algorithms

for the fourth category above as well (MOR of parametric

bilinear/quadratic-bilinear dynamical systems).

To summarize, in this paper we broadly demonstrate the

application of our above mentioned framework for MOR of

non-parametric dynamical systems. We have three contribu-

tions as below, which have not been catered in any of the

above cited papers.
(i) We demonstrate that because of the lack of the param-

eters in the non-parametric case, the reuse of precondi-

tioners here can be done more effectively as compared

to the parametric case.

(ii) We show that the reuse of preconditioners needs to be

fine-tuned for the underlying MOR algorithm. We also

highlight that there are multiple pitfalls in the algorith-

mic implementation of reusing preconditioners.

(iii) We experiment on a massively large and real-life indus-

trial problem (BMW disc brake model), which is of size

1.2 million. Here, we are able to reduce the computation

time from 197 hours to about 72 hours (relative saving

of 64 %).

The paper has four more sections. We discuss MOR tech-

niques in Section II. The theory of reusing preconditioners is

133234 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

described in Section III. We support our theory with numeri-

cal experiments in Section IV. Finally, conclusions and future

work are discussed in Section V. For the rest of this paper,

‖ · ‖f denotes the Frobenius norm, ‖ · ‖ denotes the Euclidean

norm for vectors and the induced spectral norm for matrices,

⊗ refers to the Kronecker product (i.e. an operation on two

matrices of arbitrary size), vec(·) signifies the vectorization

of a matrix, and I denotes the Identity matrix.

II. MOR

As above, our focus is on MOR of the non-parametric

dynamical systems. Hence, we summarize some of the previ-

ously listed such algorithms here. Adaptive Iterative Rational

Global Arnoldi (AIRGA) [15] is a Ritz-Galerkin projection

based algorithm for MOR of linear second-order MIMO

dynamical systems with proportional damping, which for the

MIMO case are represented as

Mẍ(t) = −Dẋ(t) − Kx(t) + Fu(t),

y(t) = CT x(t), (3)

where M , D, K ∈ R
n×n, F ∈ R

n×m, C ∈ R
n×q, and

D = αM + βK . Here, α, β are some scalar values. Let V ∈

R
n×r and its columns span a r-dimension subspace (r ≪ n).

In principle, the Ritz-Galerkin projectionmethod involves the

steps below.

• Approximating the reduced state vector x̂(t) using V as

x(t) ≈ V x̂(t) leads to

MV ¨̂x(t) + DV ˙̂x(t) + KV x̂(t) − Fu(t) = r(t),

ŷ(t) = CTV x̂(t),

where r(t) is the residual after projection.

• Enforcing the residual r(t) to be orthogonal to

V or V T r(t) = 0 leads to the reduced system given as

follows:

M̂ ¨̂x(t) + D̂ ˙̂x(t) + K̂ x̂(t) − F̂u(t) = 0,

ŷ(t) = ĈT x̂(t),

where M̂ = V TMV , D̂ = V TDV , K̂ = V TKV , F̂ =

V TF, and ĈT = CTV . To compute this projection matrix V ,

AIRGA matches the moments of the original system transfer

function and the reduced system transfer function. We briefly

summarize AIRGA in Algorithm 1, where parts relevant to

solving linear systems are only listed.

Bilinear Iterative Rational KrylovAlgorithm (BIRKA) [16]

is a Petrov-Galerkin projection based algorithm for MOR

of the bilinear first-order dynamical systems, which for the

MIMO case are represented as

ẋ(t) = Kx(t) +

m
∑

j=1

Njx(t)uj(t) + Fu(t),

y(t) = CT x(t), (4)

where K , Nj ∈ R
n×n, F ∈ R

n×m, C ∈ R
n×q, and u =

[u1, u2, . . . , um] ∈ R
m. Let columns of V ,W ∈ R

n×r

span two r-dimension subspaces (where, as earlier, r ≪ n).

Algorithm 1 AIRGA [15]

Input:M , D, K , F, C ; S is the set of initial expansion

points si, i = 1, . . . , ℓ.

Output: M̂ , D̂, K̂ , F̂, Ĉ .

1: z = 1

2: while (no convergence) do

3: for i = 1, . . . , ℓ do

4: X (0)(si) = (s2iM + siD+ K)−1F

5: V1 = X (0)(si)

‖X (0)(si)‖f
6: end for

7: j = 1

8: while (no convergence) do

9: for i = 1, . . . , ℓ do

10: X (j)(si) = −(s2iM + siD+ K)−1MVj

11: Vj+1 = X (j)(si)

‖X (j)(si)‖f
12: end for

13: j = j+ 1

14: end while

15: ‘‘All the given set of expansion points

(i.e. s1, s2, . . . , sℓ) are updated’’

16: z = z+ 1

17: end while

18: M̂ = V TMV , D̂ = V TDV , K̂ = V TKV , F̂ =

V TF, and ĈT = CTV

In principle, the Petrov-Galerkin projection method involves

the steps below.

• Approximating the reduced state vector x̂(t) using V as

x(t) ≈ V x̂(t) leads to

V ˙̂x(t)−KV x̂(t)−

m
∑

j=1

NjV x̂(t)uj(t)−Fu(t) = r(t),

ŷ(t) = CTV x̂(t),

where r(t) is the residual after projection.

• Enforcing the residual r(t) to be orthogonal to

W or W T r(t) = 0 leads to the reduced system given by

˙̂x(t) − K̂ x̂(t) −

m
∑

j=1

N̂jx̂(t)uj(t) − F̂u(t) = 0,

ŷ(t) = ĈT x̂(t),

where K̂ = (W TV)−1W TKV , N̂j = (W TV)−1W TNjV , F̂ =

(W TV)−1W TF, ĈT = CTV , and (W TV)−1 is assumed

to be invertible. Here, V and W are computed by using

interpolation, where the original system transfer function

and its derivative are respectively matched with the reduced

system transfer function and its derivative at a set of points.

We briefly summarize BIRKA in Algorithm 2, where again,

only parts related to solving linear systems are listed.

Quadratic Bilinear-Implicit Higher Order Moment Match-

ing (QB-IHOMM) [19] is a Petrov-Galerkin projection based

VOLUME 8, 2020 133235

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

Algorithm 2 BIRKA [16]

Input K , N1, . . . , Nm, F, C , and initial guess of the

reduced system Ǩ , Ň1, . . . , Ňm, F̌, Č

Output K̂ , N̂1, . . . , N̂m, F̂, and Ĉ

1: z = 1

2: while (no convergence) do

3: R3R−1 = Ǩ ,
ˇ̌
F = F̌TR−T ,

ˇ̌
C = ČR,

ˇ̌
Nj = RT ŇjR

−T

for j = 1, . . . , m

4: vec (V) =

(

−3 ⊗ In − Ir ⊗ K −
m∑

j=1

ˇ̌
NT

j
⊗ Nj

)−1

(
ˇ̌
FT ⊗ F

)

vec(Im)

5: vec (W) =

(

−3 ⊗ In − Ir ⊗ KT −
m∑

j=1

ˇ̌
Nj ⊗ NT

j

)−1

(
ˇ̌
CT ⊗ CT

)

vec(Iq)

6: V = orth (V) , W = orth (W)

7: Ǩ = (W TV)−1W TKV , Ňj =
(

W TV
)−1

W TNjV ,

F̌ =
(

W TV
)−1

W TF, Č = CV

8: z = z+ 1

9: end while

10: K̂ = Ǩ , N̂j = Ňj, F̂ = F̌, and Ĉ = Č

algorithm for MOR of the quadratic-bilinear first-order

dynamical systems, which for the SISO case are repre-

sented as1

Dẋ(t) = Kx(t) + Nx(t)u(t) + H (x(t) ⊗ x(t)) + Fu(t),

y(t) = CT x(t), (5)

where D, K , N ∈ R
n×n, H ∈ R

n×n2 , F ∈ R
n×1,

C ∈ R
n×1. Let columns of V , W ∈ R

n×r span two

r-dimension subspaces (where as earlier, r ≪ n). In princi-

ple, the Petrov-Galerkin projection method involves the steps

below.

• As before, approximating the reduced state vector x̂(t)

using V as x(t) ≈ V x̂(t) leads to

DV ˙̂x(t) − KV x̂(t) − NV x̂(t)u(t)

− H
(

V x̂(t) ⊗ V x̂(t)
)

− Fu(t) = r(t),

y(t) = CTV x̂(t),

where r(t) is the residual after projection.

• Enforcing the residual r(t) to be orthogonal to

W or W T r(t) = 0 leads to the reduced system

1A variant of BIRKA for MOR of the quadratic-bilinear first-
order dynamical systems also exists. Preconditioned iterative solves and
reusing preconditioners can be applied here as done for BIRKA. Hence,
we focus on QB-IHOMM that has been developed for the SISO case
only.

given by

D̂ ˙̂x(t) − K̂ x̂(t) − N̂ x̂(t)u(t) − Ĥ
(

x̂(t) ⊗ x̂(t)
)

−F̂u(t) = 0,

y(t) = ĈT x̂(t),

where D̂ = W TDV , K̂ = W TKV , N̂ = W TNV ,

Ĥ = W TH (V ⊗ V), F̂ = W TF, ĈT = CTV . Here,

V andW are computed by matching the moments of the orig-

inal system transfer function and the reduced system transfer

function.We briefly summarize QB-IHOMM inAlgorithm 3,

where as earlier, only parts related to solving linear systems

are listed. Here, as in [19], the computation is done with the

first two regular transfer function terms.

Algorithm 3 QB-IHOMM [19]

Input: D, K , N , H , F, C ; interpolation points σi ∈ C

for i = 1, . . . , ℓ; higher orders moments numbers

P,Q ∈ N

Output: D̂, K̂ , N̂ , Ĥ , F̂, Ĉ

1: V = [] , W = []

2: for j = 0, . . . , P+ Q do

3: for i = 1, . . . , ℓ do

4: Xj(σi) = [(σiD− K)−1D]j(σiD− K)−1F

5: V =
[

V Xj(σi)
]

6: end for

7: end for

8: for j = 0, . . . , Q do

9: for i = 1, . . . , ℓ do

10: Xj(2σi)
T = [(2σiD−K)−TDT]j(2σiD−K)−TCT

11: W =
[

W Xj(2σi)
T
]

12: end for

13: end for

14: U = orth([V W])

15: Construct the reduced system as

D̂ = UTDU , K̂ = UTKU , N̂ = UTNU ,

Ĥ = UTH (U ⊗ U), F̂ = UTF, ĈT = CTU .

III. PROPOSED WORK

Here, we discuss preconditioned iterative methods in

Section III-A. In Section III-B, we revisit the theory of

reusing preconditioners from [33]. Finally, we discuss appli-

cation of reusing preconditioners to the earlier discussed

algorithms in Section III-C.

A. PRECONDITIONED ITERATIVE METHODS

Krylov subspace basedmethods are very popular class of iter-

ative methods [34], [35]. Let Ax = b be a linear system, with

A ∈ R
n×n, b ∈ R

n, x0 the initial solution and r0 (where r0 =

b − Ax0) the initial residual. We find the solution of a linear

system in Kk(A, r0) = span{r0, Ar0, A
2r0, . . . , Ak−1r0},

where Kk(·, ·) represents the Krylov subspace.

133236 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

Often iterative methods are slow or fail to converge, and

hence, preconditioning is used to accelerate them. If P is a

non-singular matrix that approximates the inverse of A, then

the preconditioned system becomes APx̃ = b with x = Px̃.

This is termed as right preconditioning. Similarly, left pre-

conditioning can also be performed, where the preconditioner

is present on the left side of the matrix [36].2 If the linear

system coefficient matrices are SPD, then both the types of

preconditioning give the same results [36]. For our MOR

algorithms under-consideration, the linear system coefficient

matrices do not have any special structure. Hence, both these

types of preconditioning work differently.

In our experiments, we use right preconditioning because it

is fairly common [37], [38]. However, to demonstrate that our

techniques are independent of the type of preconditioning, for

one model, we experiment with left preconditioning in the

side as well.

We expect that the preconditioned iterative solves would

find a solution in less amount of time as compared to the

unpreconditioned ones. For most of the input dynamical

systems (as mentioned here), the Krylov subspace methods

fail to converge (see Numerical Experiments section). Hence,

we use a preconditioner. The goal is to find a preconditioner

that is cheap to compute as well as apply. Preconditioning

is of two kinds (implicit and explicit), and we focus on the

latter [39].

In case of implicit preconditioners, application of pre-

conditioning requires solving linear systems. For example,

in factorization based preconditioning A ≈ LU , where

L and U are sparse triangular matrices approximating exact

L and U factors. Here, application of the preconditioner

requires only forward and backward solves. This is usually

referred to as incomplete LU factorization (ILU) based pre-

conditioner. Variations of ILU that exploit certain matrix

constructs can also be developed. For example, ILU based

upon Schur’s complement [40]. Further, ILQ, SSOR and ADI

are other kinds of preconditioning that fall under the implicit

category [39].

Although implicit preconditioners have been used exten-

sively for a very long time, they have their own drawbacks.

For example, ILU based preconditioners do not be scale well

when the system size becomes very large (computation time

becomes prohibitively expensive). This is because, forward

and backward solves in such preconditioners are inherently

sequential and cannot be easily parallelized. Besides this,

the breakdown in the factorization process because of the zero

pivoting carries over from the full factorization case to this

incomplete factorization case.

Explicit preconditioning is one where directly the inverse

of the coefficient matrix is approximated or P ≈ A−1. Hence,

applying the preconditioner just involves performing matrix-

vector products [38]. Sparse approximate inverse (SPAI) are

2If the preconditioner is present on both the sides of the coefficient matrix,
then it is called split/ center preconditioning.

the most commonly used explicit preconditioners, which we

use and are discussed in-detail later in this section.

Variations of approximate inverse preconditioners also

exist. One example, as we have seen in the case of implicit

preconditioning, is the Schur’s complement based approxi-

mate inverse preconditioner [38]. Another example is where

the approximate inverse preconditioner is constructed by

using a high-order convergent scheme that relies on matrix-

matrix multiplications [41], [42].

Hybrid of implicit and explicit preconditioning is also com-

mon. Here, combinations of factorizations and approximate

inverses are used to compute a preconditioner. An example

of this is given in [43], where for a SPD matrix, Cholesky

factorization is first performed. This in-turn is used to obtain

a more efficient approximate inverse preconditioner. Another

example is where the approximate inverse of the coefficient

matrix is used to compute an approximation to matrix’s

Schur’s complement. This is then used to build an ILU pre-

conditioner [40].

Now, we give the details of SPAI. For constructing a

preconditioner P corresponding to a coefficient matrix A,

we focus on methods for finding approximate inverse of A by

minimizing the Frobenius norm of the residual matrix I−AP.

This minimization problem can be rewritten as [37]

min
P

‖I − AP‖2f . (6)

Here, the columns of residual matrix I−AP can be computed

independently, which is an important property that can be

exploited. Hence, the solution of (6) can be separated into n

independent least square problems as

min
P

n
∑

i=1

‖(I − AP)ei‖22, or

min
pi

‖ei − Api‖22, for i = 1, 2, . . . , n, (7)

where ei and pi are the i-th column of I and P, respectively.

The above minimization problem can be implemented in par-

allel and one can efficiently obtain the explicit approximate

inverse P of A.

Usually A is sparse. In this case, we can solve a more

efficient version of the optimization problem given in (7).

Here, first, a good sparsity pattern of P is assumed (usually

the Identity matrix). As the solutions of the least squares

problems are iteratively computed, this sparsity pattern is

updated. One common updating strategy adaptively exploits

the number of non-zeros arising in the resulting residuals

(ri = ei − Api), which requires solving 1D minimization

problems [38]. A more sophisticated updating strategy uses a

multivariate minimization [44]. Second, now since bothA and

P are sparse, we solve much smaller least squares problems,

and all matrix-vector products are done in a sparse-mode

(operations involving a sparse-matrix and a sparse-vector).

VOLUME 8, 2020 133237

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

B. THEORY OF REUSING PRECONDITIONERS

In general, the linear systems of equations generated by

lines 4 and 10 of Algorithm 1 (AIRGA); lines 4 and 5 of

Algorithm 2 (BIRKA); and lines 4 and 10 of Algorithm 3

(QB-IHOMM) have the following form:

A1X1 = F1,

A2X2 = F2,

...

AℓXℓ = Fℓ,

where Ai ∈ R
n×n, Xi ∈ R

n, and Fi ∈ R
n; for

i = 1, 2, . . . , ℓ.3

Let P1 be a good preconditioner for A1 (it is a seed pre-

conditioner) that is computed by the theory discussed in the

above section ((6)-(7)) or

min
P1

‖I − A1P1‖
2
f .

Now, we need to find a good preconditionerP2 corresponding

to A2. Using the standard SPAI theory, this means solving

min
P2

‖I − A2P2‖
2
f . (8)

If we are able to enforce A1P1 = A2 P2, then P2 will

be an equally good preconditioner for A2 as much as P1 is

a good preconditioner for A1 (since the Spectrum of A2P2
would be same as that of A1P1, on which convergence of

any Krylov subspace method depends). Since P2 is unknown

here, we have a degree of freedom in choosing how to form

it. Without loss of generality, we assume that P2 = Q2P1,

where Q2 is an unknown matrix. Here, we need to enforce

A1P1 = A2Q2P1. Thus, instead of solving the minimization

problem (8), we can solve

min
Q2

‖A1 − A2 Q2‖
2
f .

Note that P2 here is never explicitly formed by multiplying

two matrices Q2 and P1. Rather, always a matrix-vector

product is done to apply the preconditioner.

Next, we apply a similar argument for finding a good

preconditioner Pi corresponding to Ai. For this we refer to

one of our recent works [33], which focused on MOR of

parametric linear dynamical systems (category three from the

Introduction). We can obtain Pi by enforcing either A1P1 =

AiPi or Ai−1Pi−1 = AiPi. For these two cases, Pi would be

as effective preconditioner for Ai as P1 is for A1 or Pi−1 is

for Ai−1, respectively. These two approaches are summarized

in Table 2.

In [33], we have conjectured (with evidence) the following

two results: (a) In the parametric case, the first approach is

more beneficial. This is because, in this case although the

two approaches have a similarly hard minimization problem

(attributed to slowly varying parameters, and in-turn, slowly

changing matrices), the computation of Pi from P1 in the first

3In-case of BIRKA, the coefficient matrices are of size n2 × n2 and
solution vectors as well as right-hand sides of size n2.

TABLE 2. Cheap preconditioner update approaches [33].

approach leads to a preconditioner with less approximation

errors, and hence, a one which is more accurate. (b) In the

non-parametric case, the second approach is more suited.

This is because in this case the minimization problem of

the second approach is much easier to solve as compared to

the first approach (attributed to rapidly changing expansion/

interpolation points, and in-turn, rapidly changing matrices).

The computation of Pi from Pi−1 in this case (rather than P1
as above) does have the drawback of accumulated approx-

imation errors, however, solving the minimization problem

efficiently is a bigger bottleneck for scaling to large problems.

As mentioned in the Introduction, in [33] we have exten-

sively experimented for the parametric case (again, category

three earlier) using the first approach. The focus here is to do

a similar experimentation for the non-parametric case (first

two categories earlier) using the second approach.

C. APPLICATION OF REUSING PRECONDITIONER

Here, we first discuss the application of the above presented

theory of reusing preconditioners to AIRGA. If we closely

observe Algorithm 1, as mentioned earlier, linear systems are

solved at lines 4 and 10. To solve these system, we can chose

any solver from a large pool of available Krylov subspace

methods. For example, GMRES [45], BI-CGSTAB [46],

IDR(s) [47], etc. Since GMRES is the most popular one

among these, we use it inside AIRGA in our result section.

If we relook at linear systems at lines 4 and 10 in

Algorithm 1, we realize that they have more characteristics.

These linear systems can be very easily transformed into

general shifted linear systems of the form ςD + K (see

Section 3 of [48]). Therefore, this property can be exploited

in solving these sets of linear systems simultaneously

[49], [50], which is part of our future work.4

Delving further into the complexity of such linear sys-

tems, we observe that the matrices change with the index

of outer while loop (line 2) as well as with the index

of the for loop corresponding to the expansion points

(line 3). Hence, we denote such matrices not only with a

subscript as in previous subsection but also with a super-

script. That is, A
(z)
i =

(

s
(z)
i

)2
M + s

(z)
i D + K , where z =

1, . . . , z (until covergence) and i = 1, . . . , ℓ. As the matrix

4If the linear system coefficient matrices have special properties, then
more efficiency can be incorporated. For example, if the coefficient matrices
(ςD + K) have D, K as real and ς as complex, then we can reduce the
number of linear systems that are required to be solved. For more details,
please see Section 1 of [54].

133238 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

FIGURE 1. Reusing preconditioners in AIRGA.

A
(z)
i changes with respect to two different indices, we can

reuse preconditioners in many ways. However, here we use

the second approach as discussed in the previous subsection.

This approach is diagrammatically represented in Figure 1.

Computation of preconditioners is done only at line 4

because at line 10, matrices do not change, only the right-

hand sides do. Hence, we only focus on reusing precondi-

tioners for line 4.

Next, we show how the new preconditioners are computed

for both, the horizontal direction and the vertical direction.

While looking at the horizontal route, let,

A
(z)
i−1 =

(

s
(z)
i−1

)2
M + s

(z)
i−1D+ K

and

A
(z)
i =

(

s
(z)
i

)2
M + s

(z)
i D+K be the two coefficient matri-

ces for different expansion points s
(z)
i−1 and s

(z)
i , respectively,

with i = 2, . . . , ℓ. Using the above theory, we enforce

A
(z)
i−1P

(z)
i−1 = A

(z)
i P

(z)
i in Figure 2. Thus, we eventually enforce

A
(z)
i−1P

(z)
i−1 = A

(z)
i Q

(z)
i P

(z)
i−1 and solve theminimization problem

min
Q
(z)
i

‖A
(z)
i−1 − A

(z)
i Q

(z)
i ‖2f .

This gives us the new preconditioner P
(z)
i = Q

(z)
i P

(z)
i−1. This

minimization is again performed for n independent least

square problems as in (7). Similar steps are followed for

reusing preconditioners along the rest of the horizontal direc-

tions, i.e. for all z = 1, . . . , z.

Now, applying this technique for the vertical direction,

we have for z = 2, . . . , z

A
(z−1)
1 P

(z−1)
1 = A

(z)
1 P

(z)
1 .

Following the steps as for the horizontal direction, here,

we solve the minimization problem

min
Q
(z)
1

‖A
(z−1)
1 − A

(z)
1 Q

(z)
1 ‖2f .

This gives us the new preconditioner P
(z)
1 = Q

(z)
1 P

(z−1)
1 .

Again, this is solved as n independent least square problems

as in (7).

AIRGA with an efficient implementation of the above

discussed theory of reusing preconditioners is given in

Algorithm 4. If we closely look at line 4 of Algorithm 1,

the solution vector is denoted by X (0)(si), where the super-

script ‘‘0’’ refers to the index of the inner while loop

(line 8). We do not bother about this index because, as ear-

lier, matrix does not change inside this inner loop. Rather,

we need to capture the change because of the outer while

loop indexed with z. Hence, we denote the solution vec-

tor as X(z)(si) in Algorithm 4 (lines 8, 11, 19 & 22). It is

important to emphasize again that preconditioners are never

computed explicitly. Rather, they are obtained using matrix-

vector products (please see line numbers 11, 19 & 22 of

Algorithm 4).

Since shift-invariant preconditioners have been proposed

for the general shifted linear systems [49], [51], our this reuse

FIGURE 2. Expressing one linear system matrix in terms of the other.

VOLUME 8, 2020 133239

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 3. SPAI and reusable SPAI analysis for the academic disk brake
model.

TABLE 4. SPAI and reusable SPAI computation time for the academic disk
brake model.

SPAI technique can be coupled with these preconditioners for

further efficiency. We plan to look at this aspect as part of our

future work.

The next MOR algorithm under-consideration is BIRKA

(Algorithm 2). Here, the linear solver would be chosen in a

manner similar to AIRGA above. However, the coefficient

matrices here have a block form, and hence, instead of stan-

dard Krylov subspace methods, their block variants should be

used [52].

For the sake of brevity, the reuse of SPAI preconditioners

in BIRKA (Algorithm 2) is discussed as part of Appendix A.

Here also, the block structure can be exploited in developing

a more efficient preconditioner. An example of this is given

in Chapter 11 of [53], where a preconditioner similar to SPAI

has been improved upon by utilizing such a structure. This

aspect is part of our future work.

The third and the finalMORalgorithm under-consideration

is QB-IHOMM (Algorithm 3). As for the earlier two algo-

rithms, any general Krylov subspace solver can be used here.

Algorithm 4 AIRGA With Reuse of SPAI Preconditioner

1: z = 1

2: while no convergence do

3: if z == 1 then

4: for i = 1, . . . , ℓ do

5: A
(1)
i =

(
(

s
(1)
i

)2
M +

(

s
(1)
i

)

D+ K

)

6: if i == 1 then

7: Compute initial P
(1)
1 by solving

min
P
(1)
1

‖I − A
(1)
1 P

(1)
1 ‖2f

(First-time; no earlier preconditioner)

8: A
(1)
1 P

(1)
1 X(1)(s1) = F

9: else

10: Compute Q
(1)
i by solving

min
Q
(1)
i

‖A
(1)
i−1 − A

(1)
i Q

(1)
i ‖2f

(Reuse along horizontal direction)

11: A
(1)
i [Q

(1)
i · · · Q

(1)
2 P

(1)
1]X(1)(si) = F

12: end if

13: end for

14: else

15: for i = 1, . . . , ℓ do

16: A
(z)
i =

(
(

s
(z)
i

)2
M +

(

s
(z)
i

)

D+ K

)

17: if i == 1 then

18: Compute Q
(z)
1 by solving

min
Q
(z)
1

‖A
(z−1)
1 − A

(z)
1 Q

(z)
1 ‖2f

(Reuse along vertical direction)

19: A
(z)
1

[

Q
(z)
1 . . . Q

(2)
1 P

(1)
1

]

X(z)(s1) = F

20: else

21: Compute Q
(z)
i by solving

min
Q
(z)
i

‖A
(z)
i−1 − A

(z)
i Q

(z)
i ‖2f

(Reuse along horizontal direction)

22: A
(z)
i

[

Q
(z)
i · · · Q

(z)
2

︸ ︷︷ ︸

23:

Q
(z)
1 . . . Q

(2)
1

︸ ︷︷ ︸

P
(1)
1

]

X(z)(si) = F

24: end if

25: end for

26: end if

27: ‘‘All the given set of expansion points

(i.e. s1, s2, . . . , sℓ) are updated’’

28: z = z+ 1

29: end while

Note: The minimization problems at lines 7, 10, 18 and

21 are solved as n independent least square problems

(see (7)).

133240 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 5. Condition numbers of the coefficient matrices before and after
application of SPAI¶ for the academic disk brake model.

Further, as in the case of AIRGA, the linear systems at lines

4 and 10 belong to the class of general shifted linear systems

[48]–[50] and can be solved simultaneously, which is part of

our future work4.

For the sake of brevity, the above theory of reusing SPAI

preconditioners applied to QB-IHOMM is discussed briefly

in Appendix B. Again, our SPAI reuse theory can be coupled

with the specific preconditioners for these kind of systems

(e.g., shift-invariant preconditioners [49], [51]) to develop a

more efficient preconditioning strategy. We plan to look at

this aspect as part of our future work.

IV. NUMERICAL EXPERIMENTS

For supporting our proposed preconditioned iterative solver

theory using AIRGA [15], we perform experiments on two

models. The first is a macroscopic equations of motion

model (i.e. academic disk brake M0) [55], and is discussed

in Section IV-A. The second is also a similar model, how-

ever, this is a real-life industrial problem (i.e. industrial disk

brakeM1) [55]. The experiments on this model are discussed

in Section IV-B. These models are described by the following

set of equations [55]:

M�ẍ(t) = −D�ẋ(t) − K�x(t) + Fu(t),

y(t) = CT x(t), (9)

where M� = M , K� = KE + KR + �2 KG, D� =

αM� + βK� (case of proportionally damped system; as

needed for AIRGA) with commonly used parameter values

as � = 2π, α = 5 × 10−02, and β = 5 × 10−06. Further,

F ∈ R
n and CT ∈ R

n are taken as [1 0 · · · 0]T , which is the

most frequently used choice. We take four expansion points

linearly spaced between 1 and 500 based upon experience.

Although our purpose is to just reuse SPAI in AIRGA

(Algorithm 4), we also execute original SPAI in AIRGA

(Algorithm 1) for comparison. In Algorithms 1 and 4, at line 2

the overall iteration (while-loop) terminates when the

change in the reduced model (computed as H2-error between

the reduced models at two consecutive AIRGA iterations) is

less than a certain tolerance. We take this tolerance as 10−04

based upon the values in [15]. There is one more stopping

criteria in Algorithms 1 at line 8 (also in Algorithm 4 but not

listed here). This checks theH2-error between two temporary

reduced models. We take this tolerance as 10−06, again based

upon the values in [15]. Since this is an adaptive algorithm,

the optimal size of the reduced model is determined by the

algorithm itself, and is denoted by r .

The linear systems that arise here have non-symmetric

matrices. There are many iterative methods available for

solving such linear systems. We use the Generalized Min-

imal Residual (GMRES) method [45] because it is very

popular [56]. The stopping tolerance in GMRES is taken

as 10−06, which is a common standard. As mentioned in

Introduction, for both the given models, we observe that

unpreconditioned GMRES fails to converge. Hence, we use

the SPAI preconditioner as described above (without and with

reuse).

As mentioned earlier, without loss of generality, we per-

form right preconditioning. To demonstrate the effectiveness

of our theory for all types of preconditioning, for the aca-

demic disk model, we give data corresponding to left precon-

ditioning as well.

We useModified SparseApproximate Inverse (MSPAI 1.0)

proposed in [38] as our preconditioner. This is because

MSPAI uses a linear algebra library for solving sparse least

square problems that arise here. We use standard initial

settings of MSPAI
(

i.e. tolerance (ep) of 10−04
)

.

We perform our numerical experiments on a machine with

the following configuration: Intel Xeon (R) CPU E5-1620 V3

@ 3.50 GHz., frequency 1200 MHz., 8 CPU and 64 GB

TABLE 6. GMRES computation time for the academic disk brake model.

VOLUME 8, 2020 133241

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 7. GMRES with SPAI and reusable SPAI computation time for the
academic disk brake model.

RAM.All the codes are written inMATLAB (2016b) (includ-

ing AIRGA, GMRES) except SPAI and reusable SPAI.

MATLAB is used because of ease of rapid prototyping.

Computing SPAI and reusable SPAI in MATLAB is expen-

sive, therefore, we use C++ version of these (SPAI is from

MSPAI and reusable SPAI is written by us). MSPAI further

uses BLAS, LAPACK and ATLAS libraries.

It is important to emphasize that we do not integrate our

MATLAB code base with the C++ based preconditioner.

This is because integrating the two is complicated and is not

needed here as well.

We compute SPAI and reusable SPAI in-parallel, sepa-

rately, and save them on the hard-disk in the standard .mtx

files [38]. When we run our MATLAB code base, then these

files are read from the hard-disk into the main memory and

converted into .mat files for further processing.

A. ACADEMIC DISK BRAKE MODEL

This model is of size 4, 669. Based upon experience,

the maximum reduced system size (rmax) is taken as 20.

As mentioned earlier, however, due to the adaptive nature

of AIRGA, we obtain a reduced system of size r = 13.

For this model, AIRGA takes two outer iterations (line 2 of

Algorithms 1 and 4) to converge (i.e. z = 2).

Reusing the SPAI preconditioner is beneficial when the

values of ‖I − A
(z)
i ‖f /‖I‖f is large, and the values of

‖A
(z)
i−1 − A

(z)
i ‖f /‖A

(z)
i−1‖f and ‖A

(z−1)
1 − A

(z)
1 ‖f /‖A

(z−1)
1 ‖f are

small, which is true in this case (see Table 3). In this table,

TABLE 8. SPAI and reusable SPAI computation time for the industrial disk brake model.

133242 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 9. SPAI and reusable SPAI computation time for the industrial disk
brake model.

columns 1 and 2 list the AIRGA iterations and the four

expansion points, respectively. The above three quantities are

listed in columns 3, 4 and 5, respectively. For the first AIRGA

iteration and the first expansion point, SPAI preconditioner

cannot be reused because there is no earlier preconditioner

(mentioned as NA in table). From the second expansion point

(and the first AIRGA iteration), we perform horizontal reuse

of preconditioner (see Figure 1). This is the same for the sec-

ond AIRGA iteration as well. Vertical reuse of preconditioner

is done only for the first expansion point (and the second

AIRGA iteration; again see Figure 1).

In Table 4, we compare the SPAI and the reusable SPAI

timings. As for Table 3, here columns 1 and 2 list the

AIRGA iterations and the four expansion points, respectively.

SPAI and reusable SPAI computation times are given in

columns 3 and 4, respectively. At the first AIRGA iteration

and the first expansion point, both SPAI and reusable SPAI

take the same computation time. This is because, as above,

reusing of SPAI preconditioner is not applicable here. From

the second expansion point of the first AIRGA iteration,

we see substantial savings because of the reuse of the SPAI

preconditioner (approximately 68%).

Before presenting GMRES data, we would like to discuss

improvements in the condition numbers of the coefficient

matrices because of the preconditioning. This data is given

in Table 5. As evident, preconditioning does substantially

improve the quality of the coefficient matrices.

TABLE 10. Condition numbers of the coefficient matrices before and
after application of SPAI for the industrial disk brake model.

Table 6 provides the iteration count and the computation

time of GMRES. Here, we only provide GMRES execu-

tion details since the computation time of preconditioner

has been discussed above. In this table, column 1 lists

the AIRGA iterations. The number of linear solves and

average GMRES iterations per linear solve are given in

columns 2 and 3, respectively. Finally, columns 4 and 5 list the

computation times of GMRESwhen using SPAI and reusable

SPAI, respectively. We notice from this table that solving

linear systems by GMRES with SPAI takes less computation

time as compared to solving them by GMRES with reusable

SPAI. This is because when we reuse the SPAI preconditioner

in GMRES, additional matrix-vector products are performed,

however, this extra cost is almost negligible when compared

to the savings in the preconditioner computation time for the

latter case (as evident in Table 3 above; also see total GMRES

and preconditioner time below).

As earlier, the data in Table 6 is corresponding to right

preconditioning. In the case of left preconditioning we see

only a modest change in the metrics under-consideration.

That is, the total GMRES iterations, the total GMRES plus

SPAI time, and the total GMRES plus reusable SPAI time are

6364, 190, and 204, respectively.

Table 7 gives the computation time of GMRES plus SPAI

(column 2) and GMRES plus reusable SPAI (column 3) at

each AIRGA iteration (column 1). As evident from this table,

reusing the SPAI preconditioner leads to about 60% savings

in total time required for solving all the linear systems.

VOLUME 8, 2020 133243

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

TABLE 11. GMRES computation time for the industrial disk brake model.

B. INDUSTRIAL DISK BRAKE MODEL

This model is of size 1.2 million. Based upon experience,

the maximum reduced system size (rmax) is taken as 100.

As mentioned earlier, however, due to the adaptive nature

of AIRGA, we obtain a reduced system of size r = 52.

For this model, AIRGA takes four outer iterations (line 2 of

Algorithms 1 and 4) to converge (i.e. z = 4).

Again, reusing the SPAI preconditioner is beneficial when

the value of ‖I − A
(z)
i ‖f /‖I‖f is large, and the value of

‖A
(z)
i−1 − A

(z)
i ‖f /‖A

(z)
i−1‖f and ‖A

(z−1)
1 − A

(z)
1 ‖f /‖A

(z−1)
1 ‖f are

small, which is true in this case (see Table 8). The structure of

this table is same as Table 3. As earlier, for the first AIRGA

iteration and the first expansion point, SPAI preconditioner

cannot be reused because there is no earlier preconditioner

(mentioned as NA in table). From the second expansion point

(and the first AIRGA iteration), we perform horizontal reuse

of preconditioner (see Figure 1). This is the same for the

second, the third and the fourth AIRGA iterations as well.

Vertical reuse of preconditioner is done only for the first

expansion point (and the second, the third, and the fourth

AIRGA iterations; again see Figure 1).

In Table 9, we compare the SPAI and the reusable SPAI

timings. The structure of this table is same as that of Table 4.

As before, at the first AIRGA iteration and the first expansion

point, both SPAI and reusable SPAI take the same com-

putation time. This is because, as above, reusing of SPAI

preconditioner is not applicable here. From the second expan-

sion point of the first AIRGA iteration, we see substantial

savings because of the reuse of the SPAI preconditioner (from

160 hours to 26 hrs 30 minutes; approximately 83%).

As in the case of the academic disk model, here too before

presenting GMRES data, we would like to discuss improve-

ments in the condition numbers of the coefficient matrix

because of the preconditioning. This data is given in Table 10.

As evident, preconditioning does substantially improve the

quality of the coefficient matrices.

Table 11 provides the iteration count and the computa-

tion time of GMRES. Here, again we have only provided

GMRES execution details since the computation time of the

TABLE 12. GMRES with SPAI and reusable SPAI computation time for the
industrial disk brake model.

preconditioner has already been discussed above. The struc-

ture of this table is same as that of Table 6. As earlier, we

notice from this table that solving linear systems by GMRES

with SPAI takes less computation time as compared to solving

them by GMRES with reusable SPAI. This is again because

of additional matrix-vector products in the reusable SPAI

case. Here also, this extra cost is almost negligible when

compared to the savings in the preconditioner computation

time (as evident in Table 9; also see the total GMRES and

preconditioner time below).

Table 12 gives the computation time of GMRES plus SPAI

(column 2) and GMRES plus reusable SPAI (column 3) at

each AIRGA iteration (column 1). As before, it is evident

from this table, reusing the SPAI preconditioner leads to about

64% savings in total time (from 197 hours 28 minutes to

72 hours 06 minutes).

To demonstrate the quality of the reduced system, we plot

the relative H2 error between the transfer function of the

original system and the reduced system with respect to the

different expansion points (in Figure 3). The reduced system

considered here is obtained by using GMRES with reusable

SPAI. These expansion points, denoted by S, are computed

as 2π f , where the frequency variable f is linearly spaced

between 1 and 500. As evident from this figure, the obtained

reduced system is good (the error is very small). Further,

we also observe from this figure that the reduced model is

most accurate in 7–10 range of the expansion points. This is

133244 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

FIGURE 3. Relative error between the original and reduced system for the
industrial disk brake model.

because the final expansion points, upon the convergence of

AIRGA, lie in this range.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have focused on MOR of non-parametric

dynamical systems, specifically on the following three algo-

rithms: AIRGA, BIRKA, and QB-IHOMM. Since solving

large and sparse linear systems is a bottleneck in scaling these

MOR algorithms for reduction of large sized dynamical sys-

tems, we have proposed reusing of the SPAI preconditioner.

Specifically, we have demonstrated the following:

exploitation of the simplicity because of the lack of parame-

ters in reusing preconditioners, multiple ways of reusing pre-

conditioners within the algorithm, efficient implementation

to ensure that the savings because of reusing preconditioners

are not negated by bad coding, and experimentation on a

massively large industrial problem. Numerical experiments

show the effectiveness of our approach, where for a problem

of size 1.2 million, we save up to 64% in the computation

time. In absolute terms, this gives a saving of 5 days.

Our future work consists of three main directions, focusing

on other efficient MOR algorithms, better linear solvers and

enhanced preconditioning techniques.

First, we will investigate other important variants of

MOR algorithms discussed in our paper (AIRGA, BIRKA,

QB-IHOMM). For example, T-BIRKA is a more efficient

version of BIRKA [17], and applying our techniques here

would be useful.

Second, in our paper, we have used a basic and common

linear solver (GMRES). However, as discussed earlier, this

aspect can also be optimized. Specifically, for the class of

MOR algorithms to which AIRGA and QB-IHOMM belong,

we will investigate the use of linear solvers specific to general

shifted linear systems [48]–[50].

Finally and third, we will investigate more sophisticated

preconditioning strategies that will further exploit the proper-

ties of the underlyingMOR algorithms as well as the resulting

linear systems. Specifically, we will explore five directions as

below.

(a) Besides the currently used basic SPAI preconditioner,

we will investigate the use of high-order convergent approx-

imate inverse preconditioners [41], [42] as well as hybrid

versions, which use a combination of factorization and

approximate inverse techniques [40], [43].

(b) For AIRGA, QB-IHOMM, and related MOR algo-

rithms where general shifted linear systems arise, we will

investigate the use of our reusable SPAI preconditioner along

with shift-invariant preconditioners that have been developed

specifically for such shifted linear systems [49], [51].

(c) We will investigate exploiting the block structure of the

linear system coefficient matrices in BIRKA such that the

SPAI and its reuse can be done more efficiently [53].

(d) Since randomized preconditioners have shown promis-

ing results in recent years, we will explore their use in the

context of linear systems in MOR algorithms.

(e) Finally, we would also investigate combining machine

learning techniques (e.g., spiking neural networks) to opti-

mize the parameters inside the preconditioners.

APPENDIX A

In the Algorithm 2, we solve linear systems of equations at

lines 4 and 5. We first apply our proposed theory of reusing

preconditioners to line 4, which is given as

vec (V)

=

−3⊗In−Ir⊗K−

m
∑

j=1

ˇ̌
NT

j ⊗Nj

−1
(

ˇ̌
FT ⊗ F

)

vec(Im).

Here, 3 is a diagonal matrix comprising of interpolation

points, which is updated at the start of the while loop

at line 2. For ease of explanation, we take j = 1 here.

Similar steps can be executed for j = 2, . . . , m. Let

Az−1 = −3z−1 ⊗ In − Ir ⊗ K −
(

ˇ̌
NT

1

)

z−1
⊗ N1 and

Az = −3z ⊗ In − Ir ⊗ K −
(

ˇ̌
NT

1

)

z
⊗ N1 be the

coefficient matrices corresponding to 3z−1 and 3z, respec-

tively (for z = 1, . . . , z (until covergence)). Expressing Az
in terms of Az−1, we get

Az = Az−1

(

Inr + A−1
z−1(−3z ⊗ In) + A−1

z−1(3z−1 ⊗ In)

+A−1
z−1

(

−
(

ˇ̌
NT

1

)

z
⊗ N1

)

+A−1
z−1

(
(

ˇ̌
NT

1

)

z−1
⊗N1

))

,

where Inr ∈ R
n·r×n·r is the Identity matrix. If we define

Qz =

(

Inr + A−1
z−1(−3z ⊗ In) + A−1

z−1(3z−1 ⊗ In)

+A−1
z−1

(

−
(

ˇ̌
NT

1

)

z
⊗N1

)

+A−1
z−1

(
(

ˇ̌
NT

1

)

z−1
⊗N1

))−1

,

then above is equivalent to

Az = Az−1Q
−1
z . (10)

Now, we enforce

Az−1Pz−1 = AzPz. (11)

Using (10), instead we enforce

Az−1Pz−1 = Az−1Q
−1
z Pz.

VOLUME 8, 2020 133245

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

If we take Pz = QzPz−1, then we eventually enforce

Az−1Pz−1 = Az−1Q
−1
z QzPz−1,

which is true.

Thus, instead of solving for Pz by enforcing (11), which

is harder to solve, we obtain the preconditioner at the zth

iteration (Pz = QzPz−1) by enforcing

Az−1Pz−1 = AzQzPz−1,

which is more easily solvable. The remaining derivation here

is same as earlier (see Section III-C). We reuse precondition-

ers at line 5 similarly.

APPENDIX B

In the Algorithm 3, we solve linear systems of equations at

line 4 and 10. Again, we first apply our proposed theory of

reusing preconditioners to line 4, which is given as

Xj(σi) = [(σiD− K)−1D]j(σiD− K)−1F,

for j = 1, . . . , P+ Q and i = 1, . . . , ℓ.

Let Ai−1 = σi−1D − K and Ai = σiD − K be the two coef-

ficient matrices for different interpolation points σi−1 and σi,

respectively (for i = 1, . . . , ℓ). Expressing Ai in terms of

Ai−1, we get

Ai = Ai−1(I + (σi − σi−1)A
−1
i−1D).

If we define Qi = (I + (σi − σi−1)A
−1
i−1D)

−1, then above is

equivalent to

Ai = Ai−1Q
−1
i .

As for AIRGA and BIRKA, instead of obtaining Pi by

enforcing

Ai−1Pi−1 = AiPi,

which is harder to solve, we obtain the preconditioner at the

ith iteration (Pi = QiPi−1) by enforcing

Ai−1Pi−1 = AiQiPi−1,

which is more easily solvable. Again, here also, the remaining

derivation is same as earlier (see Section III-C). We reuse

preconditioners at line 10 similarly.

ACKNOWLEDGMENT

The authors would like to deeply thank Prof. Dr. Heike

Faßbender (at Institut Computational Mathematics, AG

Numerik, Technische Universität Braunschweig, Germany)

for discussions and help regarding different aspects of this

project. They would also like to thankMs. Apoorva Joshi (IIT

Indore, India) for help in numerical experiments, which she

did as part of her undergraduate thesis.

Thanks to the anonymous reviewers that helped them

greatly improve the quality of this manuscript. Finally, they

would like to thank Dr. Yan-Jun Liu (Editor handling our

manuscript) for his tremendous support during the whole

reviewing process.

REFERENCES

[1] O. Katsuhiko, Modern Control Engineering. Upper Saddle River, NJ,

USA: Prentice-Hall, 2001.

[2] M. Rewienski and J. White, ‘‘A trajectory piecewise-linear approach to

model order reduction and fast simulation of nonlinear circuits and micro-

machined devices,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 22, no. 2, pp. 155–170, Feb. 2003.

[3] A. C. Antoulas, ‘‘Approximation of large-scale dynamical systems:

An overview,’’ IFAC Proc. Volumes, vol. 37, no. 11, pp. 19–28, Jul. 2004.

[4] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems.

Philadelphia, PA, USA: SIAM, 2005.

[5] J. E. S. Socolar, ‘‘Nonlinear dynamical systems,’’ in Complex Systems

Science in Biomedicine, T. S. Deisboeck and J. Y. Kresh Eds. Boston, MA,

USA: Springer, 2006, pp. 115–140.

[6] B. N. Bond, ‘‘Parameterized model order reduction for nonlinear dynam-

ical systems,’’ M.S. thesis, Dept. Elect. Eng. Comput. Sci., MIT,

Cambridge, MA, USA, 2006.

[7] E. J. Grimme, ‘‘Krylov projection methods for model reduction,’’

Ph.D. dissertation, Dept. Elect. Eng., Univ. Illinois Urbana-Champaign,

Urbana, IL, USA, 1997.

[8] S. Gugercin, ‘‘Projection methods for model reduction of large-scale

dynamical systems,’’ Ph.D. dissertation, Dept. Elect. Comp. Eng., Rice

Univ., Houston, TX, USA, 2003.

[9] W. H. Schilders, H. A. Van der Vorst, and J. Rommes, Model Order

Reduction: Theory, Research Aspects and Applications, vol. 13. Berlin,

Germany: Springer, 2008.

[10] S. Gugercin, A. C. Antoulas, andC. Beattie, ‘‘H2 model reduction for large-

scale linear dynamical systems,’’ SIAM J.Matrix Anal. Appl., vol. 30, no. 2,

pp. 609–638, 2008.

[11] T. Breiten, ‘‘Interpolation methods for model reduction of large-scale

dynamical systems,’’ Ph.D. dissertation, Dept. Math., Otto-von-Guericke-

Universität Magdeburg, Magdeburg, Germany, 2013.

[12] S. A. Wyatt, ‘‘Issues in interpolatory model reduction: Inexact solves,

second-order systems and DAEs,’’ Ph.D. dissertation, Dept. Math.,

Virginia Tech, Blacksburg, VA, USA, 2012.

[13] Z.-Y. Qiu, Y.-L. Jiang, and J.-W. Yuan, ‘‘Interpolatory model order reduc-

tion method for second order systems,’’ Asian J. Control, vol. 20, no. 1,

pp. 312–322, Jan. 2018.

[14] Z. Bai and Y. Su, ‘‘Dimension reduction of large-scale second-order

dynamical systems via a second-order Arnoldi method,’’ SIAM J. Sci.

Comput., vol. 26, no. 5, pp. 1692–1709, Jan. 2005.

[15] T. Bonin, H. Faßbender, A. Soppa, and M. Zaeh, ‘‘A fully adaptive

rational global Arnoldi method for the model-order reduction of second-

order MIMO systems with proportional damping,’’Math. Comput. Simul.,

vol. 122, pp. 1–19, Apr. 2016.

[16] P. Benner and T. Breiten, ‘‘Interpolation-based H2-model reduction of

bilinear control systems,’’ SIAM J. Matrix Anal. Appl., vol. 33, no. 3,

pp. 859–885, Aug. 2012.

[17] G. M. Flagg, ‘‘Interpolation methods for the model reduction of bilinear

systems,’’ Ph.D. dissertation, Dept. Math., Virginia Tech, Blacksburg, VA,

USA, 2012.

[18] R. Choudhary and K. Ahuja, ‘‘Inexact linear solves in model reduction

of bilinear dynamical systems,’’ IEEE Access, vol. 7, pp. 72297–72307,

May 2019.

[19] M. M. A. Asif, M. I. Ahmad, P. Benner, L. Feng, and T. Stykel,

‘‘Implicit higher-order moment matching technique for model reduction of

quadratic-bilinear systems,’’ 2019, arXiv:1911.05400. [Online]. Available:

http://arxiv.org/abs/1911.05400

[20] U. Baur, C. Beattie, P. Benner, and S. Gugercin, ‘‘Interpolatory projec-

tion methods for parameterized model reduction,’’ SIAM J. Sci. Comput.,

vol. 33, no. 5, pp. 2489–2518, Jan. 2011.

[21] P. Benner and L. Feng, ‘‘A robust algorithm for parametric model order

reduction based on implicit moment matching,’’ in Reduced Order Meth-

ods for Modeling and Computational Reduction, A. Quarteroni and

G. Rozza, Eds. Cham, Switzerland: Springer, 2014, pp. 159–185.

[22] L. Feng, P. Benner, and J. G. Korvink, ‘‘Subspace recycling accelerates

the parametric macro-modeling of MEMS,’’ Int. J. Numer. Methods Eng.,

vol. 94, no. 1, pp. 84–110, Apr. 2013.

[23] A. C. Rodriguez, S. Gugercin, and J. Borggaard, ‘‘Interpolatory model

reduction of parameterized bilinear dynamical systems,’’ Adv. Comput.

Math., vol. 44, no. 6, pp. 1887–1916, Dec. 2018.

[24] X. Cao, ‘‘Optimal model order reduction for parametric nonlinear sys-

tems,’’ Ph.D. dissertation, Dept. Math. Comp. Sci., TU Eindhoven,

Eindhoven, The Netherlands, 2019.

133246 VOLUME 8, 2020

N. P. Singh, K. Ahuja: Reusing Preconditioners in Projection Based MOR Algorithms

[25] K. Ahuja, E. de Sturler, S. Gugercin, and E. R. Chang, ‘‘Recycling BiCG

with an application to model reduction,’’ SIAM J. Sci. Comput., vol. 34,

no. 4, pp. A1925–A1949, Jan. 2012.

[26] K. Ahuja, P. Benner, E. de Sturler, and L. Feng, ‘‘Recycling BiCGSTAB

with an application to parametric model order reduction,’’ SIAM J. Sci.

Comput., vol. 37, no. 5, pp. S429–S446, Jan. 2015.

[27] K. Ahuja, ‘‘Recycling Krylov subspaces and preconditioners,’’

Ph.D. dissertation, Dept. Math., Virginia Tech, Blacksburg, VA, USA,

2011.

[28] K. Ahuja, B. K. Clark, E. de Sturler, D. M. Ceperley, and J. Kim,

‘‘Improved scaling for quantum Monte Carlo on insulators,’’ SIAM J. Sci.

Comput., vol. 33, no. 4, pp. 1837–1859, Jan. 2011.

[29] S. Bellavia, V. De Simone, D. di Serafino, and B. Morini, ‘‘Efficient

preconditioner updates for shifted linear systems,’’ SIAM J. Sci. Comput.,

vol. 33, no. 4, pp. 1785–1809, Jan. 2011.

[30] W.-H. Luo, T.-Z. Huang, L. Li, Y. Zhang, and X.-M. Gu, ‘‘Efficient

preconditioner updates for unsymmetric shifted linear systems,’’ Comput.

Math. with Appl., vol. 67, no. 9, pp. 1643–1655, May 2014.

[31] A. K. Grim-McNally, E. de Sturler, and S. Gugercin, ‘‘Preconditioning

parametrized linear systems,’’ 2016, arXiv:1601.05883. [Online]. Avail-

able: http://arxiv.org/abs/1601.05883

[32] A. K. Grim-McNally, ‘‘Reusing and updating preconditioners for

sequences of matrices,’’ M.S. thesis, Dept. Math., Virginia Tech,

Blacksburg, VA, USA, 2015.

[33] N. P. Singh and K. Ahuja, ‘‘Preconditioned linear solves for para-

metric model order reduction,’’ Int. J. Comput. Math., vol. 97, no. 7,

pp. 1484–1502, Jul. 2020.

[34] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia, PA,

USA: SIAM, 2003.

[35] H.-L. Shen, S.-Y. Li, and X.-H. Shao, ‘‘The NMHSS iterative method for

the standard Lyapunov equation,’’ IEEE Access, vol. 7, pp. 13200–13205,

Jan. 2019.

[36] M. Benzi, ‘‘Preconditioning techniques for large linear systems: A survey,’’

J. Comput. Phys., vol. 182, no. 2, pp. 418–477, Nov. 2002.

[37] E. Chow and Y. Saad, ‘‘Approximate inverse preconditioners via sparse-

sparse iterations,’’ SIAM J. Sci. Comput., vol. 19, no. 3, pp. 995–1023,

May 1998.

[38] K. Alexander, ‘‘Modified sparse approximate inverses (MSPAI) for paral-

lel preconditioning,’’ Ph.D. dissertation, Dept.Math., TUMunich,Munich,

Germany, 2008.

[39] M. Benzi and M. Tuma, ‘‘A sparse approximate inverse preconditioner

for nonsymmetric linear systems,’’ SIAM J. Sci. Comput., vol. 19, no. 3,

pp. 968–994, May 1998.

[40] S. C. Buranay and O. C. Iyikal, ‘‘Approximate Schur-block ILU

preconditioners for regularized solution of discrete ill-posed prob-

lems,’’ Math. Problems Eng., pp. 1–18, Apr. 2019, Art. no. 1912535,

doi: 10.1155/2019/1912535.

[41] S. C. Buranay, D. Subasi, and O. C. Iyikal, ‘‘On the two classes of

high-order convergent methods of approximate inverse preconditioners

for solving linear systems,’’ Numer. Linear Algebra Appl., vol. 24, no. 6,

p. e2111, Dec. 2017.

[42] F. Soleymani, ‘‘A fast convergent iterative solver for approximate inverse

of matrices,’’ Numer. Linear Algebra Appl., vol. 21, no. 3, pp. 439–452,

May 2014.

[43] L. Y. Kolotilina andA. Y. Yeremin, ‘‘Factorized sparse approximate inverse

preconditionings I. Theory,’’ SIAM J. Matrix Anal. Appl., vol. 14, no. 1,

pp. 45–58, Jan. 1993.

[44] N. I. M. Gould and J. A. Scott, ‘‘Sparse approximate-inverse precondition-

ers using norm-minimization techniques,’’ SIAM J. Sci. Comput., vol. 19,

no. 2, pp. 605–625, Mar. 1998.

[45] Y. Saad and M. H. Schultz, ‘‘GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems,’’ SIAM J. Sci. Stat.

Comput., vol. 7, no. 3, pp. 856–869, Jul. 1986.

[46] H. A. van der Vorst, ‘‘Bi-CGSTAB: A fast and smoothly converging variant

of bi-CG for the solution of nonsymmetric linear systems,’’ SIAM J. Sci.

Stat. Comput., vol. 13, no. 2, pp. 631–644, Mar. 1992.

[47] P. Sonneveld and M. B. Van Gijzen, ‘‘IDR(s): A family of simple and fast

algorithms for solving large non-symmetric systems of linear equations,’’

SIAM J. Sci. Comput., vol. 31, no. 2, pp. 1035–1062, Jan. 2009.

[48] V. Simoncini, ‘‘Restarted full orthogonalization method for shifted linear

systems,’’ BIT Numer. Math., vol. 43, no. 2, pp. 459–466, Jun. 2003.

[49] T. Bakhos, P. K. Kitanidis, S. Ladenheim, A. K. Saibaba, and D. B. Szyld,

‘‘Multipreconditioned GMRES for shifted systems,’’ SIAM J. Sci. Com-

put., vol. 39, no. 5, pp. S222–S247, Jan. 2017.

[50] X.-M. Gu, T.-Z. Huang, B. Carpentieri, A. Imakura, K. Zhang, and L. Du,

‘‘Efficient variants of the CMRH method for solving a sequence of multi-

shifted non-Hermitian linear systems simultaneously,’’ J. Comput. Appl.

Math., vol. 375, Sep. 2020, Art. no. 112788.

[51] X.-M. Gu, T.-Z. Huang, G. Yin, B. Carpentieri, C. Wen, and L. Du,

‘‘Restarted Hessenberg method for solving shifted nonsymmetric linear

systems,’’ J. Comput. Appl. Math., vol. 331, pp. 166–177, Mar. 2018.

[52] V. Simoncini, ‘‘Computational methods for linear matrix equations,’’ SIAM

Rev., vol. 58, no. 3, pp. 377–441, Jan. 2016.

[53] C. C. K. Mikkelsen, ‘‘Numerical methods for Lyapunov equations,’’

Ph.D. dissertation, Dept. Math., Purdue Univ., Lafayette, IN, USA, 2009.

[54] O. Axelsson and A. Kucherov, ‘‘Real valued iterative methods for solving

complex symmetric linear systems,’’ Numer. Linear Algebra Appl., vol. 7,

no. 4, pp. 197–218, Jun. 2000.

[55] N. Gräbner, V. Mehrmann, S. Quraishi, C. Schröder, and U. von Wagner,

‘‘Numerical methods for parametric model reduction in the simulation of

disk brake squeal,’’ J. Appl. Math. Mech., vol. 96, no. 12, pp. 1388–1405,

Dec. 2016.

[56] T. Han and Y. Han, ‘‘Numerical solution for super large scale systems,’’

IEEE Access, vol. 1, pp. 537–544, Aug. 2013.

NAVNEET PRATAP SINGH received the

bachelor’s degree in computer science and engi-

neering from UPTU, Lucknow, India, and the

master’s degree in modeling and simulation from

the Defence Institute of Advanced Technology,

Pune, India. He is currently pursuing the Ph.D.

degree with IIT Indore.

His thesis focuses on Stable Linear Solves with

Preconditioner Updates for Model Reduction. His

research interests include intersection of computer

science and mathematics, especially numerical linear algebra, optimization,

dynamical systems, and machine learning.

KAPIL AHUJA received the bachelor’s degree

from IIT (BHU), India, the double master’s and

Ph.D. degrees from Virginia Tech, Blacksburg,

VA, USA, and the Postdoctoral training from the

Max Planck Institute, Germany.

He is currently an Associate Professor in com-

puter science and engineering with IIT Indore,

India. In the past, he was a Visiting Professor at TU

Braunschweig, Germany, TU Dresden, Germany,

and Sandia National Labs, USA. He is also work-

ing on mathematics of data science as well as computational science. His

research interests in artificial intelligence, machine learning, numerical

methods, and optimization.

VOLUME 8, 2020 133247

http://dx.doi.org/10.1155/2019/1912535

	INTRODUCTION
	MOR
	PROPOSED WORK
	PRECONDITIONED ITERATIVE METHODS
	THEORY OF REUSING PRECONDITIONERS
	APPLICATION OF REUSING PRECONDITIONER

	NUMERICAL EXPERIMENTS
	ACADEMIC DISK BRAKE MODEL
	INDUSTRIAL DISK BRAKE MODEL

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	NAVNEET PRATAP SINGH
	KAPIL AHUJA

