
Reusing Requirements through a
Modeling and Composition Support Tool

M.G. Fugini §t M. Guggino t B. Pernici ~t

§Universit~ di Brescia

:~Universit~. di Udine

tPolitecnico di Milano

piazza Leonardo da Vinci 32, Milano, Italy

relett 14@imipoli.bitnet

Abstrac t

This paper presents the concepts and tools for reusing requirements being de-

signed and implemented within the ITHACA project. I The RECAST (REquire-
ments Collection And Specification Tool) tool guides the Application Developer in

the requirement specification process by providing suggestions to the reuse of com-
ponents. To this aim, RECAST includes a meta-level of definitions; here, meta-level

classes associated to components contain design suggestions about the reuse of these
components and about the design actions to be performed during the subsequent
application development phases.
A uniform approach is provided in RECAST for specifying both components and
meta-level classes: the ORM specification model, especially oriented to requirement
specification of object-oriented applications. The paper describes the components
connection-model, the environment for reusing requirements, and the interface of

RECAST.

1 I n t r o d u c t i o n

The purpose of the ITHACA Application Development Environment (ADE)/Ader 90/

is to support application development through reuse of development information re-

garding both available executable software and development information, such as re-

quirements, scripts, design documents, design decisions and motivations. To enhance

the effectiveness of this ADE, an object- oriented approach to application development

/Cox 87, Shlaer 88/ is considered in ITHACA, and a centralized repository of devel-

opment information and reusable components is the core of the environment. This

repository, called Software Information Base (SIB), contains descriptors of development

information/Constantopoulos 89/. It is accessed by the ADE tools in order to retrieve

reusable elements and progressively build an application/Gibbs 90/. In particular, one

tool is devoted to the requirement specification phase of ITHACA; the RECAST tool

/Fugini 90a/guides the Application Developer (AD) in the exploration of the character-

istics of the application at hand and in the selection of useful requirement components.

This tool is based on design knowledge stored in the SIB in the form of metaclasses,

1This work is partially supported by the ITHACA Esprit II Project n. 2705

5]

that is, of meta~level descriptions associated to reusable classes which detail the usage,

interconnection modes, the necessary interfaces, the optional design choices that can

be undertaken by the AD to appropriately reuse the available componen t s . Classes

and meta-level classes considered by RECAST are expressed in a homogeneous formal-

ism using the Objects with Roles Model (ORM) /Pernici 90a/, explicitely defined in

ITHACA for designing object-oriented systems under a reusability approach. ORM

allows one to specify the structure and the dynamics of object systems through the con-

cepts of roles, states associated to these roles, messages, and a rule-based mechanism

for object evolution. In particular, for meta-level classes, these ORM concepts are used

to provide the AD with design suggestions about how a component can be selected,

tailored, modified, adjusted to the requirements of the current application.

This paper presents the current work being performed on the RECAST tool. First,

the definition of components, as elements that can be selected from the SIB, examined

in a temporary workspace, interconnected and tried by the AD and then put together

upon a design "committment" is given. An interconnection model is outlined, with spe-

cial attention to the graphical representation. The graphical representation considers

a notation for components which are selected explici tely by the AD, a notation for

components which are proposed by RECAST as necessary or optional components to

be consequently selected, a notation for connections between components and a way of

representing various deta i l levels during the specification process. Then, the paper

illustrates the concepts of f r amework , as a set of reusable classes which are related in

a reusable schema. In ITHACA the concept of framework is related to application do-

mains; examples in the domain of Public Administration Offices/Kappel 89 / i s given.

From the requirements viewpoint, a framework is a set of components and of their

associated meta-level classes which are linked together to give the AD the guidelines

necessary to reuse the components. The use of frameworks in a specification method is

discussed.

An important aspect of RECAST is its user interface. The problem of orientation

in the development information space quickly arises when large class collections are to

be explored/Gibbs 90/. Moreover, the architecture of RECAST has to take into ac-

count carefully the interaction with the SIB, with the Selection Tools defined for the

SIB/Costantopoulos 89, Fugini 90c/, and the interaction with the VISTA design tool

/Stadelmann 90/, which provides support to the detailed design (scripting) phase of the

ITHACA development process via a graphical interconnection interface.

The paper is organized as follows. Section 2 describes the concept of component and

the operative model for interconnection of components. The ORM model used for com-

ponents is briefly reviewed, and the graphical notation used for components and com-

ponents interconnection is described. Section 3 illustrates the environment for reusing

requirements based on the concepts of framework and of meta-level classes, as concepts

which incorporate design guidelines to the AD. Section 4 describes how semi- automatic

support to requirements reuse can be provided: the current design of RECAST, and in

particular of its interface to the AD and to the ITHACA ADE tools, is given.

52

2 R e q u i r e m e n t s M o d e l i n g and C o m p o s i t i o n

In this section the Object with Roles Model is briefly presented and a graphical repre-

sentat ion of O R M classes suitable for the requirement composit ion process is presented.

Central to the Object with Roles model is the concept of ro le . A role is a c o n t e x t

for message interpretat ion, and corresponds to an object 's specific behavior during its

execution. The role concept relaxes a restriction tha t class models impose to an object,

t ha t is the inability of an object to exhibit more than one behavior at the same time.

O R M objects can play multiple roles at the same time, for example a person can be

driving a car, listening to the radio, work for a company, be a husband or a wife during

its lifetime, with many of this ~roles" possibly played a t the same time. ORM objects in-

trinsically exhibit a form of concurrence and communicate exchanging messages. Roles

can be created and manipula ted during object execution.

2.1 ORM Modeling Concepts

O R M Classes are defined as an ordered pair consisting of a unique class name and a set

R of roles:

class = (cn, R)

R{R0, R1,..., Rv}

Each class describes different roles (which correspond to different behaviors). Any role
can be played independently (subject to some constraints to be discussed later) and
an object is allowed to play many role instances at the same time, even multiple role
instances of the same role type.
The global characteristics of an object are described by the Base Role type R0. Each
role type is specifies as:

Ri = (rni, Pi, Si, Oi, Rui)

where:

rni is the role's name;

Propert ies Pi are abs t rac t description of da ta and are implemented by instance

variables. Each Pi has a name ni and a domain di. For example, a Person class

might have (name, string) as a proper ty-value pair.

• States s - i E S i describe the abs t rac t role s ta te for a given role.The object

complex abs t rac t s ta te is defined as:

s ta te = (s-J0, s-i l , s-J2, s-in)

where s-jk is the k-th instance of j - th role.

• Operat ions Oi are the set of messages an object can send or receive. Messages are

indicated by a name and are preceded by an *- if incoming, by an --* if outgoing.

Rules r - u i E Rui define the role's behavior, s ta t ing which messages can be sent

and received in each state. To each message sent or received, a s ta te transit ion is

53

associated. Only messages that are defined in association with a state are allowed

to be sent and received in that state. State transition diagrams show the evolution

of objects according to state transition rules.

The base role, of role type r0, is always instantiated exactly once, and is responsible for

the other roles' creation, destruction and coordination. New roles can also be instanti-

ated by external add-role messages. The reader interested in a more detailed discussion

of the ORM model is referred to/Pernici 90a/.

A sample ORM class definition is given in the following; where the person/office class is

defined, with five roles, R0, ..., RS. R0 and R1 are detailed in their properties, states,

messages and rules.

class= (person/office.
RO= <base-role.

properties = { (name, string). (id, string)},
states = {active. suspended},
messages =

rules = {

{<-add-role. <-suspend-role.
<-resume-role, <-terminate-role.

<-suspend-obj ect. <-resume-object.
<-kill},

}>.

R1 = < requester-for-approval.

properties = {(ref-doc. document)},
states = <started. waiting, completed}.

messages = <->request. <-approve. <-reject}.
rules =

{rule-req.O:

rule-req,l:

rule-req.2:

rule-req.4:

msg(<-add-role) => state(started)

/*initial role state*/
state(started), msg(-> request)

=> state(waiting)
state(started), msg(<-approve)

=> state(completed)

constraint(state(waiting), msg(<-approve)

=>forbidden-msg(<-rejeet)))
rule-req.5:

constraint(state(waiting), msg(<-reject)
=> forbiddenmsg(<-approve)))
}>.

R2 = <request-handler >

R3 = < reminder-informer >

R4 = <document-preparer >

R5 = <approver >)

54

2 .2 C o m p o n e n t s

In this section and in the following, the "operative model" of requirement composition

is described. Since the trend within the ITHACA project is to have graphical tools

and visual representation, a graphical representation of the composition process is also

described, briefly mentioning the most important phases where the tools support the

AD in his process of requirement composition. ORM classes are graphically represented

as rectangles , and are shown as partitioned in several slots, each corresponding to

a role of the class. ORM classes interact playing roles that communicate exchanging
messages. The point where the interaction between roles of the same or of a different
class is considered to take place is called role pin. This is graphically represented as an
overhanging element from the class in correspondence of the role's slot.

Requirements components are ORM classes or class roles. These are combined by the
AD into a requirement specification, by selection from the SIB. The guidelines for the
reusability of components are given in the form of ORM meta-level classes /Pernici
90b/that are also stored in the SIB and whose roles and properties describe the design
actions associated to a given component. Meta-level classes and design guidelines will
be illustrated in more detail in Section 3. In our example, let us suppose that the role
requester-for-approval of the person/office class be selected by the AD from the SIB as
starting component for the requirement composition process. Some other components
should or might be selected from the SIB as well, as a consequence of the AD's choice.
In Figure 1, the person/office component is shown using the graphical representation
described here above of classes and roles. In the figure, the state diagram associated to
the base role of person/office is shown. This diagram depicts the state evolution of the
class and can be zoomed in by the AD for examining the details of the class evolution
in the given role. By zooming the state diagram of the base role of person/office, it
is possible to see in detail the properties and rules of an ORM class. The suggested
components to be selected upon the AD choice of using the person/office class are shown
in Figure 1 with dashed lines. For each role-slot, the name of the role and the set of
messages belonging to the role's Operation set are shown. The role's instance variables
and rules (or alternatively the role's state transition diagram) may also be shown upon
request, either temporarily (pop-up) or permanently. As a default, instance variables
are shown only if they are actually declared in the component, i.e., the IsA hierarchy is
not flattened. The role's state-transition diagram are shown in the usual notation/Harel

87/, and may be edited to modify the role's behavior. In particular, role diagrams are

depicted using circles denoting states and arcs tagged with arcs tagged with the name

of the message that triggers that transition and an optional message to be broadcasted

to trigger other transitions in the role or in the connected roles. A slightly different

visual representation of role state-diagrams allowing visual representation of messages

will be discussed later on.

In Figure 1, the role requester-for-approval is shown with a continuous line because its

has been selected explicitely by the AD; the Base Role is always selected as a consequence

of any first role choice for a class.

The role document-preparer is considered necessary in the design guidelines for the

55

role requester-for-approval to operate properly, and its outline is shown with a dashed

line, to show that its appearance is a consequence of the AD's decision, and not the

result of the AD's direct inclusion of the role components. Since a necessary interface

to the role document-preparer is considered to be the ORM document class, this class

is automatically retrieved from the SIB as an implication of the person/office selection;

the interaction of the two classes is shown with a role-link (to be discuased later) that

connects the roles being-prepared of the document class and the role document-preparer

of the person/offce class (see Figure 1). All these components and their connections

are automatically proposed to the AD as necessary components, and are depicted with

dashed lines to show their being an indirect result of the AD's design actions.

2.3 Components Interaction

The ability of combining reusable components together in different ways to form differ-

ent application is essential to the achievement of software reusability. As it has been

pointed out/Tsichritzis 90, Ceri 90/, in most object oriented systems, classes are known

to all objects, and this enhancement in reusability comes to the expense of imposed be-

havior uniformity. Hierarchical decomposition methods are in widespread use /Coad

90/, and Hieraxchical Object Oriented Design methodologies are emerging/Hood 87/.
In the following, a component composition method is proposed which basically supports
hieraxchical composition of components, thus encapsulating the innermost components
behavior in a higher level abstraction.
Components are connected together using the concept of role-link. A role-link between
role A1 of component A and role B1 of component B is a mappkug of outgoing messages
of role A1 into incoming messages of role B1 and viceversa. This mapping is consid-
ered to establish a message flow between the two roles, that is, it physically acts as a
general message translation mechanism. The graphical representation of a role-link is a
cable-like entity that connects two role-pins.

A role-link is depicted in Figure 1 between the document- preparer role of person/offce
and document; this role-link splits to the three roles of document. When a mapping
exists between two roles which does not require message translation or elaboration (i.e.,
the message names remain the same), the roles are said to be mutually compatible.
Roles should be checked for compatibility before a connection is made between them. In
some cases, however, a broader interconnection capability may be necessary than that
provided by the compatibility property, and should be supported. Role compatibility
should be regarded as a suffcient, but not necessary property of connectable roles.
Another basic concept for composition is the Process Class. A Process Class is an
ORM class whose roles represent tasks of the application; process classes are used in
the requirement composition process to coordinate the various selected components to
model the whole behavior of the application under development/De Antonellis 90/.

The order of execution of these tasks can be modified by the AD by examining the global
state-transition diagram of the process class and choosing between the various possible
control sequences. In our example, an ORM process class is the Public Administration

56

/
i
\

Person/office

;'base role ~'~', ~"~
e-add-rote

i~ (.--suspend-rote ~,
i <-'resume'r°te i

~-terminate-roie
i (--suspend-object i
i <--resume-object i
\ .-. , ~k i l l ./'

Figure 1,
Selection of the personloffice class
and suggested components,

requester-for-approval
--~request
<--approve
s-reject

~ u i s E

/do'cument-preparer "'" I
--~. prepare . j I

-- Document - - - .

\.. base-role

/ ! (--...
, ; !

I I being-prepared
! ". ~ .-~ -->edit

---~tay-out
i --)sign

~ . ~ being-delivered
->deliver

l ',..,

Figure 2 Figure 2a
Steps of component connection Selection of PAdm

" ~ i Pers°n/°ffice < "

(.--add-role i
(--suspend-role I

resume-role I
te r~na te - re le j
suspend-object I
resume-object ;

~...~---kiil , j

requester-for-approval
---~request
<---approve
<---reject

//document-preparer "~
', -t...P~e.~.~. e ,~

..-.-- Document-.

.%,.,,

~ ~ . ~ ~ be,ng-prepared -- --Hay-out --)edit

',, i ~s.Jn

~ being-delivered
--->deliver

L J

PAdm --~

57

Office class. Its specification and that of some of the other classes of our example is

given in beneath (we use a simplified notation).

process class PAdm
/* roles */

base-role

properties = (name, string)
states = < active, suspended, terminated}
messages= {add-role. suspend-role, resume-role.

terminate-role, suspend-object,

resume-object}
internal :

. ° .

external:
° • •

communication:

class Document

/* roles */

base-role :
properties = (name, string)
states = {archived.being-processed. completed}

messages= {add-role. suspend-role.

terminate-role, suspend-object.
being-prepared:

messages = {edit. layout, sign }
being-delivered:

messages = {deliver)
signature-handler:

messages = {sign}

resume-role.
resume-obj ect}

In Figure 2, the component composition steps of the PAdm example are represented.

After selecting person/office, and obtaining document as shown in Figure 1, the com-

position proceeds selecting from the SIB the PAdm process class (see Figure 2a). As

a default, upon selection the Base Role of the PAdm class is shown, with one role-pin

that allows the AD to initiate the connection process. Connecting the requester-for-

approval role with the PAdm component with a role-link will initiate the retrieval from

the SIB of the roles whose presence is necessary in the PAdm Class in order to make

the connection with the office/person class effective. The roles of PAdm are shown in

Figure 2b; all roles are selected, and the visual conventions of Figure 1 apply.

Another ORM class in Figure 1 is the external-office; its interaction with the PAdm

58

Figure 2b
Details of PAdre component

Person/office

e-add-role
(--suspend-rote
e-resume-role
<..-terminate-rote
<--suspend-object

L e-resume-object
e-kill .ff

requester-tot-approval
-,,>request
<--approve
(--reject

-,.~prepare j

It \ J . .c
J~

\ Document~

base-m|e

('-'*" t
being*prepared

-->edit
--Hay-out
,->s=gn

being.delivered
.-~leliver

J

PAdre , , ~,
base role

e-add-role
e-suspend-role
e-rasume-tole
(--terminate-role
e-suspend-object
.~-rssume-object

internal

L
".. J

communication

Figure 3.
Components of PAdre
Process Class

i
l ' PAdm

internal requ:mp:oy:e ,. t~u~::,P::;b:~

o.m~o~,,o~ \
\

\

Official Document Framework Scdpt

59

class is shown via a role-link. Whenever a connection is made from the AD choosing
between different options, the design suggestions implied by that connection (i.e., the
new role's necessary and optional interfaces) are shown and the other connection op-
tions are discarded.
Repeating the connection process, ORM classes may be graphically connected into
complex aggregates until the desired specifications are composed. In the ITHACA ter-
minology, this process of composition, with associated graphical notations, applies to all
phases of the software process, and, at the design level is called scripting/Nierstrasz
90/.

ORM classes may themselves be composed of lower level classes as shown in Figure 3,
where the inner components and structure of the PAdre class is detailed.
Corresponding to a deeper level of abstraction, the inner workings of the PAdm class
are now shown. Two interacting ORM classes provide the external PAdm's behavior:
employee and responsible. Both classes are specializations of the person/office class,
and some of their roles, through a message translation mechanism, provide the required
external role behavior. They correspond to the real-world counterparts "clerical worker"
and "responsible" respectively.
Figure 3 depicts the interaction between the two and the outside world. The employee
acts as a request-handler, a document-preparer, and a reminder-informer, corresponding
to the roles of handling communications with the applicant and of performing office tasks
internal to PAdre. He may also interact with an external office in its role of request-
handler.

The responsible class does not interact with the request applicant (because the clerical
worker act as a front-end in those roles); rather, it acts as an approver with respect to
employee, and possibly reroutes requests for approval to an external office class (which
in Figure 2h is represented as a consequence of choosing the optional role external in
the PAdm class). A "related-to" link to the framework script official document can be
followed when it is necessary to specify an official document structure. This type of
connection brings the AD to another definition environment, called framework which
will be illustrated in more detail in Section 3.
Here, we say that a framework script is a partially composed requirement specification
that the AD can complete according to his needs. A framework script can also specify
how external tools can be used to accomplish some steps of the specification process.
State transition diagrams visually illustrate a role dynamic behavior and are in wide-

spread use and useful extensions have been devised/Harel 88/. For our purposes, they

do not convey any important information when more roles are considered as connected

and their dynamic behavior is to be shown. In fact, in conventional state diagrams,

a state transition triggers a message ejection. Of these messages though, and of their

flow, no visual indication is provided, usually considering them as broadcasted to a whole

suitable context. An alternative graphical representation of state-transition diagrams

is proposed here that, using the concept of transition inhibition and excitation, allows

a visual representation of the message flow.

To represent the flowing of a message between two connected roles, a cable-like entity is

60

used, called a message-path. Message paths are considered to transport messages and to
provide a visual indication of a message origin and destination. Message- paths may be
tagged with the name of the message they transport and start with a component, called
a sensor/Nierstrasz 90/whose activation generates a message, that can either have a
name and correspond to a role operation or be an internal, private message. Sensors
are placed in correspondence of states, state- transition arcs or of message-paths, and
are respectively activated by the system being in that state; a state-transition takes
place on that arc or a message passing through the neighbouring message-path. When
reaching the end of the message- path, the message reaches a component call excitator,
which is in turn placed in proximity of a state-transition arc. When reached by the
message the excitator will trigger the state transition. When more than one message-
path flow to the same direction they can be aggregated and be drawn as a single entity,
to be separated again when needed. This is mainly to avoid cluttering the diagrams and
to provide visual indication of message groups. It is necessary in this case to provide
information, either in the form of message names or using color and other visual clues,
about how the message-paths exactly split again.
Each excitator along the arc must be active for the transition to occur; when more than
one message can trigger a transition all their message paths reach the same excitator.
When more than one message-path originates from a single sensor, that means that only
one of the messages is generated. A particular auto-sensing configuration, in which a
state transition is triggered by the state itself from which the transition takes place,
is used to indicate that the system autonomously changes state without any external
(represented) intervention.

An example is presented in Figure 4 depicting the interaction of the role request-handler
of Employee with the Responsible class.
In the example, defau/t states are marked with a double circle, and the interaction
between the roles of the classes is shown with its associated message flow. The interac-
tion, which is initiated by the request-handler issueing a request, moves the responsible
from the "available" to the "evaluating" state, whose possible results are a rejection or
an approval. They both will move the request-handler from the waiting state to the
completed state, thus terminating the role interaction.

3 T h e E n v i r o n m e n t for R e u s a b l e Spec i f i ca t ion Com-

p o n e n t s

In this section, we illustrate how the AD is guided by RECAST in composing an ap-
plication specification. The environment guiding the AD is based on the concept of
framework, as a set of related components, and on the meta-level classes, which
incorporate design suggestions. The meta-level describes:

• how the components can be reused, that is, can be selected, refined, modified for
being tailored to the application at hand;

61

Fig. 4
Roles interaction at the tevel
of state diagrams.

SenSOr
excitalor

.................... message-palh

Responsible Class

• .. i/ ""

r st-handler

£mpJoyee C|ass

PADM FRAMEWORK

meta-level

applica~nn-levsl

* meta-person/office
* meta-document
* meta-external-office
* meta-PAdm

• Descriptive Information

• Design Suggestions

* person/off£ce
* document
* official-document
* PAdm Process Class

OFFICIAL
DOCUMENT

FRAMEWORK
I k~_ scRIPT

approval
rejection
=urtner_hroc ,,~'. |

L

5a) Structure of the Public Administration Framework

Fig. 5 Framework and metaclasses

62

• what design ac t ions could or should be performed by the AD during the various

moments of the design process;

• the impl ica t ions of the design actions performed by the AD, for example, of the

selection of components, of the definition of new components, of the specialization

of existing components. Implications of design actions suggest to the AD the

proper interconnections among components that should be set, according to the

interconnection model of Sect. 2.

Moreover, meta-level classes axe the mechanism by which links are established between

the specifications and the subsequent phases of the development process.

The following of this section illustrates the framework concept and the idea of meta-level

classes as elements containing design suggestions and therefore driving the AD in the

development (Sect. 3.1); then, the use of these concepts in the specification process is

described (Sect. 3.2).

3 . 1 G u i d i n g t h e A D i n t h e s p e c i f i c a t i o n p h a s e : f r a m e w o r k a n d

m e t a - l e v e l c l a s s e s

The basis of the RECAST approach is that the AD is guided in finding in the SIB

information relevant to develop a given application. The concept of Generic Appli-
cation Frame (GAF) has been proposed within ITHACA /Nierstrasz 89/ to provide

information to support the AD during the development process. The GAF for a given

application domain should drive the AD to build a Specific Application Frame (SAF)

for his applicat ion/Gibbs 90/. In the requirement specification phase of ITHACA, a

GAF, or simply a framework, is defined as a set of classes related to a given application

domain. Classes are organized at two levels/Pernici 90b/:

• the application level, describing the characteristics of objects belonging to that

class;

• the meta-level, describing how the classes can be reused, that is, describing the

design actions associated to the application classes.

The ORM model is used both for classes at the application level and for classes at the

meta-level, the goal being that of having a homogeneous object-oriented approach to the

development process/Pernici 90a/. Now, a framework groups the available classes and

the meta-level classes containing the guidelines for class reuse within a given application
context. It allows the AD to consider for reusability groups of components, rather

than single components. According to the current approach in ITHACA, we assume

that frameworks axe established by application domains (banking applications domain,

financial domain, public administration domain, and so on).

Frameworks relating to one domain can be regarded as constituting a semantic network

of classes and meta-level classes where:

• describes-reuse-of links relate the rneta and the application level;

6 3

the meta-level classes constitute a network of design knowledge used for reusing

components;

the application level classes are the network of reusable components; their inter-

connections to compose an application axe described,in the meta-level. Within a

framework, an inheritance lattice is defined on the classes, defining specific inher-

itance constructs based on the ORM concepts of class and role/Parmigiani 91/.

Moreover, the framework describes dependencies between application classes. The

following dependencies are considered:

- classes components

- - classes which provide needed services to a given class

- classes which provide potentially useful services to a given class

- alternatives in the specification of a given class, with preferred or default

choices.

These mechanisms are mainly based on a retrieval system based on names associated

to frameworks, and to classes, roles and messages. Names assume therefore a particular

relevance in the definition of a class. The SIB retrieval mechanism defined in ITHACA,

comprising browsing and querying tools /Costantopoulos 89/, is used for retrieval of

specification components.

In particular, frameworks can be accessed either by navigating in the SIB or by for-

mulating queries based on keywords associated to the frameworks. The classification

schema is in the style of/Prieto-Diaz 87/ and is based on a set of predefined charac-

teristics of components /Fugini 90c/. Basically, component retrieval can occur on the

names of roles and messages of ORM classes, and using additional keywords included

among the properties of ORM classes. These keywords should be under control of the

Application Engineer (AE) who is responsible for maintaining the consistency and op-

erability of the whole ITHACA development environment/Nierstrasz 89/.

The notion of similarity of components and of correspondence between components at

the various stages of the development life-cycle is also supported in ITHACA/Fugini

90, Petra 90/. It is beyond the purpose of this paper to illustrate the ITHACA Selection

Tools; some keywords useful for the selection of ORM application classes are assumed

to be defined in the components of our examples.

Meta-level c/asses are defined using the ORM model. The definition of their roles, called

meta-level roles, includes the following properties:

• application domain: the set of application domains for which the described appli-

cation class is intended;

• level: a set of levels can be defined for classes, depending on the various design

abstraction levels where the AD is supposed to operate and therefore on the num-

ber of hierarchical decompositions which exist for a given class. As an example,

the PAdre process class can be regarded as a whole with a name and a set of roles;

at a lower abstraction level, e.g., at a deeper level of decomposition, the AD will

64

want to see the components of PAdm, and in that ease he will be presented with

the "employee" and "responsible" subclasses of "person/office", as described in

Sect. 2. This level of detail allows the AD to examine which components provide

the external behavior of PAdm observed at the previous level of abstraction. A

possible sample set of levels for classes is the following:

{meta, top-level, (components} }

where meta means that a meta-level class exists for that component, top-level

is the highest level of detail where only the base role is available, and components

is a reeursive set of hierarchical decompositions of the class. A sample top- level

specification of the application class PAdre is given in the Appendix.

keywords: the set of keywords describing the application class and its functional-

ities. These are useful for class retrieval, as described above. Moreover, keywords

are associated to the recta-level role itself, in order to allow its retrieval within

the recta-level class.

dependencies: properties defining relationships among classes.

The basic kinds of dependencies which are defined are:

1. Required Interfaces: the classes needed by a given class to work correctly

/Hood 87/;

2. Component C/asses: the set of classes which compose the given class;

3. Acquaintances: the set of classes related to a given class.

• application level roles: the set of roles and the global role state diagram of the

application class.

• design suggestions: information useful for class reuse; design suggestions are in-

eluded in the rule part of the meta-role. This item will be illustrated in more

detail in the next section.

Using frameworks and meta-level classes, the requirement specification phase in ITHACA

is performed by the AD on the basis of design information provided in the framework.

In particular, the specification is obtained by selecting one framework, exploring and

selecting the application level reusable classes of the framework, guided by the metaclass

definitions, by tailoring these definitions to the needs of the application at hand, and by

composing the definitions through the components interaction model described in Sect.

2.

These steps do not necessarily occur in the sequence indicated here, and can be iterated

several times.

The sample framework considered here is the Public Administration framework of the

ITHACA workbench. We consider a request forwarded by private organizations, and

authorizations released by the PAdm office, according to what illustrated in Sect. 2.

The PAdm framework include the person/office, document, official- document, external-

office, and the PAdre classes. The ORM definition of some of these classes has been

65

Fig. 5b) Sample Definition of Document Metaclass

met~ document

/* meta-level roles */

R0 meta-functionality

properties /* descriptive information */

domain: {PAdm, Office_Appligations)
level : {meta, top-level)
required interface: person-office
components: header, body
appl-level-roles: (base, being-prepared,

being-delivered)
implementation suggestions: (graphical-editor,

4GL, DBMS, scanner)

messaqes

instantiate-role meta-signature
select-role (base, being-prepared}

if select-role person/office.document-preparer
then

N select-role (being-prepared,
being-delivered}

R1 meta-signature

messaqes
select-role signature-handler

rules
N define-role signature-handler

R2 meta-presentation

m~ssaqes define-header
define-colors
enter-examples
define-interface
define-official_document

rules if define-official document
then P select-framework OFFICiAL_DOCSCRIPT

66

given in Sect. 2: those definitions regard the application level; a metaclass is associated

to each of those classes, as illustrated in Figure 5a.

Reusable application classes and their corresponding meta-level classes compose the

PAdm framework. In particular, to the meta-level of "document", a link is associ-

ated connecting the framework to an existing script containing information guiding the

AD in the preparation of "official- document" classes (a specialization of the "docu-

ment" class). As shown in Figure 5a, the "official-document" can in turn have the roles

(approval, rejection, further-documentation) corresponding to the result of the request

processing activities performed by the PAdm office. Moreover, in this script, informa-

tion is contained on the modes (e.g., calls to external tools) that can be used by the AD

to perform some phases of the "official-document" preparation (e.g., entering sample

document texts /Fugini 90a/). The meta-level classes provide guidelines for reusing

application components of the PAdm framework.

As an example, consider the "document" application class illustrated in Sect. 2: the

AD is guided in the selection of this class and of roles thereof through some meta-level

roles associated to "document". In particular, associated to each meta- level role is:

. descriptive information, concerning relationships among classes;

e design suggestions, which drive the design process by expressing actions that the

AD must, should eventually, or might perform for customizing the application

class. Some of the meta- level roles of "document" are reported in Figure 5b. The

meta- functionality role at the meta-level has the same function as the base role

at the application level. It defines a basic set of characteristics and functionalities

of the document class. Its properties in the example are descriptive information

specifying, besides the current level of description, the application domain, the

required class(es) necessary to operate the "document" class, its components, and

the roles at the application level.

The other parts of the meta-functionality aim at specifying how the "document"

class can be reused. The messages and rules specify that it is possible for the AD

to instantiate a meta-level role "meta-signature", driving the AD in creating a

"signature-handler" role at the application level.

This is an example of design action that allows the AD to refine a class by tailoring

the application level classes through definitions. Another design action is the

select-role message specifying that the base role and the being-prepared roles are

the default roles when "document" and its subclasses are selected. The default role

includes a number of related functionalities, such as creating, filling in, deleting,

and so on, as illustrated at the application level (see Sect. 2).

Using meta-level roles, such as meta~signature, the AD can define additional roles to

be added to document specifications. The design actions associated to these meta-level

roles define the actions that the AD should perform to tailor the class to particular needs

(such as, for example, define a list of users for a given document type). Implementation

suggestions can also be attached to the properties of a meta-level class referring to

implementation level classes that can be used to develop that portion of the application

67

in the subsequent phases of the ITHACA development phases.

In the example, a list of standard suggestions is given among the properties of the

meta-functionality role to implement documents in a PAdm application (editors, 4GL,

graphical tools, and so on). It should be noted that the definitions contained in Figure 5b

are only examples, and that a more complete approach takes advantage of functionalities

of the Selection Tools of the SIB. In fact, a query on the SIB can be associated to

the "design suggestions" property, and the evaluation of the query would provide the

actual design suggestions. Moreover, the AD, in the subsequent development phases,

will consider not only the listed suggestions, but also their specializations and possibly

similar classes. Meta-level roles for other components of our example are reported in

the Appendix.

3.2 Use of frameworks in the speci f icat ion process

The framework concept illustrated in the previous section is used in the RECAST
approach to suggest the AD the design actions that should or could be performed on
reusable components to develop an application. Guidance to the AD is provided in
terms of messages defined in meta-level roles of the framework meta-level classes; these
messages can be invoked by the AD. Each message is presented to the AD in a To-Do
list; to each message, some design actions are associated. Actions are translated into
queries on the SIB and have two effects:

* enter some definitions in the r equ i r emen t s d o c u m e n t which is the result of the

specification phase and is incrementally filled in with selected reusable classes;

, enter some design suggestions in the design workspace .

The retrieval mechanism envisioned for design suggestions from the SIB, where they are

stored, is based on querying and navigation. Interface issues regarding the SIB will be

illustrated in Sect. 4.

Since on of the goals of RECAST is to select from the SIB the design components

necessary to script an application, to each selected component a set of justifications is

attached. These inform the AD of the reason why a component has been selected in

association to a given part of the specification. Design suggestions are provided in the

following format:

Requirement Component Name + set of keywords +
Script Name ÷ set of keywords ÷
Application Level Design Actions + Comments

This information allows the AD to retrieve relevant scripts and ultimately software com-
ponents in association with the specifications prepared with RECAST. The association
between specification components and scripts is mainly predefined, and stored in the
knowledge used by RECAST to guide the AD. Design actions to be performed at the
application level (e.g., related to the document class, the use of editors, 4GL, and so

6 8

on) are also indicated. We consider three main categories of design actions:

1. component refinements

2. component modifications

3. component interconnections.

1) Ref inements are used to complete the specifications according to the guidelines pro-

vided by the meta-level descriptions.

Refinements can be specified at the meta-level or at the application level. The first ones

include the following design actions:

• selection

• instantiation

• definition.

Selection can be: property selection (deciding whether a class includes a given property

at the application level), role selection (deciding whether a class includes a given role

at the application level).

Also a framework can be selected by the AD, thus bringing him to a new requirement

definition environment, as illustrated later here. Role instantiation occurs at the recta-

level: related to the current meta-role, a meta-role can be instantiated for refinement

of some design actions.

An example is given in Figure 5b by the design action "instantiate-role recta-signature'.

Definition (see in Figure 5b create-role "signature-handler") is the action of defining

default values for properties and roles. Refinements actions specified at the application

level are mainly calls to external design tools. An example is given for the "document"

class in its document-preparer role, where document definition tools are specified.

2) Modifications are the actions of defining new requirement components, either from

scratch or starting from the available ones performing substantial changes to them.

Modifications can be performed along several dimensions:

• functional requirements: for each role, the following actions can be performed (not

necessarily in sequence):

- add details (properties);

- define components: using composition and decomposition mechanisms;

- specialize a class: specialization may include modifications to the sequences of

tasks of a process class, i.e., the modification of the global role state diagram

described in Sect. 2.

- generalize a class: this is a process of assimilation of classes allowing the AE

to keep the SIB small and consistent.

• non-functional requirements: these include modifications to security, performance,

interface, presentation, and so on, that is, to requirements which axe not predefined

for the reusable classes extracted from the SIB.

69

• design tracking: this type of modifications occurs when design choices made in the
subsequent phases of the ITHACA development method (e.g., in the implemen-
tation phase) have to be traced back to requirement specifications. It is assumed
that it is the responsibility of the AD (possibly via a support tool) to keep track
of these cases and perform the necessary actions on the specifications.

3) Component interconnections occur according to the model illustrated in Sect. 2 and
are specified in the meta- level classes in the rules of meta-level roles. Their general
format is:

if DESIGN ACTION then {N/E/P IMPLICATIONS}

where a design action denotes selection, modification or definition of one component, or

setting the connection between components. Implications are design actions themselves

that need (N), should eventually (E), or can possibly (P) be undertaken.

They include also the connections between components that should be set. In Figure 5b,

the implication arising from the SELECTION design action of the "document-prepaxer"

role in the person/office ORM class is that the SELECT-ROLE design action needs to be

performed bringing to the "being-prepared" and "being-delivered" roles selection in the

document component. Another example is given in the same figure by the rule of the R2

meta-presentation role: if DEFINE official-document then P SELECT-FRAMEWORK

official- document.
This is an example of suggested selection of a scripted framework, that brings the AD
to the environment where he can define, call the suitable tools, and specialize the "doc-
ument" component. The process of requirement specification is performed by the AD
proceeding by different abstraction levels. The idea of guided tours has been proposed
for RECAST in/Pernici 90b/. The steps of a guided tour drive the AD from a first
definition of the application to the detailed specification through a series of design op-
erations which lead to the definition of various drafts of the application. The first draft
of the application contains primarily top-level specification components; it specifies the
interactions of the application with the external world. By revising and detailing this
first draft, various revised schemas of the application are produced. The components
axe detailed in their structure and behavior; in one schema, classes decomposed at dif-
ferent levels of detail may co-exist. Detailing occurs via refinements and modifications.
Refinements are those design operations which axe pre-defined at the meta-level; more-
over, design and implementation decisions in the subsequent phases of the development
are not affected by refinements. Modifications to intermediate schemas are those Ol>-
erations which substantially modify the behavior of the application; modifications can
be handled in several ways. If a new type of document, e.g., financial report, is to be
handled in the PAdre office, for which no design actions axe defined in the document
meta-level class, some new components, and subsequently some new software, should
be defined.

70

4 R E C A S T

In this section we analyze how the concepts presented in the previous sections, and in

particular modeling with ORM concepts following the guidelines expressed in a set of

frameworks, can be supported by semi-manual and computer based assistants. In Sect.

4.1, we present the architecture of the tools for the assistance of AD, while in Sect. 4.2

we discuss interface aspects.

4 . 1 A r c h i t e c t u r e o f R E C A S T

The goal of the tool is to suggest which are the basic design elements to start from, and

how to add new features to the application at hand, by taking into account existing

possibilities. As a consequence, we expect that the AD will not go through analysis,

design and development phases in sequence, but will construct the application incremen-

tally, using development support tools, switching back and forth through the different

development phases. In this incremental process, we can distinguish two basic phases:

• the r equ i r emen t s col lect ion and speci f ica t ion phase, with two goals:

1. the definition of the requirements of the application, in terms of real-world

entities, and

2. the selection of the design components that are useful to build the application,

giving indications about their expected use;

• the design phase has the goal of designing the application in detail, on the basis

of the result of the previous phase. Both the requirements specification phase and

the design phase are based on information extracted from the SIB, as discussed

in the following.

Since the AD develops in parallel different aspects of an application at different levels

of detail (given the incremental approach), the system has to maintain the progress

of work and the relationships between information represented at different levels. A

basic architecture of the ITHACA Application Development Environment is presented

in Figure 6. Both the requirements specification and the design tool can work inde-

pendently. They share common information through a common workspace, which is

also the area where the Selection Tools store information retrieved from the SIB. Both

private and common workspaces contain temporary information, used during a design

session. More permanent information, such as results from the development process, to

be stored permanently, is stored directly in the SIB, under the control of the AD.

RECAST works on a particular type of data stored in the SIB, called Application
Description. Stored information can be retrieved using keyword-based queries or navi-

gation through links, which can be of different types. As described in/Fugini 90a / and

in Sect. 3, classes and frameworks are organized in a semantic network, where the links

can either be is-a links or has-part links, as defined in/Koubara~is 89/. This semantic

71

RECAST

Private Wod~o~e

\

DESIGN TOOL

Private Workspace

/
COMMON

WORKSPACE

F~um 6. Application Development En~ronment Arch;tecture

RECAST

expand,,'

ToOo

commit
det N rows
clef P roles
def N/ntf
clef P inll

¢erson~oifice

l documer; s,'w,v ~ole~
hide roles

base-role detalJ *'o~e
undetd role
explain

being-;re~e¢ de~e
, . r/love

copy

PAdre Framework
Meta.Oocument

Necessary roles
rneta*~/nc ~fl~ r

meta-sK)na
-Selec~ r
(Usa, .-.)

rneta-~eson~

meta-deflvery

Necesaary Imerfaces
perso~otfJce

OoUonal ~nte~aces

Specification Component Pool -

N PAdre Show S;n..~ure

N Od:cumemt
P merson-Ofrk:e

t,
Selection Tools filter

browse

Rgure 7. RECAST Imdace

72

network is, in fact, the basis for the interaction with the AD. Keyword-based queries

a r e used mainly in association with recta- level definitions.

During the specification process, queries are used to access directly a node of the net-

work from which navigation is started. Browsing and keyword-based queries can also

be used by the AD, to improve his understanding of the application. For instance,

the AD can examine other applications previously developed following correspondence

links, find similar classes through similarity links, and so on. The requirements docu-

ment being produced as a result of the specification process is also stored in the SIB.

This document contains design decisions (such as, selection of groups of components,

creation of new components, refinements) which have been "committed" by the AD,

that is, have been examined, tried in the temporary workspace in terms of components

connections, and eventually definitely selected. We disting~aish between navigating in

the SIB to explore alternatives and selecting components to create the requirements

document. Only committed decisions are stored in the SIB, to be used during further

steps of the development of the application, or as reference material for future appli-

cations. Therefore, we have three types of requirements during the preparation of the

requirements document:

• temporary requirements, under exploration locally in a given design phase;

• temporary requirements, shared between development phases;

• requirements stored permanently in the SIB.

From the considerations above, it should be evident that the development of require-

ments can be supported by tools which present very different characteristics. The tools

range from completely manual tools to sophisticated and expert design assistance. In

fact, it is possible to construct a paper based tool, using a mechanism based on index

cards, as proposed in other object- oriented development methods /Coad 90/. Reusable

components are stored in a paper file, and retrieved and reused locally, in exploratory

incremental design, or in the requirements documents. At the other end of the scale,

we envision sophisticated computer-based support, with the assistance of expert tools

to check the consistency of, and to automatically complete the requirements "document.

In the next section, we present an intermediate solution, where some computer-based

assistance is provided to the AD based on indications contained in frameworks.

4.2 R E C A S T interface

The user interface to the development tool in some measure reflects the tool internal

architecture. The AD is provided with three windows (each'of which can be resized to

full screen size), one for each of the basic tools:

• a specification window (RECAST window),

• a design window,

• a selection window.

73

Within each window, each tool is working independently, and more subwindows are

created either automatically or upon the AD's requests. In the ITHACA ADE, the

basic structure for the specification and design windows is the same. First, we assume to

duplicate the selection window for each of the tools, so each tool can work independently

in its selection workspace. Each tool window contains the following information (in this

paper, we focus our attention to the RECAST window, illustrated in Figure 7):

• an area for composing components in the development document;

• an area for the pool of selected components;

• an area dedicated to provide assistance to the AD.

The problem of orientation of the AD within the development information has emerged

clearly: existing components must be provided to the AD, however details must be

hidden as far as possible, and the appropriate level of abstraction given; irrelevant

features should not be presented, the set of elements displayed should be based on

the operations been performed, and the detail should be adjustable by the AD at any

moment.

To this aim, in RECAST we consider various abstraction levels, as explained in Sect. 3

about specification levels and about drafts refinement steps. The specification window

of Figure 7 is divided in four parts. The upper left part allows the AD to interconnect

components according to the concepts presented in Sect. 2. Here, person/office has

been selected by the AD, and document, with the base-role and the being-prepared

role, has been suggested by RECAST (shadowed area). The lower left part presents

design guidelines, and the operations allowed to follow these guidelines. The to-do

list for the AD allows him to select a define optional (P) roles, necessary (N) roles

and to define the non-functional requirements; eventually, the COMMIT option allows

the AD to terminate the specification of document. The right quadrants of Figure 7

are devoted to the inspection and selection of the reusable components stored in the

SIB. It is possible to select a set of components with the Selection Tools, and to insert

them in the pool of specification components. To each component, a recta-level class

is associated which provides design guidelines to the AD. The example in Figure 7 is

given for "document", the window of the Selection Tools shows the is-a hierarchy of

document; here, the AD selects the official-document class, which is therefore moved

into the component pool area.

5 Concluding remarks

In this paper, we have illustrated the approach to requirement specification which is

currently being implemented within the framework of the ITHACA project. The com-

position of reusable requirement components, and the concepts of design framework and

design guidelines have been presented; the realization of the RECAST support tool has

been discussed, in particular in relation to the user interface and to the interface with

the other two tools in the ADE. The goals of RECAST can be summarized as follows:

74

the specification of an application is a collection of class definitions

reuse of components is emphasized, and therefore class definitions should be de-

rived from those contained in the SIB

the AD must be driven in the selection of class definitions from the SIB; to this

purpose, each class definition has an associated meta-level description, which con-

tains information useful to the AD to select and modify application classes.The

definition of classes is based on the ORM (Objects with Roles Model) model

/Pernici 90a/. ORM is based on concepts of object- orientation and its aim is to

provide a specifica-tion language for object-oriented applications. The main char-

acteristics of the ORM model are the following: a) to partition functionalities of

objects belonging to the same class according to the role played by the object at

a given time; b) to provide a rule- based mechanism to model object evolution in

time.

We suggest to use the same role-based mechanism during development for two

distinct purposes: a) to drive the construction of the specifications; b) for the

specifications themselves.

Further investigation is needed to define a rule-based language to specify impli-

cations between components, based on a minimum set of components, and an

expert support which can be provided on the basis of these rules and of the in-

formation associated to classes in meta-level classes. Another important aspect

to be investigated is the issue of multiple ADs working in parallel with RECAST.

While the case of several ADs working at the same time on different applications

is not critical~ since we can assume to have a different set of work spaces for each

application being developed, the problem of several ADs working on the same

application at the same time should be considered. In particular, integration of

partial results and interactions between the specification and the design phase

are critical /Fugini 90c/. A third important aspect is the fact that components

should be provided in a reusable form, that is mechanisms are needed to support

design for reusability. A development support tool should be able to automati-

cally provide information associated to new components which facilitates reuse.

In particular, it is important to keep track of the design process, and of decisions

and motivations for such decisions.

Finally, the mechanism of class retrieval through keywords needs to be further in-

vestigated in connection with the progresses made in the Selection Tools ITHACA

working group. It is relevant for the AD to retrieve components based on a signifi-

cant thesaurus of keywords describing the functionalities and development history

of components. Broad-scope queries should be coupled to the navigation and

browsing mechanims of the Selection Tools; these queries should allow the AD

to retrieve similar components and to have an idea of how well a component fits

the requirements or if there exist other components that better match the needed

functionalities.

75

Acknowledgements

The authors are thankful to the ITHACA partners in the "Tools Group" for ideas

and common work.

References

/Ader 90/M. Ader, O. Nierstrasz, S. McMahon, G. MSller, A-K Pr6frock, "The

ITHACA Technology: a Landscape for Object- Oriented Application Develop-

ment", Proc. ESPRIT'90 Conf., Kluwer Academic Publishers, November 1990

/Ceri 90/S. Ceri, P. Wegner and G. Wiederhold," Towards Megaprogramming",

Politecnico di Milano Internal Report n. 90-055, November 1990.

/Coad 90/P. Coad, E. Yourdon, Object-Oriented Analysis, Yourdon Press Com-

puting Series, 1990.

/Constantopoulos 89/ P. Constantopoulos, M. Jarke, J. Mylopoulos, B. Pernici,

E. Petra, M. Theodoridou and Y. Vassiliou, "The Ithaca Software Information

Base: Requirements, Functions and Structuring Concepts", ITHACA Report

ITHACA.FORTH.89.E2.1, 1989.

/Costantopoulos 90 / P. Costantopoulos, M. Theodoridou, M.G. Fugini, "The

ITHACA Selection Tool", ITHACA Report FORTH.POLIMI.E3.5.1, January 1990

/Cox 87/B. Cox, Object-Oriented Programming, Addison-Wesley 1987

/De Antonellis 90/V. De Antonellis, B. Pernici, P. Samarati, "Object-Orientation

in the analysis of work organization and agent cooperation", Politecnico di Milano,

Technical Report, (forthcoming).

/Fugini 90a/M. G. Fugini, B. Pernici, "RECAST: A Tool for Reusing Require-

ments", in Advanced Information Systems Engineering, B. Steiner, A. Solvberg,

L. Bergman (eds.), Springer-Verlag Lecture Notes in Comp. Sc., 1990

/Fugini 90b/ M. G. Fugini, B. Pernici, "Cooperative Development of Resuable

Design Units", ACM CASE '90 Workshop, Irvine, CA, Dec. 1990

/Fugini 90c/M.G. Fugini, S. Faustle, M. Theodoridou, D. Vista, D. Nastos, "Tech-

nical Description of the Selection Tool", ITHA CA Technical Report,

Polimi.Forth.90.E3.5.#2, January 1990.

/Gibbs 90/S. Gibbs, D. Tsichritzis, E. Casais, O. Nierstrasz, X. Pintado, "Class

Management for Software Communities" , Comm. of ~he ACM, vol. 33, n. 9,

September 1990

/Harel 88/D. Harel, "On Visual Formalism", Comm. of the ACM, May 88, Vol

31n. 5

/Hood 87/Hood Manual, CRI-CISI Ingenierie-Matra, June 1987

/Junod 89/B. Junod and G. Kappel, "An overview of the TAO office automation

system," ITHACA.CUI.89.E.#4, April 4, 1989.

76

/Kappel 90/G.Kappel, "Proposed Reference Example for the TWG in ITHACA",
ITHACA.CUI.89.E#7 (Revised Version), Sept.1989

/Koubarakis 89/M. Koubarakis, J. Mylopoulos, M. Stanley, A. Borgida, "Telos:
Features and Formalization", Univ. of Toronto Technical Report, KRR-TR-89-4,

Feb. 1989

/Nierstrasz 89/O. Nierstrasz, "The ITHACA Application Development Environ-
ment - Rationale and Approach", ITHACA Report ITHACA.CUI.89.E.#8, May

1989.

/Nierstrasz 90/O. Nierstrasz, L. Dami, V. de Mey, M. Stadelmann, D. Tsichritzis,

J. Vitek, "Visual Scripting Towards Interactive Construction of Object-Oriented

Applications", in/Tsichritzis 90/

/Parmigiani 91/C. Parmigiani, A. Pifferi, B. Pernici, "ORM classes reusability",
Politecnico di Milano, Technical Report (forthcoming)

/Pernici 9On~ B. Pernici, "Objects with Roles", Proc. ACM-IEEE Conf. on O~ce
]nfo. Systems, Boston, April 1990

/Pernici 90b/B. Pernici, "Class Design and Meta-Design", in/Tsichritzis 90/

/Petra 90/ E. Petra, "Hypertext Representation of the SIB Descriptions", ICS-
FORTH Techn'ical Report, July 1990

/Prieto-Diaz 87/R. Prieto-Diaz, P. Freeman, "Classifying Software for Reusabil-
ity", IEEE Software vol. 4, n. 1, January 1987

/Stadelmann 89/M. Stadelmann, G. Kappel, J. Vitek, "ITHACA Visual Script-
ing Tool: A First Implementation Based on the UNIX Shell Scripting Model",
ITHACA Report, ITHACA.CUI.89.E4.#5, Centre Universitaire d'Informatique,
University of Geneva, December 1989

/Tsichritzis 90/ D. Tsichritzis (Ed.), Object Management, Centre Universitaire
d'Informatique - University of Geneva, Technical Report, July 1990

77

Appendix

Definitions of some metaclasses of the PAdm example.

metaclass person/office

/* meta-level roles */

R0 meta-functionality

properties /* descriptive information */

domain: PAdm
level : meta
required interface: ---
components: employee, responsible
appl-level-roles: (base, requester-for-approval,

request-handler, rem, inder-informer,
doc-preparer, approver)

messages

rules

if select-role doe-preparer
then

N select-role {being-prepared,
being-delivered)

78

metaclass PAdm process-class

/* meta-level roles */

R0 meta-functionality

properties /* descriptive information */

domain: PAdm
level : {meta, top-level)
required interface: (person-office, document)
components: department, dossiers = set-of document

appl-level-roles: (base, internal, external,
communication)

implementation suggestions:
(spreadsheet, 4GL, DBMS, scanner, e-mail)

states /* global role states */

{start, suspend, resume, stop)

rules

if select-role SAME.external
then N select-role p~son/office.external

APPLICATION LEVEL

/* top-level specification */

class PAdm

base role

properties /* descriptive information */

level : top-level
external interface: client
components: department, dossiers
keywords: Public_Administration, Public_Office,

Authorization/Request_Handler

states /* global role states */
(start, suspend, resume, stop)

