Hindawi Publishing Corporation

Clinical and Developmental Immunology
Volume 2013, Article ID 352315, 13 pages
http://dx.doi.org/10.1155/2013/352315

Review Article

Hindawi

Revascularization of Transplanted Pancreatic Islets and Role of

the Transplantation Site

Andrew R. Pepper,l Boris Gala-Lopez,1 Oliver Ziff,> and A. M. James Shapirol’z’3

! Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada T6G 2C8
2 Department of Surgery, University of Alberta, Edmonton, AB, Canada T6G 2C8

3 Medicine and Surgical Oncology, Clinical Islet and Living Donor Liver Transplant Programs, Alberta Innovates-Healthcare
Solutions (AIHS), University of Alberta, 2000 College Plaza, 8215-112th Street, Edmonton, AB, Canada T6G 2C8

Correspondence should be addressed to A. M. James Shapiro; amjs68@gmail.com

Received 10 June 2013; Accepted 9 August 2013

Academic Editor: Palmina Petruzzo

Copyright © 2013 Andrew R. Pepper et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Since the initial reporting of the successful reversal of hyperglycemia through the transplantation of pancreatic islets, significant
research efforts have been conducted in elucidating the process of revascularization and the influence of engraftment site on
graft function and survival. During the isolation process the intrinsic islet vascular networks are destroyed, leading to impaired
revascularization after transplant. As a result, in some cases a significant quantity of the beta cell mass transplanted dies acutely
following the infusion into the portal vein, the most clinically used site of engraftment. Subsequently, despite the majority of patients
achieving insulin independence after transplant, a proportion of them recommence small, supplemental exogenous insulin over
time. Herein, this review considers the process of islet revascularization after transplant, its limiting factors, and potential strategies
to improve this critical step. Furthermore, we provide a characterization of alternative transplant sites, analyzing the historical

evolution and their role towards advancing transplant outcomes in both the experimental and clinical settings.

1. Introduction

Significant progress has occurred in the outcomes of clinical
islet transplantation, reflecting improvements in immuno-
suppression and preparation of sufficient quantities of highly
viable islets for transplantation [1]. Solitary islet transplanta-
tion has become an accepted modality to stabilize frequent
hypoglycemias or severe glycemic lability in highly selected
subjects with poor diabetic control, resistant to standard,
intensive, or insulin-pump based therapies [1, 2].

Pancreatic islets are highly vascularized, which is impor-
tant in their ability to quickly secrete insulin in response to
changes in blood glucose. After isolation the reestablishment
of blood flow to transplanted islets requires several days to
weeks and involves angiogenesis and other complex mecha-
nisms during the remodelling process [3].

A decade of research working to improve intrahepatic
islet delivery has identified multiple mechanisms that limit
islet engraftment and long-term function. This vascular
space provides nutritional and physical support for islets,

an essential role given that the isolation process strips the
islets of their dense vasculature and specialized extracellular
matrix [4, 5]. However, the hepatic portal vasculature may be
considered a hostile environment that may limit successful
islet engraftment and function [6]. As a consequence many
investigations in this field have pursued alternative sites
of pancreatic islet implantation in order to optimize islet
engraftment and function, reduce necessary implantation
mass, and decrease immunogenicity [7].

We herein review the process of islet revascularization
after transplant, its limiting factors, and potential ways to
improve this critical step. We also provide a characterization
of the transplant site, analyzing the historical evolution and
their role towards transplant outcomes in experimental and
clinical settings.

2. The Islets of Langerhans

The pancreas is a unique organ which is responsible for
orchestrating two independent yet vital processes within in



the body, one being nutrient absorption through the release of
exocrine digestive enzymes and the second involving glucose
homeostasis through the release of endocrine hormones. The
acinar cells (exocrine), compromising approximately 98% of
the pancreas by mass, are responsible for secreting digestive
enzyme into pancreatic ducts, while islets of Langerhans
(endocrine) account for the additional 2% of the gland’s mass
and are responsible for maintaining glucose homeostasis
through the synthesis and release of hormones [8].

The islets of Langerhans with the pancreas can be
regarded as “microorgans” encompassing approximately 1%
of the pancreas. Despite their low volume it is estimated
that they receive up to 15% of the pancreatic blood supply
and are responsible for the gland’s endocrine function [8-
10]. Since their initial discovery by Paul Langerhans in 1869
and the deduction of their function by Edouard Laguesse
in 1893 [11, 12], innovative worldwide research has provided
astonishing insight into the complexities and intricacies of
these “microorgans.”

The human pancreas contains approximately 1 million
islets in a conglomerate of nearly 2,500 cells each, although
the individual size varies considerably [8]. The cellular orga-
nization within the islet cytoarchitecture has clear homeo-
static benefit. Each islet cluster regardless of shape and size
contains alpha («), beta (f3), delta (), PP, and epsilon cells
that synthesize and release glucagon, insulin, somatostatin,
pancreatic polypeptide and ghrelin, respectively, typically in
a nutrient-dependent fashion [12].

It is estimated that human «-cells account for approxi-
mately 30% of the cellular composition of the islets, which
secrete glucagon, influencing both glucose and ketone regula-
tion [13-15]. Characteristically, elevated blood glucose levels
suppress glucagon section and subsequently stimulate insulin
release. Conversely, it is difficult to ascertain whether glucose
directly or indirectly acts on the «a-cells since the paracrine
effect of other islet cell types in addition to the autonomic
nervous system may influence the secretory suppression. The
involvement of f3-cell and «-cell communication with respect
to the effects of glucose on glucagon secretion has been more
thoroughly elucidated. Interestingly, in the context of a type
1 diabetic, where glucose induced insulin secretion has been
abolished, the suppressing ability of glucose on glucagon has
also been abrogated [16, 17]. Research studying the paracrine
effect has proven difficult to interpret as we lack robust meth-
ods for studying the communications of peptides throughout
the interstitial space. Both the autonomic nervous system and
d-cells may account for additional indirect pathways in which
elevated glucose suppresses glucagon secretion. It has been
demonstrated that high glucose concentration stimulates the
release of somatostatin, a known potent secretory inhibitor of
glucagon, from &-cells [8, 18]. Fluctuations, in plasma glucose
concentrations can affect the autonomic nervous system,
which has the potential for influencing the hormonal sections
within the islets. For example, during severe hypoglycemic
stress the parasympathetic nervous system becomes activated
resulting in the release of epinephrine, without influencing
the sympathetic nervous system. However, the impact of
the autonomic nervous system on human pancreatic islet
function has yet to be fully explained [19].
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Pancreatic f3 cells form the bulk of the endocrine cel-
lular content (approximately 60%) within the pancreas and
secrete the hormone insulin, a 5l-aminoacid anabolic pep-
tide which is essential for regulating glucose homeostasis.
When high energy substrates are in excess (i.e., postpran-
dial), insulin triggers cells to stimulate glucose, protein and
lipid metabolism in addition to RNA and DNA syntheses.
Due to the complexity and multitude of the intracellular
pathways involved, the exact mechanism of insulins action
is yet to be fully elucidated. However, it is understood
that upon hormone-receptor activation a cascade of cova-
lent enzyme modifications occurs, usually in the form of
phosphorylation or dephosphorylation of serine, threonine,
or tyrosine residues controlled by a balance of protein
kinases and protein phosphatases. Furthermore, allosteric
feedback and feedforward regulations are critical enzymatic
pathways regulating glucose metabolism. The hypoglycaemic
action of insulin is the net result from the uptake of glu-
cose via translocation of glucose transporters (GLUT4) and
amino acids, activation of protein synthesis from amino
acids, in addition to glycogen and triglyceride syntheses
from glucose. Furthermore, insulin inhibits breakdown of
triglycerides in adipose tissue and gluconeogenesis in the
liver. Saltiel and Kahn’s 2001 Nature review provides an in-
depth perspective pertaining to the pathways that involved
insulin signalling, glucose, and lipid metabolism, which is
a highly recommendable resource. Insulins isolation and
clinical application by Banting and colleagues are regarded
as one of the great medical breakthroughs of the 20th
century [20, 21]. In addition to insulin, fB-cell secretes
islet associated polypeptide (IAPP, also called amylin), a
37-amino acid peptide [22]. It is hypothesized that under
pathological conditions IAPP molecules polymerize to form
intraislet amyloid deposits, a characteristic of type 2 diabetic
patients and in cases of insulinoma. Interestingly, in the
field of islet transplantation it has recently been described
that the inflammation induced by islet amyloid deposits
indeed contributes to fS-cell dysfunction after transplant
[23].

The pancreatic §-cells, which amount to less than 10% of
the islet, secrete somatostatin a hormone originally isolated
from the hypothalamus [14, 24]. This peptide is potent
inhibitor of glucagon, insulin, and pancreatic polypeptide
[8, 25]. The &-cells resemble neurons containing secretory-
granules ending near a capillary suggestive of a focal and
possibly paracrine influence [26, 27]. The function of somato-
statin released from the islet is still unclear in either the
physiologically normal or diabetic pancreas [8].

The pancreatic polypeptide (PP) cells secrete the least
studied of the islet hormones, pancreatic polypeptide (PP),
and account for less than 5% of the islet cellular composition
[14,27]. PP has been demonstrated to have an inhibitory effect
on the exocrine secretions from the pancreas, highlighting
the communication between endocrine and exocrine cells
within the gland [8].

The recently discovered Epsilon or Ghrelin cells encom-
pass less than 1% of a human islet. They are primarily
responsible for the secretion of ghrelin, initially isolated from
rat stomach and later localized to human islets [28]. The
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peptide is thought to be of importance in growth hormone
release, metabolic regulation, and energy balance, but its role
in islets has yet to be conclusively defined [27].

Based on the diverse cellular composition and complex
interactions within the islets of Langerhans, it is evident that
glucose homeostasis is a dynamic process involving multiple
cell types contained within these unassuming “microor-
gans!

3. Islet Cytoarchitecture and Microcirculation

The organization of the cellular constituents of an islet may
as well have important glucose homeostatic benefits; for
instances having insulin producing f-cells and glucagon
producing a-cells in close proximity allows their hormones
to be secreted directly into the portal system optimizing
their effects on glucose control. Although predominately
comprised of endocrine cell, nonendocrine cell shares a
portion of the islet structure [9]. Vascular endothelial cells
account for the majority of nonendocrine cells within the islet
[9,27]. The remaining cellular components of the islet include
nerve fibers, pericytes, macrophages, and dendritic cells [29].

It is important to be conscience of the species source of
islets when conduction research as the observations may not
be relevant to humans, due to the variations that exist in
islet cytoarchitecture and insulin composition. For instance,
mice, rats, and rabbits have a distinct cytoarchitecture that
segregates non-f3-cells (« and &) to the mantel (periphery)
of the islet, with -cells residing in the islet core [9, 14, 30].
In species such as horse, non-human primates, humans, and
pigs, the islets architecture is reversed having the fS-cells
localized more towards the periphery and «-cells and other
non-p cells more evenly distributed throughout the islet [9,
14].

It has been established that, despite differences in islet
architecture, the intraislet vasculature is also reversed so that
non-f3-cell to 3-cell blood flows remain consistent, support-
ing the notion that perfusion is central to islet function [9, 31].
These variants between species may in part be attributed
to the disparity of the cellular composition. Traditionally,
human islets were thought to be compromised of greater
than 70% f-cells, less than 20% a-cells, and approximately
10% &-cells and 5% PP cells, respectively, similar to the
composition of rodent islets [27, 32, 33]. More recently,
studies have demonstrated that human islets are comprised
of proportionally fewer f-cells (60%) and contain a large
population of «-cells (30%), compared to mouse islets, which
have historically been viewed as the prototypical islet [13-
15]. Therefore the different morphology of human islets
must be taken into consideration when using experimental
animal models as findings pertaining to islet physiology;
vasculature and paracrine activity may be incompatible to the
pathophysiology of the human islet.

For instances the rescinded effect of glucose on a-cells
is thought to be largely contingent upon elevated concen-
trations of insulin, carried by the local portal vasculature
from the rich f-cell core to the islet mantel as evident in
the rat pancreas [34]. However due to the species variation,

this mechanism may not translate to human islet interactions.
Portal system experiments conducted in rats, dogs, and
primates demonstrated that the intraislet cellular interactions
occur in a downstream fashion from f3- to a- to &-cell
direction. Therefore, it appears that -cells may not be diretly
exposed to hormones released from «- and §-cells, and
subsequently a-cells are not influenced by secretions of §-cell
in the portal system [8]. Thus islet vascular communications
do not account for all interactions.

Furthermore, models involving isolated islets may not
be physiologically relevant or translational as the isolation
process disrupts or destroys intrinsic vascular, neural, and
interstitial networks.

A significant factor influencing islet survival and function
is the rapid and adequate revascularization of transplanted
islets, typically intrahepatically. Delayed and insufficient
revascularization can deprive islets of oxygen and nutrients,
resulting in islet cell death and early graft failure [35]. It
would follow that reestablishment of the vascular bed to
the transplanted islets would be important for graft survival.
Several studies have indicated that factors such as vascular
endothelial growth factor- (VEGEF-) A, hepatocyte growth
factor (HGF), fibroblast growth factor (FGF), epidermal
growth factor (EGF), and matrix metalloproteinase (MMP)
are major regulators of islet vascularization [36, 37]. Within
the islet of Langerhans the intraislet endothelial cells are
responsible for the release of these proangiogenic factors.
Recent evidence indicates that the endothelial cells creating
new capillaries or vessels within the islet graft arise from
various sources. Endothelial cells or capillaries from the
transplant recipient, which are recruited into the islet graft,
create new islet vascular networks. An alternative vascular
source could be the intraislet endothelial cells, which exist
in large numbers in isolated islets and may account for up
to 40% of the endothelial cells lining capillaries within a
revascularized graft [38-40]. Interestingly, functional vessels
within a re-vascularized graft are often chimeric, consisting
of both endothelial cells from the donor and from the
recipient. Intraislet endothelial cells have been shown to
survive islet transplantation; however, they rapidly disappear
during culture [39, 40]. A paradox exists in the culture of
human islets prior to transplant as studies have demonstrated
that culturing islets improve their insulin secretory capacity;
however this gain in metabolic potency may be at the expense
of hindered graft revascularization due to the intra-islet
endothelial loss [41]. On average, 15-20% of the islet mass
may be lost during culture, and it is unclear whether this
same proportion would also be lost if transplanted without
culture.

4, Islet Revascularization after Transplant

The islet isolation process severs the connections between
the islet vasculature and systemic circulation. It results
in significant ischemic and mechanical injury, rendering
islets more susceptible to posttransplant stresses. Islets are
metabolically active and require access to oxygen, glucose,
and other metabolites in a hospitable environment [7]. As the



revascularization of the transplanted pancreatic islet is not
immediate, proximity to a good vascular supply is essential.
Most isolated islets are 50-100 ym in diameter, and the
capacity for diffusion of the transplanted islet is limited.
Ideally, therefore, islets should be transplanted into a site with
high oxygen supply [7].

4.1. New Angiogenesis. In contrast with whole-organ trans-
plantation, where organ perfusion is quickly reestablished by
reconnection of arterial and venous vessels, the reestablish-
ment of blood flow to transplanted islets requires several days
and involves angiogenesis and possibly vasculogenesis. The
death of significant numbers of islets in the days following
transplantation results from several factors, but ischemia and
inadequate blood supply are likely contributors to islet death
in the immediate posttransplant period and may impair islet
survival and function long term [42].

Islet viability during culture is also adversely affected
by hypoxia to the cells in the inner core of islets [43, 44].
Although it may be difficult to prevent a hypoxic condition
of the inner islet cell mass during in vitro culture, genetic
modulation of islets to express genes that promote rapid
revascularization upon transplantation and reduced culture
time could play an important role in preventing hypoxic
damage to the islets [45].

Molnar and colleagues recently demonstrated that even
mild islet hypoxia causes significant functional impairment
of glucose-induced insulin release. In comparison with islets
cultured in normoxia, insulin release is reduced by 50%
already in islets cultured at a pO, of 27 mmHg and by 98%
in islets cultured at a pO, of 5mmHg [46]. The present
findings, with formation of an extensive intra-islet capillary
network after intraportal clinical islet transplantation and
with only transient islet graft hypoxia (pO, < 10 mmHg) in
experimental islet transplantation, are in accordance with the
capacity of an islet graft to respond with insulin secretion in
response to glucose, repeatedly shown in numerous clinical
and experimental islet transplantation studies [46].

One possible explanation for the requirement of islets
from at least two pancreata to achieve insulin independence
is that many islets die in the first days after transplantation,
before adequate vascular supply is reestablished. Various
studies have found that islet cell survival, islet insulin content,
and cell mass declined 1-3 days after transplantation. This is
the period when the islet graft is avascular.

Immediately after transplantation the islet depends on
diffusion of oxygen and nutrients from the surrounding
microenvironment for their survival and function. In order
to regain proper islet function, new capillaries and blood
vessels have to form, rebuilding their old capillary networks
[1, 47]. As previously stated, the new networks are derived
from both the recipient blood vessels and the remnant donor
islet endothelium [39]. This revascularization process may
initiate as soon as 1-3 days after transplant and may conclude
around day 14 [38, 39].

Pancreatic islets implanted intraportally to the liver
become lodge in distal tributaries. However, the new vascular
network in the islets seems instead to be connected to the
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hepatic arterial tree [27, 48]. Because newly transplanted
islets mostly likely lack nerves and it is uncertain if any
functional reinnervation occurs, the islet graft blood flow
regulation will largely depend on locally produced vasoactive
mediators [48].

A striking observation is that although new blood vessels
form within transplanted islets, the resulting vascular density
is chronically lower than the native islets. This is irrespective
of whether the islets are implanted as aggregates to the kidney
or spleen or infused through the portal vein into the liver.
The vascular density is not influenced by hyperglycemia
or engraftment time but numerous vessels do form in the
surrounding connective tissue [3].

A recent study successfully proved the impaired revascu-
larization of islets within the liver [49]. They demonstrated
that pancreatic islets transplanted intraportally into the liver
have a very low blood perfusion, reflecting few and dys-
functional blood vessels. Donor islet endothelial cells mainly
disappear or migrate into surrounding liver parenchyma;
therefore, disruption of islet integrity is pivotal to support
revascularization by recipient blood vessels [49].

The impact of the gene expression of angiogenic factors
and their receptors on the revascularization of islets graft
is still under investigation. However, the resulting vascular
density does not differ between islets transplanted into a
normoglycemic or hyperglycemic environment. Moreover,
immune response does not seem to affect the revasculariza-
tion process, although later on destruction of the capillary
network occurs as a consequence of microvascular rejection
[50].

Although transplantation in highly perfused organs such
as the liver promises to provide adequate tissue bathing
to provide nutrition by diffusion, the cells in the inner
core of the islets still do not receive an adequate supply
of oxygen and nutrients. These cells depend on intra-islet
capillary-mediated flow of blood. This limitation leads to
lower oxygen and nutrient supply in the inner core of islets,
which constitutes predominantly the insulin-secreting f-
cells, and ultimately leads to hypoxia and cell death. This
phenomenon was elegantly demonstrated by Vasir et al., who
stained islets cultured for 24 and 48 h with propidium iodide
and calcein-AM to demonstrate the progressive loss of islet
viability in the center of the islets [51].

As previously mentioned several authors agreed that
donor endothelial cells might contribute to islet graft revas-
cularization [3, 38, 42]. Unfortunately, endothelial cells disap-
pear during the culture phase. Based on these findings, recent
studies suggested that the lack of culture phase, and hence
the use of “fresh” islets for transplantation may improve the
vascularization ratio and eventually the engraftment results
[46]. This phenomenon may be explained, in part, by pre-
served FGF excretion in noncultured islets, which has been
reported to improve blood vessel stability [46]. These find-
ings are based on syngeneic transplantation models, where
revascularization can be studied in a standardised manner
without interference by factors such as immunosuppression
and immunological rejection. The clinical importance of
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FIGURE 1: Islet transplant outcomes comparing two different sites in
diabetic rats (adapted from Kemp et al. [58]).

these results needs to be further evaluated in the human
allogeneic setting [46].

4.2. Strategies to Increase Revascularization. The revascular-
ization of transplanted islets might be enhanced or acceler-
ated by several types of interventions: increasing the action of
proangiogenic agents or to inhibit antiangiogenic factors and
thus stimulate the proliferation, migration, and maturation
of endothelial cells into functional vessels. This analysis may
be partially correct [3, 52], but it is likely that the optimal
formation of mature, fully functional islet vasculature will
require precise control of the timing, dose, and duration
of angiogenic factor action in the posttransplant period.
A second approach could directly target endothelial cells
or enhance their ability to form mature, functional vessels
and might involve the addition of preactivated endothelial
cells or some type of endothelial progenitor cell population.
These two approaches should be applicable to isolated islets
before transplantation or could be used to prepare the
transplantation site before transplantation of isolated islets.
Finally, Johansson et al. [53] proposed a new approach
using tissue engineering to enhance islet revascularization.
These investigators provided evidence that the coculture of
MSCs and endothelial cells with human islets in vitro before
transplantation initiated formation of vessel-like structures
that may promote islet engraftment after transplantation.
MSCs, multipotent cells usually isolated from bone marrow
but also present in other tissues, exhibit a wide range of
properties in other settings, properties that might enhance
islet survival [3, 53]. For example, MSCs positively modulate
inflammation, tissue regeneration, and immune attack either
through cell-to-cell contact, differentiation into other cell
types, or by the local production of factors such as platelet-
derived growth factor.

A recent study also found a direct association between
the regeneration of liver tissue and the islet engraftment,
intraportally. After partial hepatectomy, many growth factors
such as HGF and VEGF-A are upregulated for regeneration in

the remnant liver [54]. It is known that these growth factors
have properties to promote vascularization, and therefore the
authors hypothesized that revascularization of transplanted
islets was enhanced during liver regeneration after partial
hepatectomy [54].

The inhibitory effects of rapamycin, a key component of
the immunosuppressive regimen in the Edmonton protocol,
on tumor angiogenesis or pancreatic islet revascularization
have been clarified [55, 56]. However, the effect of tacrolimus,
which is one of the standard immunosuppressants in both
pancreatic islet transplantation and whole pancreas trans-
plantation, on revascularization was only recently eluci-
dated [57]. It appears to inhibit the revascularization of
isolated pancreatic islets without affecting the characteristics
of the transplanted grafts [57]. Further refinements in this
immunosuppressive regimen, especially with regard to the
revascularization of islet grafts, could therefore improve the
outcome of islet allotransplantation.

5. Hepatic and Alternative Transplant Sites

Kemp and colleagues from Lacy’s group were the first to
explore the liver and intraportal site for islet transplantation
in rats in 1973 [58]. In a small study of 5 rats per group, they
compared intraportal islet implantation with intraperitoneal
implantation and found that diabetes was reversed only when
islets were implanted into the portal vein (Figurel). This
study had profound impact on the translational development
of clinical islet transplantation, where almost universally
islets have been implanted into the hepatic portal vein in over
1,085 islet transplant patients, according to the most recent
report of the Collaborative Islet Transplant Registry [59].
Where other sites have been attempted in patients, these have
as yet never rendered patients insulin independent. Thus,
although intraportal islet transplantation has empirically
been accepted as the best site to use in patients, we herein
briefly review the evidence to support this and compare
potential alternative sites for future clinical development.

5.1 Intraportal Site. The portal vein is far from the ideal
infusion site with half of infused islets dying shortly after
transplantation [60]. In addition, over time most patients
resume using insulin injections. Portal vein infusion results
in embolization of islets in the liver that exposes the cells
to a relatively hypoxic environment since the liver has a
parenchymal oxygen tension below that of the pancreas
[61, 62]. Furthermore, infusion into the portal vein exposes
patients to additional risks of hemorrhage, thrombosis,
biliary puncture, transient rise in serum aminotransferase,
and arterial-venous fistula. Since native islets deliver insulin
directly into the portal vein, it follows that the best method
to mimic normal endogenous release would be to infuse
islets into this site. However results from whole pancreas
transplantation showed that when portal venous drainage for
the transplant was utilized there was limited metabolic benefit
in comparison to systemic drainage [63], suggesting release of
insulin directly into the portal vein is not essential.



Despite the problems with portal vein infusion, it still
accounts for 90% of clinical islet transplantations. The liver
has been shown to play a key role in regulating systemic
insulin levels, and hence delivery of secreted insulin directly
to the liver is ideal for maintaining tight glycemic control
[64]. This was further illustrated by intraperitoneal infusion
of insulin which led to delayed systemic distribution of
insulin in comparison with intraportal infusion [65]. The
portal vein also appears to be more economic in islet uptake
since fewer islets are required to reverse diabetes compared
with other transplant sites. Studies in rats showed that only
550 autologous islets were required to reverse diabetes with
portal vein infusion compared with a partial reduction in
hyperglycemia with 770 islets infused into the peritoneum
and a failure of any hyperglycemia reversal with 890 islets
infused into a subcutaneous site [58]. Subsequently, the portal
vein has become the standard for comparison with other
transplantation sites.

5.2. Improving the Intraportal Site. The portal vein and for
that matter all vascular transplant sites undergo instant
blood-mediated inflammatory reaction (IBMIR) which
results in an early inflammatory reaction [60]. IBMIR limits
B cell function after transplantation, and therefore it is
essential to avoid this by either identifying a transplant
site with minimal interaction with blood or by protecting
vascular grafts from IBMIR. Currently there are a number
of strategies aimed at preventing IBMIR including using
nicotinamide [66], low molecular weight dextran sulfate
[67], thrombin inhibitor [68], and heparin coating islets [69].
Despite these strategies, IBMIR remains a limiting factor on
B-cell function with the intraportal site in addition to other
vascular sites.

5.3. Renal Subcapsular Site. In rodents, the renal subcapsular
site is the most widely used transplantation site. Practically,
it provides a readily accessible site; functionally, it reverses
hyperglycemia within days of transplant; and histologically,
investigation is easily achievable by recovery nephrectomy.
Less than 25% of normal islet mass is required in the renal
subcapsular site to maintain normoglycemia [70], and in
immunodeficient mice, this site is better than the lung, liver,
or spleen for functional engraftment [71]. However as with
the liver, the renal capsule is a relatively hypoxic environ-
ment (15 mmHg O,) in comparison to pancreas parenchyma
(40 mmHg O,). Studies comparing the renal subcapsular site
with the intraportal site in mice indicate that a much smaller
number of islets are required in the subcapsular site (250
islets) to reverse diabetes in mice versus the portal site (700
islets) [72, 73]. This apparent superiority of subcapsular islets
in mice is likely related to the differences in islet preparations
between mice and humans. Firstly, mice islets are larger
and less fragmented that those in human preparations, and
secondly, due to a smaller portal vein diameter in mice, islets
embolize earlier in the vascular tree resulting more hepatic
necrosis and reduced blood supply to the intraportal site [74].

Clinical studies using this kidney site for islet transplan-
tation resulted in C peptide secretion in two of three diabetic
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patients. However, a high transplant mass was required at this
site in comparison with the intra-portal site rendering this
site inferior [75]. Furthermore, from a surgical standpoint the
renal subcapsular site provides difficult access for infusion
in humans being very invasive, and the presence of diabetic
nephropathy in a large proportion of the recipients reduces
the efficacy of this site. Although the renal subcapsular site
provides an attractive experimental model in mice it has no
clear gain in humans.

5.4. Spleen. Infusion of islets into a splenic vein tributary
and directly injecting islets into the splenic pulp have both
been proposed as potential islet transplant strategies. In
a canine model, autotransplant into splenic sites resulted
in a similar reversal of diabetes as that seen with hepatic
sites [76]. Despite being a metabolically suitable site for
islet transplantation with promising results seen in large
mammals [77-80], the spleen offers no advantages over the
liver. The patient is exposed to an added risk of hemorrhage
from splenic rupture, and the transplanted islets are more
readily accessible by lymphocytes making it a poor potential
site.

5.5. Omentum. The peritoneum offers an unlimited space for
transplanted islets and therefore offers an attractive site for
concurrent use with encapsulated devices to protect the islets
[81, 82]; however recovery of these islets for histological and
functional assessments is difficult [83]. In rats, at least 1500
islets were required to reverse diabetes, and due to a lack of
parasympathetic reinnervation at this site, abnormal glucose
tolerance tests were noted [84].

Surgically creating a pouch using omentum and parietal
peritoneum provides a site for islet transplantation with an
increased vascular supply [85]. In diabetic rats an omental
pouch required 2000 islets to reverse the diabetes with the
resulting normoglycemia lasting more than 6 weeks [86].
The high vasculature observed within the omentum and
the presence of proangiogenesis cytokines [87] along with
the immune-privilege provided by the peritoneum [88, 89]
makes this an attractive site. However with the large islet
numbers required and limited long-term function shown in
current studies, further development of this site is required
for it to progress to clinical use.

5.6. Pancreas. Being the native home of islets, the pancreas
has long been suggested to be an optimal site for islet
transplantation. In mice, islets recovered from a pancreatic
site were metabolically superior than those reisolated from
the intraportal site [90] suggesting that the pancreas may
provide a more optimal site for long-term islet function.
Fewer islets were required to reverse hyperglycemia in rats
with the pancreas site (500 islets) compared with the portal
site (3200 islets) and the renal subscapular site (2000 islets)
[91]. These superior results observed with the pancreatic site
have been attributed in part by the accurate reproduction of
the native islet environment with regard to oxygen partial
pressure, glucose detection, and insulin release. Despite this,
the presence of preexisting type 1 diabetic may make the
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pancreas a poor site since pancreatic lymph nodes may be
more primed and equipped to promote a rejection episode.
Furthermore, the infusion process is invasive and would
carry substantial risk in humans through risk of inducing
severe and life threatening complications from pancreatitis.
Additionally, in patients undergoing pancreatectomy with
autotransplantation, this site becomes inappropriate.

5.7. Gastrointestinal Wall. The wall of the gastrointestinal
tract is the natural entry site for glucose into the body
and consequently is an ideal location for islet cells to sense
glucose. The accessibility to the submucosa via endoscopy,
the highly vascular mucosa, and the bioavailability to oral
therapeutic agents makes this an appealing site. Hamster [92],
rat [93], and pig [94] models have illustrated efficacy with
the gastric submucosa and subserosal sites showing them to
be superior to the renal subcapsular with regard to glycemic
function; however as yet there is no comparison to the portal
site.

5.8. Immunoprotected Sites. The thymus, brain, and testis
may provide protection from the recipients immune sys-
tem with an allotransplant thereby potentially reducing the
requirement for simultaneous immunosuppressive agents.
Islet transplantation into the testis was successful in con-
trolling diabetes in rats [95, 96] and delayed rejection with
allografts [89, 97]. Sertoli cells, which provide the blood-
testis-barrier, have also been utilized at other transplant sites.
Autologous sertoli cells cotransplanted with allogeneic islets
under the renal capsule improved normoglycemia compared
with islets alone [98] and delayed rejection even in the
absence of immunosuppression [99, 100]. We await results
from large animal testicular islet transplants and sertoli-islet
cotransplants to see if such immunomodulatory approaches
can be translated from mice to humans.

The cerebrum [101] and cisterna magna [102] have both
been shown to attenuate hyperglycemia and delay the onset
of allograft rejection. However the risk with the brain trans-
plantation site makes this an improbable clinical prospect.

The thymus has been studied as a transplant site in
rodent, canine, and porcine models and has now entered
clinical studies. The organ is easily accessible surgically and
practically makes an attractive transplant site. In diabetic
rats, allogeneic islet infusion along with a one off dose of
antilymphocyte serum led to normoglycemia for over 6
months and induced tolerance of further islet infusion under
the renal capsule [103]. Theoretically, since the thymus is the
site of T-cell maturation, maturing T cells will be exposed to
islets enabling negative selection of reactive T cells toward
the islet alloantigens thereby resulting in selective deletion of
islet-specific T cells. Indeed, an autoimmune model of type
1 diabetes in rats showed long-term survival of intrathymic
transplanted islets [104]. Despite this promising immunolog-
ical theory, the thymic site requires a large number of islets to
reverse hyperglycemia [105-107].

5.9. Musculoskeletal Sites. The bone marrow of rats has been
revealed to be a potential site for islet transplantation with

insulin histological studies showing persistence of insulin-
containing cells 3 weeks postallogeneic transplant [108].
Another study using syngeneic islets transplanted into the
bone marrow reversed hyperglycemia for greater than 1 year
in diabetic mice and showed a 2.4-fold increase in euglycemia
versus transplantation via the intra-portal site [109]. Further
work is required on both long and short bone sites before this
potential location can be utilized in the clinic.

Muscle is easily accessible and can be readily biopsied
making it an attractive site. Indeed after transplant into
humans, biopsy illustrated fS-cell staining in two of three
patients; however this was associated with a large leucocytic
infiltrate [110]. The epididymal [111] and mammary [112] fat
pads in mice have also been subject to islet cell infusion.
In both studies, only a small volume of islets was required
to reverse hyperglycemia, and it was speculated that the
improved vasculature of adipose makes this a particularly
exciting treatment avenue. Musculoskeletal sites are easy to
access, offer substantial space in which to transplant cells, and
are highly vascularized making them a very welcoming area
for future research (Table 1).

5.10. Subcutaneous Site. Subcutaneous macroencapsulated
islets transplanted into humans illustrated f3-cell survival
and glucose-dependent insulin secretion two weeks after
implantation without immunosuppression [113]. Microen-
capsulated islets within a prosthetic device connected to
blood vessels showed reversal of hyperglycemia in one of two
recipients with both patients showing positive C-peptide after
transplant [114] (Table 1).

Despite the diversity of the transplant sites that have been
investigated to date, as outlined above, their ability to suc-
cessfully promote islet graft survival is linked to a common
ability to foster revascularization. Using this rationale, our
laboratory is currently investigating whether a previously
suboptimal, low oxygen tension, transplant site can be natu-
rally manipulated to become an appropriate surrogate for islet
engraftment. By utilizing the natural foreign body response,
to our “deviceless” technique we have been able to transform
the subcutaneous site into a highly vascularized transplant
site, rich in islet supporting microvessels, leading to long-
term islet graft function.

6. Summary

Islet revascularization appears to be the critical component
in ensuring islet survival and function, irrespective of the
transplant site. To date, despite promising research into alter-
native engraftment strategies, few have translated into the
clinical setting. The gold standards for islet transplantation in
the clinical and experimental settings remain the intrahepatic
portal infusion and kidney capsule, respectively. Unfortu-
nately studies have indicated that islets transplanted intra-
portally have hindered abilities to become revascularized,
highlighting the need for additional extrahepatic transplant
research. Here we have described that an optimal engraftment
site requires access to adequate oxygen and nutrient supplies
whether from endogenous vasculature or from induced or
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intrinsic neovascularization, in addition to a supporting
matrix or scaffold. Furthermore, graft retrievably appears to
be an important consideration when testing alternative trans-
plantation sites, especially when considering their potential
to house insulin producing stem cells. Since engraftment is
governed largely in part by revascularization, there appears
to be endless opportunities to formulate adequate alternative
transplant strategies, with the caveat that the engraftment
approaches result in the islets being close proximity to a
vascular-rich matrix. Taken together, it appears that con-
tinued research in the areas of islet revascularization and
engraftment holds great promise in advancing the therapeutic
benefit of islet transplantation.
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