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Given the immanent gone expression mapping covering whole genomes during

development, health and disease, we seek computational methods to maximize

functional inference from such large data sets. Is it possible, in principle, to

completely infer a complex regulatory network architecture from input/output

patterns of its variables? We investigated this possibility using binary models

of genetic networks. Trajectories, or state transition tables of Boolean nets,

resemble time series of gone expression. By systematically analyzing the mutual

information between input states ancl ou_ut states, one is able to infer the sets

of input elements controlling each element or gone in the network. This process

is unequivocal and exact for complete state transition tables. We implemented

this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the

problem to be tractable within the conditions tested so far. For n=50 (elements)

and k=3 (inputs per element), the analysis of incomplete state transition tables

(100 state transition pairs out of a possible 10 tS) reliably produced the original

rule and wiring sets. While this study is limited to synchronous Boolean

:. networks, the algorithm is generalizable to include multi-state models,

essentially allowing direct application to realistic biological data sets. The

ability to adequately solve the inverse problem may enable in-depth analysis of

complex dynamic systems in biology and other fields.

Binary models of genetic networks

Virtually all molecular and cellular signaling processes involve several inputs and

outputs, forming a complex feedback network. The information for the construction

and maintenance of this signaling system is stored in the genome. The DNA
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Fig. I A simple Boolean network, a) Wiring diagram, b)
Logical (Boolean) rules, c) Complete stat, transition
tabIe defining network. The input column corresponds to
the stale at time=t, the output column (elements marked
by prime) corresponds to the state at time=t+I.

sequence codes for the
structure and molecular

dynamics of RNA and

proteins, in turn determining

biochemical recognition or

signaling processes. The
regulatory molecules that

control the expression of
genes are themselves the

products of other genes.
Effectively, genes turn each

other on and off within a

proximal genetic network of
transcriptional . regulators

(Somogyi and Sniegoski,
1996). Furthermore,

complex webs involving
various intra- and

extracellular signaling
systems on the one hand

depend on the expression of
the genes that encode them, and on the other hand control the expression of genes as
the signals terminate at transcriptional-regulation. All in all, the information stored

in the DNA determines the dynamics of the'extended genetic network, the state of

which at a particular time point should be reflected in gene expression patterns
(Somogyi and Sniegoski, 1996). We have developed the basic tools to measure

these gene expression patterns, and are now concerned with inferring the functional
network architectures from time series or state transition sets (Somogyi et al.,

• 1996).

A rational approach to designing genetic network analysis tools is based on

.... generating model systems on which the performance of the tools can be tested. The
simplest such model system is the Boolean network. Genes correspond to elements

............... .. .......................... in.a.Boolean net, the wiring of the elements to one another correspond to functional
links between genes, and the rules determine the result of a signaling interaction

given a set of input values. Genes are idealized as being either on or off, resulting in
binary elements interacting according to Boolean rums. Given a particular set of

elements, wiring, rules, a pasticular trajectory or the state transition table covering

all trajectories of a network can be calculated (Fig. 1). Such a trajectory must reach a
final repeating state cycle, for the simple reason that the network only has 2" states,
and each state transition is un:equivocally determined (after maximally 2" iterations, a

repeating state must be found). An attractor may be a single state (point attractor,

corresponding to a "steady state") or may eornprise several states (dynamic attractor,
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corresponding to a "limit cycle"). Attractors may be envisioned as the "target mea"
of an organism, e.g. cell types at the end of development, repaired tissue following a

response to injury, or even adaptation of metabolic gene expression following a
change in nutrient environment in bacteria (see Kauffman, 1993; Somogyi and

Sniegoski, 1996; Wuensche, 1992).
Testing of algorithms for extracting network architectures from state

transition measurements will require knowledge of the original network that was to
be inferred. This is not yet possible with living systems. Using Boolean networks,

we can facilely generate model state transition tables. Depending on the assumptions
we make about living genetic networks regarding size, connectivity, redundancy and

complexity, we can simulate these conditions in Boolean nets, and test how well

our reverse engineering procedure works against these different backdrops_ Given

good results, our confidence in this approach should be warranted. Below we will
use systematic mutual information analysis of Boolean network state transition
tables to extract minimal network architectures.

Information theoretic principles of mutual information (M) analysis

Information theory provides us with a quantitative information measure, the

............................... __ha.nn.Qn.e.ntropy, I-I. The Shannon entropy is defined in terms of the probability of
observing a particular symbol or event, Pi, within a given sequence (Shannon &

Weaver, 1963),

H= - E Pi log Pi.

A few illustrations (Figs. 2 & 3) of a binary system shall help explain the

behavior of H. In a binary system, an dement, X, may be in either of s=2 states,

say on or off. Over a particular sequence of events (Fig. 2a), the sum of the
probabilities of X being on, p(1) or off, p(0) must be equal to unity, therefore

p(1)=l-p(0), and H(X')=-p(0)*log[p(0)]-[1-p(0)] *log[i-p(0)]. H reaches its maximum
when the on and offstates are equiprebable (Fig, 3a), i.e. the system is using each

information carrying state to its fullest possible extent. As one state becomes more

probable than the other, H decreases - the system is becoming biased. In the
limiting case, where one probability is unity (certainty) and the other(s) zero
(impossibility), H is zero (no uncertainty - no freedom of choice - no information).

The maximum entropy, I-I_,_, occurs when all states are equiprobable, i.e.

p(0)=p(1) =1/2. Accordingly,

I-I_=log(2).

Entropies are commonly measured in "bits" (binary digits), when using the

logarithm on base 2; e.g. I-I_=l for a 2 state system.
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our aim to
compare different sequences
using information measures
to establish functional

relationships between
elements of a network. In a

system of 2 binary elements,
X (index i) and Y (index j),

............ -. ,.?.................. ,/he..,individual and combined

Shannon entropies are defined

essentially as above (Fig.
2b):

a

X 0 1 1 1 I 1 I 0 0 0

Y 0 0 0 1 I 0 0 1 1 1

H(X) = -0.41og(O.4)-O.61og(0.6) = 0.97 (40% Os and 60% ls)

H(Y) = -O.51og(O.5}-O.51og(O.5) = 1.00 (50% Os and 50% fs)

b

1 3 2

Y

0 I 4
H(X)= - Z Pi log p_,

H(Y)= - _ pj log p_ , and o 1
H(X, Y) ---- - Z Pi, j log p_j x

= H(X,Y) = -0.1 Iog(O.1)-O.41og(O.4)-O.3iog(O.3)-Oi2iog(0.2) = 1.B5
There are 2 conditional

entropies which capture the Fig. 2 Determination of H. a) Single element.
relationship between the Probabilities are calculated from frequency of on�off

sequences of X and y, values of X and Y. b) Distribution of value pairs. H is
I-I(_Y) and H(Y]X'). These calculated from the probabilities of co-occurrence.

are related as follows

(Shannon & Weaver, 1963):

H(X,Y) = H(YIX) + H00 = H(X[Y) + H(Y).

In words, the uncertainty of X and the o.a

remaining uncertainty of Y given knowledge
of X, H(YIX), i.e. the information contained 0.e

.... in Y tfiat is not shared with X, sum to the "

entropy of the combination of X and Y. e.4
...............................................we "Cabnow fred an expression for 0.2

the shared or "mutual information", M(X,Y),

also referred to as "rate of transmission"

between an input/output channel pair
(Shannon & Weaver, 1963):

0.25 0.5 0.75 1

p(O)

M(X,Y3 = HfY) - HCYIX) = H(X) - H(XIY). Fig. 3 Shannon entropies for a 2-state
information source. Since the sum of

The shared information between X and Y the state probabilities must be unity,

corresponds to the remaining information of X p(1)=l-p(0) for 2 states.
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if we remove the information of X that is

not shared with Y. Using the above

equations, mutual information can be defined

directly in terms of the original entropies;
this formulation will be important for the
considerations below:

M(X,Y) = H(X) + I-I(Y) - H(X,Y).

The Venn diagrams of Fig. 4 illustrate the

relationships between these measures. We
will use these information princiPles to
extract the critical connections between

network elements from binary network state

transition data. Similar analyses have been

previously explored in the classification of
Boolean rules (Somogyi & Futa-man, 1997)

and genotype-phenotype mappings (Sawhill,
1995).

The core of REVEAL: systematic

............................................. _f-iiii_ilysls-of State transition tables
,,

The general strategy of our algorithm is. "to
use mutual information measures to extract

the wiring relationships from state transition
tables. These directly lead to the look-up

tables of the roles. We shall explain the

• step-by-step workings of the algorithm (Fig.
5) in the analysis of the network example of

,. Fig. 1.

te._q.!gp__Identification of k=l links

We begin by determining the pair-wise
mutual information matrix (Fig. 5) of all

single input-output pairs (Fig. 1). A "prime"
denotes the output state of an element, e.g.

A'. If M(A',X)=H(A'), i.e.

M(A',X)/H(A')=I, then X exactly determines
A'. This is the case for B and A' in Fig. 5.
Note: Since H(A')=M(A',X), then

H(X) + H(Y)

H(X) H(Y)

H(X,Y)
!

H(XIY) H(Y)

M(x,Y)
i w i i i i i i i i u I

II .I I I I I I I I I

| -

°....o° _....,..'....

Fig. 4 Venn diagrams of information

relationships. In each case, add the
shaded portions of both squares to
.determine one of the following:
[I-/(X)+H(Y)], H(X,Y), and M(X,Y). The
small corner rectangles represent
information that X and Y have in
common. I-I(Y) is shown smaller than
H(X) and with the comer rectangle on
the left instead of the right to indicate
that X and Y are different, although they
have some mutual information.
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Input entropies

H(A) 1.00
H(B)1.00
H(C) 1.00

H(A,B) 2.00
H(B,C) 2.00

H(A,C) 2.00

H(A,B,C) 3.00

_-_:+"_±'+ + _ +_'?+ ' " • : • " X" +++++e+,_:?;

Determination of Inputl for element A _j

...................................................... H(A')'T:00 .....

Rule table for A

(_) rule no. 2

H(A',A) 2.001 M(A'+A) 0.00 I
H(A',B) 1.001 M(A',B) 1.ooI
H(A',C)2.001 M(A',C) 0.00 1

Input Ioutput

m [ A'
M(A',AI / H(A') 0._ _ 0 0

M(A',B) / H(A') 1.0o / 1 1

M(A',C) I H(A') 0.50

Determination of Input= for element B (_

H(B') 0.81

H(B',A) 1.501 M(B',A) 0.31 I

H(B',B) 1.811 M(B',B) 0.00 I

H(B',C) 1.501 MIB',C ) 0+31I
H(B',IA,B])2.S01 M(B',[A,B])0.31I
H(B',[B,C]) 2.8oI M(B',[B,C]) o.31I
H(B',IA,C]) 2.001 M(B',[A,C]) 0.811

Determination

H(C')

H(C',A)

H(C',B)

H(C',C)
H(C',[A, BJ}

H(C',[B,C])

H(C',[A.C])

H(C',[A,B,C])

of Inputs for element C (_ "

(_) Rule table for Brule no. 14

input Ioutput

A C I B'

M(rB',A)/H(B ') 0.38 _ 0 0 ! 0
M(B',B)/H(B') 0.00 / 0 1 1
M(B',C) / H(B') 0.38 / 1 0 1

M(B',[A,B])IH(B') 0.38 / 1 1 1
M(B',[B,C]) / H(B') 0.38 /

M(B',[A,C]) / H(B') 100-
Rule table for C

O rule no.170
input

A B
0 0 0
0 0 1 0

0 1 0 0

0 1 1 1
1 0 0 0

1 0 1 1

1 1 0 1
1 1 1 1

Output
C C'
0

1.811 M(C',A) o.191 M(C',A)/H(C') 0.1g

1.811 M(C',B) 0.191 M{C',B)/H(C') 0.19
1.811 M(C',C) 0.19 ! M(C+,C)/H(C_ 0.19

2._o I M(C',[A,BJ) 0.501 M(G'dA, BJJ/H(G') 0.50

2.50i M(C',[B,CD 0.501 M(C',[B,C])/H(C') 0.50
2.50 ! M(C',IA.C]) 0.50 1 M{C',IA.C])/H{C') 0.50

3.001M(O',[A,B,C]) 1.0OIM(C',[A,B,C])I H(C')1.00

Fig 50udine ot' progressive Manalysis underlying REVEAL for network example
shown in Fig 1 Hs and Ms are calculated from the lookup tables according to the

...................... " .............. definitions (shaded) The network wiring is extracted by M analysis (left, odd steps)
Rule tables are then determined directly from the trajectory (right, even steps)

I IfX)=H(A',X), ie it is not even necessary to calculate M(A',X) explicitly, making

the computation marginally faster The measurement of M must be sufficiently

precise in the analysis of many state transition pairs, ie the determination of p (the
probability) must be able to distinguish a change of lrr (T--number of state

transition pairs)
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Determination of k=l rule

The look-up table for the input/output pairs (Fig. 1) constitutes the rule. Redundant

input/output pair listings are eliminated in the proper rule table format (Fig. 5).

Identification of k=-2 links
If not all state transitions can be explained in terms of k=1, we will determine

entropies of input pair combinations with the remaining unsolved output elements.
IfM(B',[X:,Y])=H(B'), or, more concisely, H(B',X,Y)=H(X,Y), then the pair [X,Y]

completely determines B'. In Fig. 5, no single input can predict B', but the pair [A,
C] accounts for all of the entropy of B'.

Determination of k=2 nile (as above for k=l)

Identification of k=3 links
If not all elements can be resolved in terms of k=l and k=2, the next step is to

determine the entropies of input triplet combinations with the remaining unsolved

output elements. In our example (Fig. 5), since M(C',[A,B,C])=H(C'), or, more
concisely, H(C',Aj],C)=I-I(A,B,C), then [A,B,C] completely determines C'.

Determination of k=-3rule (as above for k=l)

Identification of k=i links (i<=n, number of network elements).

This applies to networks of any size. If not all trajectories can be explained in terms
of k=i-1, i-2 . . . 1 inputs, the search pursues the entropies of i-let input

................. c_,rnbinatiqns with the remaining unsolved output elements. If M(Y, IX1, X2, X.a,. •
. Xi])=/-I(Y), or H(Y,X1, X2, X3 .... X_)= H(X I, X2, X3 .... X3 then the i-let,

[XI,X:,X3 .... X_ completely determines Y (Y=output element). Naturally, the input
value combinations of the combiried .state transition tables covering Y and

IX I,X2,X 3.... X.,] define the look-up table of the rule.

The advantage of this algorithm is that simple networks can be calculated very

quickly just by comparing Hs of state transition pairs. The algorithm will calculate
the I-Is for higher k only as required. Of course, as k increases, the calculations of

the I-Is will require progressively more time (see below). The goal is obviously to
minimize the number of computationally intensive operations. We are currently

exploring rational search optimization procedures (e.g. minimization of k
combination testing) based on probable rule restrictions. Moreover, REVEAL is
amenable to parallel computing, which we are planning to pursue in the future.

Implementation of the algorithm

A practical implementation of REVEAL will require careful considerations regarding

non-redundant and biologically feasible rule inference. Amongst 2 (2_) input rules,

many do not depend on one or more of their inputs. These rules are equivalent to a
rule with a smaller kar (effective k; Somogyi & Fuhrman, 1997). Since we can only
detect rules that truly depend on all of their inputs, the best we can do is to infer the
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equivalent nile with minimum kaf. For this reason, the k-input rules we used in

constructing test networks are effective k-input rules, i.e. that they cannot be reduced

to a rule with smaller number of inputs.
There are two one-input (k=l) and ten two-input (k=2) rules that truly

depend on all their inputs. Two of the ten two-input rules, exclusive or and

equivalent, may be unlikely to occur biologically. They produce minimally
correlated behavior in networks (atypical for biological networks), and would be

difficult to encode in biomolecular interactions. One may consider eliminating such
rules from biologically feasible test networks.

For k=3 rules, there are 218 rules of k,fr=3, 30 of l_n-=2, 6 of lqn=l and 2
of lqn=0. Of course, we limit the construction of model networks to rules of an

effective k. Moreover, k=3 rules may be further restricted according to biological
plausibility (as above for k=2).

In order to infer the rule for a particular gene, our strategy is to first test if
it is an effective one-input rule. Since the input for the gene could be anywhere in

the network, there are N possible inputs for each gene. Each one is tested in turn

using the mutual information analysis discussed earlier. For genes whose output is
not determined solely by any one input, the effective k for the rule of that gene is
larger than one. We next determine whether the gene is determined by a rule with

N(N-1)
two effective inputs. There are pairs of possible inputs for a two-input

2
rule. For each of the these input pairs, we use the M-analysis to determine wheflaer

the input pair specifies the output" v_ue for the gene. In general we have

= k!(/_- k) possible inputs for a k-input rule. All of the input

combinations are examined to fred the correct input set.

Performance of Algorithm

In principle, the information theoretic approach requites computation of the

probability over all 2N state transition pairs of the network for each of the (/_)

possible wirings of the k-input rule. For a net-_,ork of moderate size (N=50), the
number of configurations becomes too large to compute. Fortunately, the criterion

for determining the causality relationship in the M-analysis is satisfied using any

finite input set provided that the same set is used in computing all quantifies

involved. For example, the criterion (see above) for determining that C' is the
output of A and B is H([A,B],C')=H(A,B). A finite set of randorrdy selected input
patterns [A,B] can be used to construct a 4-bit histogram. From the histogram, we
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obtain the probabilities needed to compute H(A,B). H([A,B],C') is computed from
an 8-bit histogram using the same set of input patterns combined with the output

C'. If [A,B] is the correct input for C', then H([A,B],C')=H(A,B) will be satisfied

for any input set.
However, if the number of input-output pairs is small, there will be a large

number of mis-identifications because of incidental degeneracy. In order to estimate

the size of the sample set needed to uniquely identify the right wiring for a gene, we

compute the probability of mis-identification as a function of increasing the sample
size, S, which is defined as the number of input-output pairs used in computing the

histogram. The probability is computed by counting the number of input wirings

that satisfy the M-analysis criterion nomaalized to all possible (_)wirings for a

k-input rule. Fig. 6 shows that the probability declines exponentially with

increasing S. With a very small S, much smaller than the total number of all
possible state transition patterns 2N,we can already identify the correct wiring.

The networks used in testing REVEAL are constructed using a mixture of

1E+O

40 6O 80 1 O0

State transitions

Fig. 6 Reduction of mis-identified network wiring solutions. The number of
erroneous wirings identified by the M_analysis (normalized) versus the number
of state transition pairs used for effective k value k=1,2,3. The data was
obtained by averaging over 50 random wirings for a network with 50 elements.
Note that a correct solution is always found; this is subtracted from the plotted
number of soludons.
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0.0001
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20 40 60

_ _=2:

_I I

80 IO0
State transitions

Fig. 7 Convergence of solution in random network. The probability of not
finding the perfect solution, P, versus the number of state transition pairs used,
S, for effective k value k=1,2,3. Each data point is computed by averaging over
150 random wirings for a network with 50 elements. The network is
constructed with one third each of one-input, two-input and three-input rules.

........................... For each of the three cases, the rule selection is made at random amongst all the
effective k-input rules. As more transitior_ pairs are used, the probabilities
decay exponentially at large S after a relatively flat plateau. Our data also
indicate that P becomes zero at 5;=100 for k=3; at S=60 for k=2; and at S=20

for k=l (not graphically depictable on log scale).

one-input, two-input, and three-input rules with equal probability. When a gene is
assigned a k-input rule, one of k-input rules is selected for the gene_ at random from

all eligible rules. In the ease of Fig. 7, all the rules that truly depend on all their
inputs are eligible. There are 2 such one-input rules, 10 such two-input rules and

218 such three-input rules.
Every rule assigned to genes has been correctly identified for all 150

networks used for Fig. 7. In the most difficult case of k_3, all the rules have been
uniquely identified (perfect solution) when the number of state transition pairs
reaches i00. For one-input and two-input rules, the perfect solution is reached when

S=20 and S=60 respectively for all the genes in 150 networks. When S is smaller

than these limit values, some genes are allocated more than one set of inputs by the

M-analysis, i.e. there is more than one solution. The number of degenerate
solutions as a function of the number of state transition pairs was discussed in

Fig. 6.

I
!
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Outlook

We have shown that REVEAL performs well for networks of low k (number of

inputs per gene). For higher k, the algorithm should be accelerated through a)

paxallelization, and b) increasing the search efficiency of solution space, e.g. by
taking maximal advantage of wiring and rule constraints. We are currently pursuing

these strategies.
Boolean networks are based on the notion that biological networks can be

represented by binary, synchronously updating switching networks. In real
biological systems, however variables change continuously in time. This behavior

can be approximated by asynchronous Boolean networks (reviewed in Thieffry &
Thomas, 1998), or continuous differential equations that capture the structure of

logical switching networks (Glass, 1975). The issue of determining the logical
structure of a continuous network based on knowledge of the transitions was

explicitly addressed in a previous work on oscillating neural networks (Glass and

Young, 1979). The point of REVEAL is to base causal inference on the most
fundamental and general correlation measure available, mutual information. While
we concentrated on idealized Boolean networks, mutual information measures can be

applied to multivalued discrete and also continuous data sets. Of course, once

multiple states are introduced, corresponding flexibility will also be found in the
timing. Since continuous behavior ca0 be approximated by discrete systems given

sufficient resolution, REVEAL could be applied to appropriately discretized
......................................... co'_atJ'nt_o_ _d_aiasets, _ I-/owever, the introi:luction of multiplestates Will greatly

increase the number of theoretically possible state transitions; network and wiring
constraints must therefore be carefully considered when generalizing REVEAL to

multivalued networks. For example, integration of cluster analysis for the inference

of shared inputs (currently applied to continuous, large scale gene expression data
sets; see Michaels et al., 1998) could quickly identify wiring constraints mad

simplify the overall inference process.
Finally, as REVEAL or potential successors become more refined, we need

to consider the data sets that must be generated to allow maximal depth of inference.

The algorithm relies on the analysis of state transitions or temporal responses of

gene expression patterns (or other relevant biological parameters!) to perturbations
or internal changes (e.g. development). What will be the proper time step across
which measurements need to be acquired and interpreted? How many perturbations

will be necessary to capture sufficient diversity? How many states (if more than
binary) need to be attributed to each biological parameter? The potential rewards of

fundamental insights into genetic and biological signaling networks should

encourage us to pursue these questions.
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