
Revealing Applications’ Access Pattern
in Collective I/O for Cache Management

Yin Lu, Yong Chen
Computer Science

Texas Tech University
yin.lu@ttu.edu,

yong.chen@ttu.edu

Rob Latham
Mathematics and Computer

Science Division
Argonne National Laboratory

robl@mcs.anl.gov

Yu Zhuang
Computer Science

Texas Tech University
yu.zhuang@ttu.edu

ABSTRACT
Collective I/O is a critical I/O strategy on high-performance
parallel computing systems that enables programmers to re-
veal parallel processes’ I/O accesses collectively and makes
possible for the parallel I/O middleware to carry out I/O
requests in a highly efficient manner. Collective I/O has
been proven as a core parallel I/O optimization technique.
However, due to the collective nature of collective I/O, the
access pattern of each individual process can be lost after
I/O requests are aggregated at the parallel I/O middleware
layer. In this study, we analyze this issue in detail. We show
that such lost access pattern can have a negative impact
on underlying caching algorithms’ view of locality and can
result in many unnecessary cache misses in low level buffer
caches and additional disk accesses. To address this issue, we
propose to reveal unseen access patterns - performing collec-
tive I/O but more importantly retaining applications’ access
patterns to underlying cache management. With such an
idea, we have prototyped a new collective I/O aware cache
management methodology. The evaluations with various
cache management algorithms have confirmed clear advan-
tages over the existing collective I/O strategy that throws
away applications’ original access pattern.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data communications]: Par-
allel I/O; D.4.3 [File Systems Management]: Access meth-
ods

General Terms
Algorithms, Design, Performance

Keywords
Parallel I/O, collective I/O, high performance computing

1. INTRODUCTION
Scientific applications, simulations, and visualizations run-
ning on high-performance computing clusters produce and

(c) 2014 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or affiliate
of the United States government. As such, the United States Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

ICS ’14 June 10 - 13 2014, Muenchen, Germany
Copyright 2014 ACM 978-1-4503-2642-1/14/06 ...$15.00.
http://dx.doi.org/10.1145/2597652.2597686

consume growing massive amounts of data. For example,
The EarthScience project hosted on Intrepid system accesses
a total of 3.5 PiB of data volumes within two months [3].
Similarly, remarkable data volumes moved by accurate cli-
mate modeling expect to reach hundreds of exabytes by 2020
[8]. Such massive data sets require extreme amounts of
I/O to store and retrieve results for later use and analysis.
The disk access latencies of these data-intensive applications
have resulted in I/O becoming a significant performance bot-
tleneck.

Many efforts have been taken to tackle the I/O bottleneck
issue from different angles. From the system architecture
point of view, buffer caches are widely used in high perfor-
mance storage systems to alleviate disk access latencies for
data-intensive applications. Large-scale high performance
computing platforms typically are hierarchically organized
and can employ buffer caches in multiple layers. Such archi-
tectures can significantly enhance the scalability and avail-
ability of the systems and reduce I/O operation costs. Clearly,
how to take advantage of such buffer cache hierarchy in high
performance computing platforms for data-intensive scien-
tific applications is critical from the performance point of
view.

From the software perspective, a large-scale data-intensive
application may use several layers of software for I/O opti-
mizations. For example, I/O middleware such as an MPI-IO
implementation organizes and coordinates I/O within appli-
cations using their access patterns. Collective I/O [18] is one
of the most important I/O access optimizations in MPI-IO.
MPI collective I/O layer in Figure 1a illustrates how a group
of read operations can benefit from a collective routine. Four
processes P0, P1, P2 and P3 from application layer request
four data blocks at four times respectively. Collective I/O
aggregates and services requests from all processes together
instead of making several read calls separately. As shown in
Figure 1a, the implementation of collective I/O aggregates
requests from all those processes and exchanges their access
offsets at time t4. After analyzing the access requests of dif-
ferent processes, collective I/O filters overlapping requests,
combines the interleaved noncontiguous requests, and car-
ries out a large contiguous data access.

However, from this example we can observe that, with col-
lective I/O the detailed access patterns available at the ap-
plication level are changed when the aggregated I/O request
reaches the low level buffer cache. How many times a block

(a) Collective I/O and current cache managment

(b) New cache managment
Figure 1: Collective I/O Hides Applications’ Original Access
Pattern (Recency and Frequency of Requested Blocks) Away

is requested and the original temporal information are all
thrown away and not known to the low level buffer cache af-
ter being aggregated by collective I/O. Therefore data blocks
could reside in low level buffer caches undiscerningly for a
long period of time before they become cold enough to be
replaced by a local replacement algorithm. Furthermore,
collective I/O can potentially bring to low level cache more
data elements than it needs. For instance, in Figure 1a,
at t4 four blocks in the combined large data chunk are ex-
tra data not truly required by processes. These extra data
blocks increases the pressure on the low level buffer caches.
The effective cache capacity is reduced, which in turn af-
fects application performance. Without a proper coordina-
tion between I/O middleware and the low level buffer cache,
the shadow pattern caused by collective I/O can lead to the
buffer cache seriously under-utilized.

To address these limitations, in this paper we propose a col-
lective I/O aware (CIO-aware in short) buffer cache man-
agement scheme, in which the buffer cache is exposed with

the original pattern of access stream and has the better po-
tential to exploit it. The buffer cache layer in Figure 1a
versus the buffer cache layer in Figure 1b demonstrate the
comparison of two cache layouts with the same application
data accesses. One layout is the effect of the hidden ac-
cess pattern stemming from current collective I/O. Another
cache layout is optimized with our proposed CIO-aware ap-
proach. With the proposed strategy, the data elements in
buffer cache are organized based on the actual pattern from
application level (please note the difference of both recency
and frequency between Figure 1a and Figure 1b) and stored
in consecutive locations, which helps minimize the number
of data blocks occupied in buffer cache and makes the cache
management much more efficient than the existing strategy.

The primary contributions of the study are as follows:

• We investigate the impact of collective I/O on the low
level buffer cache management and analyze the poten-
tial limitation and improvement.

• We propose a CIO-aware cache management scheme
which integrates enhanced collective I/O module with
pattern detection threads to improve the performance
of underlying buffer cache without dedicating extra re-
sources.

• Compared to current scheme, the beauty of the CIO-
aware cache management is that, collective I/O is still
performed, but more importantly the original true ac-
cess patterns are revealed to low level buffer caches.

• We implemented CIO-aware cache management scheme
within ROMIO [17], the most popular implementa-
tion of the MPI-IO middleware. Both pattern de-
tection and cache management are transparent to the
users and collective I/O interfaces remain unchanged.
Furthermore, CIO-aware cache management is imple-
mented in the file-system-independent layer of ROMIO,
allowing it to be easily ported.

• We evaluated CIO-aware buffer cache management with
three widely-used parallel I/O benchmarks. Our re-
sults show that CIO-aware buffer cache can signifi-
cantly reduce the total run time and improve the ap-
plications’ overall performance. Through our exper-
iments, we also found that CIO-aware buffer cache
management can help I/O middleware to reduce the
actual I/O bandwidth usage, by reducing the data
movement between compute and storage nodes.

The rest of this paper is organized as follows. Section II
briefly discusses collective I/O and middleware caching as
the related work of this study. The design and implementa-
tion of collective I/O aware cache management strategy are
presented in Section III, and the evaluation methodology
and experimental results with analysis are given in Section
IV. We conclude this study in Section V.

2. RELATED WORK
Extensive studies have focused on improving the I/O perfor-
mance of high performance computing systems. We briefly
review closely related work with this study along three lines:

parallel I/O and collective I/O, cache management at stor-
age and file systems level, and cache management at mid-
dleware and library level.

2.1 Parallel I/O and Collective I/O
There have been significant amount of research efforts in
optimizing parallel I/O performance, such as collective I/O
[4, 11, 18], data sieving, server-direct I/O, disk-directed I/O,
lightweight I/O [15], partitioned collective I/O [21], layout-
aware collective I/O [4], ADIOS library [12], and resonant
I/O [22]. These strategies collect and aggregate small re-
quests into larger ones at the I/O client/middleware/server
level. Abbasi et. al. recently proposed a DataStager frame-
work with data staging services that move output data to
dedicated staging or I/O nodes prior to storage, which has
been proven effective in reducing the I/O overheads and in-
terferences on compute nodes [1]. Zheng et. al. proposed a
preparatory data analytics (PreDatA) approach to prepar-
ing and characterizing scientific data when generated (e.g.
data reorganization and metadata annotation) to speedup
subsequent data access [23]. These approaches have shown
considerable performance improvement with dedicated out-
put staging services and preparatory analysis. Advanced
I/O libraries, such as Hierarchical Data Format (HDF), Par-
allel netCDF (PnetCDF) [9], and Adaptable IO System (ADIOS)
[12], provide high-level abstractions, map the abstractions
onto I/O in one way or another, and complement parallel
programming models in managing data access activities.

2.2 Cache Management at Storage and File
Systems Level

Numerous prior work focus on improving the behavior of
storage (or second-level) cache management because the be-
havior of the second-level cache is often hard to character-
ize, making cache management schemes inadequate. Par-
ticularly, Zhou et al. investigated multi-queue, eviction-
based, and CLOCK replacement policies [24]. Choi et al.
proposed a fine-grained file-level characterization of chunk
references in buffer management [5]. Vilayannur et al. in-
troduced selective caching because caching of certain blocks
is not always beneficial [19]. Sarhan and Das proposed to
use the on-disk buffers for caching intervals between succes-
sive streams, while multimedia-on-demand servers improve
resource sharing by intelligent request schedulers [16]. Our
approach complements these existing caching policies with
improved cache locality view via revealing the original access
pattern that is hidden by collective I/O.

Recently, several studies looked into cache management for
multi-level storage hierarchies. The main motivation for
these studies is that the modern networked storage systems
have a hierarchy of caches, and special care needs to be taken
in order to manage those cache hierarchies efficiently. A key
idea is how to reduce negative interference while keeping
most valuable blocks in shared cache. Techniques to extract
and predict the most valuable blocks include transforming
application-level requirement into I/O reservations, corre-
lating program counters with program context, exploiting
reference regularities, locality of file chunks of non-uniform
strength, and automatic application reference pattern de-
tection. For example, Wong and Wilkes explored the exclu-
sive cache policies against the prevalent inclusive ones [20].

These studies are system-level approaches and are therefore
orthogonal to our approach. Our approach is also along
this direction but is unique because it specifically addresses
hidden pattern and locality issues to low level buffer cache
management when collective I/O is heavily used in parallel
computing systems.

2.3 Cache Management at Middleware and Li-
brary Level

Cooperative caching [6] seeks to improve network file sys-
tem performance by mutually sharing the contents of client
data caches. In cluster environments where high perfor-
mance, low latency message passing networks are frequently
available, accessing remote clients to retrieve cached data
may result in improved file system throughput. Coopera-
tive caching offers the most opportunity for performance im-
provements when the client exhibits a large degree of inter-
client sharing. Many projects have explored the use of coop-
erative caching within the file system as an effective means
for improving file system performance. The Center for Ultra-
Scale Computing and Information Security at Northwestern
University has prototyped several file cache designs [2] with
ROMIO [17], an open source implementation of the MPI-IO
standard. The basic approach involves partitioning the file
into a set of fixed size pages. Pages are then assigned to a
single computation node by taking the modulo of the page
number. Clients processes access file data by requesting it
from the client responsible for the cache page rather by ac-
cessing the file system, a cooperative caching approach. In
one scheme the file data may only be cached at nodes re-
sponsible for the cached page. Another scheme implements
directories at the responsible node so that another node may
cache the page. All of these schemes require that file data is
cached at only one node and that all file accesses occur on
page aligned boundaries. Our study leverages these existing
work, identifies, and addresses the issue of hidden access pat-
tern to low level cache management due to collective I/O.

3. COLLECTIVE I/O AWARE CACHE MAN-
AGEMENT

Each I/O request from applications represents a caching op-
portunity for the lower level storage systems. In this sec-
tion, we introduce the proposed collective I/O aware cache
management framework to make applications’ access pat-
tern available to low level cache. We also present methods
for exploiting this knowledge to improve the overall caching
performance.

3.1 CIO-Aware Cache Management Framework
Figure 2 illustrates the high-level view of the proposed CIO-
aware cache framework. As shown in the figure, the compu-
tations of parallel scientific applications are carried out on
compute processes, which generate a number of I/O requests
for underlying parallel file system. Each parallel process
launches a main thread to perform I/O related operations.
The caching helper thread is attached to each main thread
for cache management. It delivers the original accesses of
each parallel process to the pattern detection module.

A pattern detection module is embedded inside the MPI I/O
library. It collects and processes the stream of access re-
quests dispatched from caching helper threads. The current

Figure 2: Collective I/O Aware Cache Management

file pointer offsets from caching helper threads are main-
tained in an implicit file table. The pattern detection mod-
ule explores the access information from this file table to
build pattern views and pass them to the underlying MPI
I/O caching library. The pattern detection module also
tracks function-call identifiers to synchronize the caching
helper thread and the main thread collective I/O calls.

The cache library maintains a global buffer cache among
multiple processes. This library is implemented at user space
and integrated in the MPI I/O library. It captures the access
patterns transferred from the pattern detection module and
manages the actual data fetching to the buffer cache. The
regular collective I/O is enhanced to take advantages of the
cached data residing in the buffer cache. An I/O requesting
process must first check the caching status of the requested
blocks before exchanging I/O accesses with other processes.
If the requested blocks are cached, the requesting process
will fetch data from buffer cache directly.

The proposed CIO-aware cache management can work with
any cache replacement algorithm. In this study, we focus on
four typical replacement algorithms, LRU, LFU, FIFO, and
ARC, and study the impact of CIO-aware cache manage-
ment with any one of these cache replacement algorithms.
Such a functionality is implemented in the replacement mod-
ule.

3.2 MPI I/O Access Pattern Detection
The success of the proposed CIO-aware buffer cache manage-
ment relies on extracting and utilizing original I/O access in-
formation before the collective I/O aggregation. We choose
a multi-threading approach to obtain the actual access infor-
mation of each parallel process. A caching helper thread is
constructed in each MPI process when opening the file and
destroyed when closing the file. Figure 3 shows several key
lines in our prototype to illustrate the thread execution. As
shown in Figure 3, the caching helper thread shares certain
resources with the main thread, such as process rank, MPI
file handles, and file views. While the main thread performs
enhanced collective I/O, the caching helper only performs
essential computation for data address calculation. A list

of offsets and request sizes are created and maintained in a
pattern record corresponding to one process.

Main Thread�
...

MPI_File_open(comm ,fname ,mode ,

info ,& mpi_fh);

...

MPI_File_read_all(mpi_fh ,buf ,

count ,dttype ,status);

...

MPI_File_close (& mpi_fh);

...� �

Cache Helper Thread�
...

/* process rank */

rec ->rank=thisrank;

/* file descriptor */

rec ->filedes=mpi_fh ->fd_sys;

...

/* individual file pointer */

rec ->file_pos=mpi_fh ->fp_ind;

...� �
Figure 3: Collective I/O Aware Access Pattern Detection

One caching helper thread only evaluates how a file is ac-
cessed by a local process and transfers the records to the
pattern detection module. The pattern detection module
receives local patterns from all processes involved in collec-
tive I/O operations. It analyzes these local patterns and
combines them into a global pattern. The pattern detection
module considers the following four factors when produc-
ing the global pattern: I/O operation type, spatial locality,
temporal pattern, and iterative behavior.

The I/O operation type is classified as read, write, or read-
/write. The spatial locality can be contiguous, noncontigu-
ous, and the combinations of contiguous and noncontiguous
patterns. When the application conducts one collective I/O
operation, each process may access several noncontiguous
portions of a file while the requests of multiple processes
are often overlapped. These gaps and overlaps can help the
caching library identify the potential candidate data blocks
to be placed into buffer caches. Capturing temporal pat-
terns is also helpful for organizing the cache blocks. If at
one point a particular data block is requested by one pro-
cess, it is likely that the same block will be requested again
in the near future. The replacement module in our pro-
posed caching library manage the cache blocks by using the
temporal information obtained from the previous I/O ac-
cesses. Scientific parallel programs using MPI I/O usually
issue data requests with a few loops. This I/O access pat-
tern can be described as iterative behavior. When repetitive
I/O access patterns are captured, identified data blocks can
be effectively kept longer in the cache. The cached data can
be completely used before evicting them to make room for
the new blocks.

Taking the factors mentioned above into account, the global
pattern stores information of the file descriptor, process id,
I/O operation, time stamp, dimension, starting offset, re-
quest sizes and number of repetitions. Consider, as an ex-
ample, a global pattern value with parameters {[3],READ,
0.023184, 1, [(2622716, 510080), (1573632, 510080)], 64}
indicates a one dimensional read access pattern. At time
0.023184, the third MPI process accesses a region whose
starting offsets are 2622716 and 1573632 respectively. The
request size is 510080 bytes for both accesses. This one di-
mensional pattern repeats 64 times. Using the pattern value
and data block sizes, caching library can identify the set of
data blocks captured in the buffer cache.

3.3 MPI IO Caching Library

MPI-IO based data cache can leverage other MPI library
components to take advantage of the collective nature of
parallel I/O. Incorporating the caching into the MPI library
also increases the implementation portability. MPI-IO based
caching can easily interface with different underlying file
systems. Several research projects have been working on
MPI-IO caching libraries. Liao et al. developed a collec-
tive caching library implemented at the MPI-IO level[10, 14].
Collective caching maintains a global buffer cache among
multiple processes in the client side. We use this library as
the starting point for our study. Each client contributes part
of its memory to construct the global cache pool. The cached
data is transfered among clients through the high-speed in-
terconnect network. Metadata of cached blocks is main-
tained to locate data quickly. A simplified cache-coherency
protocol is used to maintain consistency among cache copies
in the cache pool. At most a single copy of file data is
allowed to be cached among all MPI processes. Since the
read/write mix varies considerably by application domain
and read workloads are as prevalent as writes on leader-
ship platforms [3], in this study we customize the collective
caching prototype implementation by enabling read caching
only. In addition, we utilize a replacement module in con-
junction with pattern detection results to direct caching pol-
icy. The details will be discussed in the next subsection.

3.4 CIO-Aware Cache Management
The replacement module in the MPI-IO caching library man-
ages the cache by applying specific replacement policies that
best utilize the cache under that access pattern. By taking
full benefits of original access patterns delivered from the
pattern detection module and used for making the block re-
placement decisions, caching performance can be enhanced.
There has been an extensive research on designing cache re-
placement algorithms, e.g. LRU [7], LFU, FIFO and ARC
[13], etc. In this subsection, we illustrate how cache replace-
ment policies are extended to take advantage of original ac-
cess pattern from MPI-IO processes.

3.4.1 CIO-Aware LRU
We extend the Least Recently Used (LRU) cache replace-
ment policy and exploit original access temporal locality fil-
tered by collective I/O to manage the LRU list and to decide
whether or not to cache accessed blocks.

The new replacement policy of CIO-aware LRU first extracts
the values of starting offset and request size from each global
pattern value. The request is divided into blocks of size equal
to the buffer cache block size. We check whether each block
is already in the buffer cache or not. If the block is cached,
the block is directly copied from buffer cache to user’s buffer
by using memcpy() function call. The exact location where
the buffer cache should be copied to is decided by the in-
dex of the requested block in user’s buffer. Meanwhile, the
last access time of this block is updated with its original
temporal information and this block is moved to the most-
recently-used position. For blocks not placed in the cache
buffer, collective reads are first performed directly from the
underlying file system. Then these blocks are fetched into
the buffer frame held by LRU victims. The general design
of CIO-aware LRU is summarized in Algorithm 1.

Figure 4 demonstrates how data blocks are arranged by LRU

Figure 4: LRU with Collective I/O Awareness

by exploiting their original access temporal locality filtered
by collective I/O. We assume the buffer cache is clean at
the beginning with twelve frames/slots. Blocks 0, 1, 9 and
10 are referenced by P3 at t0 and blocks 4, 5, 13 and 14
are referenced by P0 at t1 respectively. Each data block is
copied from the data file on the file system into a buffer in
the cache. The LRU list holds all these blocks as shown
in the first status. The second status demonstrates block 1
referenced by P1 at t2 is moved to the most recently used
(MRU) position of the LRU list. Other buffers age toward
the LRU position of the LRU list. The third status shows
the cache content after all data blocks required through one
collective I/O have been organized by LRU with their actual
timestamps. By leveraging the virtue of the original access
pattern, buffer cache avoid copying extra data blocks which
are not requested by processes.

Algorithm 1: CIO-Aware LRU

input : A sequence of global pattern values Sv from
pattern detection module

output: The contents of buffer cache

foreach global pattern value gv ∈ Sv do
split data requests with gv into blocks Bs ;
uncatched data blocks set Us ← ∅ ;
foreach block bi ∈ Bs do

if bi ∈ buffer cache then // cache hit
hits++;
// copy data bi to user using memcpy()
user specified buffer ← bi in buffer cache;
// update bi last access time
Last(bi) ← bi time stamp;

else // cache miss
// perform I/O from disk
user specified buffer ← bi in file system ;
// evicting the LRU block
min ← current time;
foreach block bj ∈ buffer cache do

if Last(bj) < min then
victim ← bj ;
min ← Last(bj) ;

if victim == dirty then
flush the victim to the disk;

fetch bi into the buffer frame held by victim;
Last(bi) ← bi time stamp;

To interact with the replacement module and benefit from
caching, the current collective I/O implementation is modi-
fied to be able to access the buffer cache for requested data.
When I/O requests are issued, the replacement module ex-

tracts the global pattern values from the pattern detection
module. The requests are divided into blocks of size equal
to the buffer cache block size. The enhanced collective I/O
module first checks whether each block is already in the
buffer cache or not. If the block is cached, the block is di-
rectly copied from buffer cache to user’s buffer by using the
memcpy() function call as discussed earlier. The general de-
sign of cooperation mechanism between enhanced collective
I/O and CIO-aware LRU module follows Algorithm 1.

3.4.2 CIO-Aware LFU
A potential problem with LRU is that it may quickly replace
some data blocks that do not provide hits for a short period
of time, although they are beneficial in the long run. In ad-
dition, LRU might also fail when the access pattern is such
that all requested data blocks can not fit into the buffer
cache and the data blocks are requested in a round robin
fashion. What will happen in case of LRU is that data blocks
will constantly enter and leave the cache, with no client re-
quest ever hitting the cache. Under the same condition how-
ever, the Least Frequently Used (LFU) will perform much
better, with most of the cached items resulting in a cache
hit. In I/O intensive scientific applications, a large amount
of overlaps exist among the file regions required by multi-
ple processes. Obviously, the overlapped data are referenced
more than other data blocks. Under such a circumstance,
we anticipate that LFU can better identify these blocks and
they can have higher priorities to stay in cache.

The pseudo code for collective I/O aware LFU is similar to
that of Algorithm 1 and thus is not included here. Instead
of utilizing temporal information, the algorithm keeps the
hit count for each data block in the cache. This is achieved
by maintaining two double linked list. One is the access
frequency list which is used to link together rectangular hit
counters. Each hit counter has a frequency value and con-
nects with a set of circular data blocks that have the same
access frequency. All the data blocks with the same access
frequency are connected using another doubly linked list.

Figure 5: LFU with CIO aware

Figure 5 demonstrates how CIO-aware LFU organizes data
blocks using reference frequency hidden by collective I/O.
LFU keeps track of the number of times a block is referenced.
Status one shows that blocks 0, 1, 9, 10, 4, 5, 13 and 14 are
referenced once after t2. In the second status, block 1 is
moved to frequency list with value 2 since it is referenced by
P1 at t2. The third status illustrates all the data blocks are
arranged with their actual reference frequency at t3. With-

out revealing the original access pattern that is hidden away
by collective I/O, the cache management will not be able to
tell the correct request frequency of blocks. For instance,
blocks 1, 5, 10, and 14 are all requested twice, whereas after
being aggregated by collective I/O, the requested frequency
of these blocks becomes once only to the underlying cache.

3.4.3 CIO-Aware ARC

Figure 6: ARC with CIO aware

The standard LFU policy has shortfalls as well. The most
significant drawback is that LFU pays no attention to tem-
poral history. Potentially it may accumulate stale pages
with high frequency counts that may no longer be useful.
Thus LFU does not adapt well to the changing access pat-
terns. Adaptive Replacement Cache (ARC) [13] bridges the
gap between LRU and LFU by capturing both recency and
frequency. ARC maintains two lists of cache pages, one list
for the most recently used pages and another list for the
most frequently used pages. In addition, ARC maintains
two ghost cache directories that remembers twice as many
pages as in the cache memory. Both ghost lists do not cache
data, but track the recently evicted pages from the list of
most recently used pages and the most frequently used pages
respectively. A hit on them affects the behavior of the cache.

The key idea of ARC is to adaptively decide how many
top pages from each list to maintain in the cache. Figure
6 shows how CIO-aware ARC performs in response to the
same workload we have demonstrated in the previous sub-
sections. GLRU and GLFU represent most recently evicted
pages from LRU list and LFU list respectively. When a block
is referenced by any processes at first time, it is placed in the
recently used list. Status one indicates that blocks 0 and 1
are evicted from the LRU list at t1 when the LRU list is filled
up. These two blocks are put onto the list of recently evicted
pages. When block 1 is referenced by P1 at t2, this block is
on the list of already evicted pages. Such an attempt to read
leads to a phantom cache hit. As the block 1 has already
been evicted from cache, the system has to read it from un-

Algorithm 2: CIO-Aware ARC

input : A sequence of global pattern values Sv from
pattern detection module; T1 and T2 hold pages
metadata in the cache; B1 and B2 are ghost
caches; c is the cache size; p is a tunable parameter

output: The contents of buffer cache

Set p = 0 and Set T1, T2, B1 and B2 ← ∅ ;
foreach global pattern value gv ∈ Sv do

split data requests with gv into blocks Bs ;
foreach block bi ∈ Bs do

if bi ∈ T1 or T2 then
Move bi to top of T2;

else if bi ∈ B1 then

p=min
(
c, p + max

(
|B2|
|B1|

, 1
))

;

replace(bi, p);
Move bi to top of T2;

else if bi ∈ B2 then

p=max
(

0, p−max
(

|B1|
|B2|

, 1
))

;

else // page not in T1, T2, B1, orB2

if (|T1|+ |B1|) == CacheSize then
if T1 < CacheSize then

Remove LRU page in B1;
replace(bi, p);

else
Remove LRU page in T1;

else if (|T1|+ |B1|+ |T2|+ |B2|) >= CacheSize
then

if
(|T1|+ |B1|+ |T2|+ |B2|) >= 2×CacheSize
then

Remove LRU page in B2;
else

replace(bi, p);

Put bi at the top of T1;

Replace (page, p)
if |T1| > 1 ∧ (|T1| > p ∨ (|T1| == p ∧ page ∈ B2)) then

Move LRU page in T1 to top of B1

else
Move LRU page in T2 to top of B2

derlying file system. Since this was a recently evicted page
and not a page referenced just the first time, as shown in
status two and three, ARC first places this block in the LFU
list. This phantom hit also indicates the capacity of LRU list
is not enough. In this case the length of LRU list in cache is
increased by one. Obviously this reduces the place for LFU
list by one. The same mechanism is applied on the other
side. If we get a hit on the list of recently evicted pages of
LFU list, the available space for frequently used pages will
be increased by one. Obviously the list for currently cached
recently used pages will be decreased by one. The status
five exhibits the cache contents and the adapted lists’ size
after collective I/O performed. Algorithm 2 demonstrates a
high-level description of CIO-aware ARC.

4. EVALUATIONS
In this section, we present the evaluation results of the CIO-
aware cache management prototype tested with a variety of
benchmarks. We present results that quantitatively demon-
strate the benefits of revealing unseen access pattern in col-
lective I/O and confirm the feasibility of our design.

4.1 Methodology

We quantify the extent to which the CIO-aware cache man-
agement scheme improves upon the traditional cache man-
agement schemes with respect to two key metrics: I/O through-
put and buffer cache hit rate. The I/O throughput is ex-
pressed as the ratio of the total number of bytes transferred
to/from file system to the time required to transfer data.
A higher I/O throughput can lead to better performance
of the application, i.e. less application execution time. We
also choose the cache hit rate metric because it has a di-
rect impact on application execution time. The buffer cache
hit rate is defined as the ratio of the total number of buffer
cache hits to the total number of I/O accesses made by the
application.

The experiments were conducted on a 640-node Linux-based
cluster test bed with DataDirect Network storage systems.
Each node contains two Intel Xeon 2.8 GHz 6-core proces-
sors with 24 GB main memory. All nodes are connected
with double-data-rate Infiniband networking that provides
full cross-section bandwidth among the parallel nodes. A
600TB Lustre file system and MPICH-3.0.2 library manage
the storage system and runtime environment. Files were
striped over all I/O servers with the round robin default
striping strategy (with 1 MB unit size in the experiments).

In the following experiments, we compare the CIO-aware
cache management and the baseline scenario, in which client
applications are configured to access the shared file system
directly via MPI-IO layer. In addition to the experimen-
tal setup described above, we have also built a trace driven
buffer cache simulator to measure the cache hit rates. In
order to compare the hit rate of our strategy with the hit
rate of a traditional system, the trace collector captures the
traces of our applications twice while they ran on the clus-
ter. The I/O operation parameters are collected once by
using the Profiling MPI interface (PMPI) before the actual
collective I/O function is issued and second time in ADIO
layer after I/O requests are aggregated.

4.2 MPI-Tile-IO Benchmark
MPI-Tile-IO is a widely used benchmark designed to test
the performance of non-contiguous data access. In this ap-
plication, data I/O access is issued in a single step by us-
ing collective I/O. It tests the performance of concurrently
accessing a two-dimensional dense data set, simulating the
type of workload that exists in visualization and numerical
applications. In our experiments, each process renders one
tile with 1024×1024 pixels and the size of each element is 8
bytes. Tiles overlap by 128 elements in X axis, 128 elements
in Y axis. Because this benchmark closes the file between
write and read operations, we slightly modified the bench-
mark to avoid close/re-open in order to show the effect of
collective buffer cache.

Figure 7 compares the total execution time for the imple-
mentation with CIO-aware strategy and the native approach
which is oblivious of the application access pattern. The ex-
perimental results were measured with 8, 16, 32, 64, 128,
256, 512, and 1024 processes on Lustre respectively. The
total data are set as 10GB in each I/O phase. The buffer
cache size at each client was set as 64MB. We measure the
latency for each processesâĂŹ number by 10-time runs and
plot the figure with the median value. In the Figure 7, the

8 16 32 64 128 256 512 1024

Number of Processes

T
im

e
(S

e
c
o

n
d

s
)

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Oblivious−LRU

CIO−LRU

CIO−LFU

CIO−ARC

Figure 7: Total execution time comparison of Mpi-Tile-IO,
each run with 10 GB data and 64 MB buffer cache per pro-
cess

first bar of every column represents the original execution
time. The second, third and fourth bar represent the exe-
cution time with CIO-aware strategy under LRU, LFU and
ARC replacement schemes.

4 8 16 32 64 128 256 512 1024

0
%

2
0

%
4

0
%

6
0

%
8

0
%

1
0

0
%

Cache size[MB]

H
it
 r

a
ti
o

Oblivious−LRU

CIO−LRU

CIO−LFU

CIO−ARC

Figure 8: Hit rate comparison of cache replacement schemes
for Mpi-Tile-IO, each run with 32 processes

The proposed CIO-aware cache management is on top of ex-
isting collective buffer optimization technique and comple-
ments the existing approaches. We observe that CIO-aware
approach can reduce I/O access latency further when com-
bined with existing collective buffering techniques. Addi-
tionally, the improvement increases with the number of pro-
cesses. The decrease in read execution time was up to 80.6%.
Overall, the average execution time decrement was 31.1%,
38.5% and 52.6% in CIO-LRU, CIO-LFU and CIO-ARC
schemes respectively. These performance improvements are
attributed to two causes: the improvement of buffer cache
organizations and the reduction of underlying file system
accesses. With CIO-aware buffer cache, subsequent collec-
tive read operations takes better advantage of cache capac-

ity than the native approach. These results also indicate
that the choice of a good replacement policy is crucial to
CIO-aware scheme. It can be observed that the CIO-aware
approach with ARC policy outperforms the LRU and LFU
based schemes by 16.4% and 10.7%, respectively.

Figure 8 shows the hit ratios of different cache replacement
algorithms. The original collective I/O trace managed by
LRU was selected as the baseline. Compared to the original
approach, the ARC with CIO-aware strategy provided the
best hit rate among all the algorithms. It improved the
hit rate by as much as 110.8% with an average of 66.7%
improvement over the nine cache sizes. With limited cache
size, CIO-aware LRU provides a relatively high hit rate with
small cache size. Each block in an LRU cache has a long life
before it is discarded, and thus has a high possibility to
be referenced again by different clients with high-correlated
workloads. The gain becomes smaller as the buffer cache
is larger, since a large cache size retains a block for a long
enough time, within which it is accessed by most clients.

4.3 IOR benchmark
The Interleaved Or Random (IOR) benchmark measures the
performance of parallel I/O through different I/O interfaces,
including MPI-IO, POSIX as well as high-level libraries. In
this study, we performed interleaved read operations to a
file as we varied the number of processes for collective I/O.
The tests were carried out with 8MB I/O message size per
process.

8 16 32 64 128 256 512 1024

Number of Processes

T
im

e
(S

e
c
o

n
d

s
)

0
2

0
4

0
6

0
8

0
1

0
0

Oblivious−LRU

CIO−LRU

CIO−LFU

CIO−ARC

Figure 9: Total execution time comparison of IOR, each run
with 10 GB data and 64 MB buffer cache per process

The total execution time results with IOR benchmark are
plotted in Figure 9. From Figure 9, clear improvements
of CIO-aware cache management over the original strategy
can be observed. At 64MB cache size per process with CIO-
aware strategy, the execution for CIO-LRU, CIO-LFU and
CIO-ARC was decreased by 19%, 22.8% and 24.6%, respec-
tively. Figure 10 shows the hit ratios for IOR benchmark
under different cache sizes. Our results with 32 processes
and CIO-aware cache showed that the percentage improve-
ments brought by our scheme over the original LRU replace-
ment are 54.4%, 50.8%, 75.5% for CIO-LRU, CIO-LFU and
CIO-ARC, respectively.

4 8 16 32 64 128 256 512 1024

0
%

2
0

%
4

0
%

6
0

%
8

0
%

1
0

0
%

Cache size[MB]

H
it
 r

a
ti
o

Oblivious−LRU

CIO−LRU

CIO−LFU

CIO−ARC

Figure 10: Hit rate comparison of cache replacement
schemes for IOR, each run with 32 processes

Both sets of experiments have verified the proposed collec-
tive I/O aware cache management achieved considerable hit
rate increments and sustained bandwidth improvements.

4.4 MPI-IO-Test Benchmark

8 16 32 64 128 256 512 1024

Number of Processes

T
im

e
(S

e
c
o

n
d

s
)

0
2

0
4

0
6

0
8

0

Oblivious−LRU

CIO−LRU

CIO−LFU

CIO−ARC

Figure 11: Total execution time comparison of MPI-IO-Test,
each run with 10 GB data and 64 MB buffer cache per pro-
cess

We have carried out various tests with the mpi-io-test bench-
mark as well. Figure 11 compares the execution time with
normal collective I/O and CIO-aware strategy at 64 MB
buffer cache per process with a varying number of processes
at each run. Compared to the normal collective I/O, the
average performance improvements for read is 15.6%, 12.8%
and 20.1% for CIO-LRU, CIO-LFU and CIO-ARC. We can
observe that the caching improves the performance, but the
improvement is not very substantial. One reason is that read
caching can perform well if large amount of data reuse exists.
If there is no much data reuse, the read caching may not per-
form as well as expected. Figure 12 reports another set of
test where we used 32 processes for evaluating the cache hit

4 8 16 32 64 128 256 512 1024

0
%

2
0

%
4

0
%

6
0

%
8

0
%

1
0

0
%

Cache size[MB]

H
it
 r

a
ti
o

Oblivious−LRU

CIO−LRU

CIO−LFU

CIO−ARC

Figure 12: Hit rate comparison of cache replacement
schemes for MPI-IO-Test, each run with 32 processes

rate with increasing the buffer cache size. The average hit
rate improvement was 58.2%, 59.5%, 83% respectively for
CIO-LRU, CIO-LFU and CIO-ARC in this series of tests.
Compared with the IOR benchmark, the mpi-io-test cache
hit rate increased but at a relatively moderate rate with an
increasing cache size.

All these results indicate that the CIO-aware cache manage-
ment is beneficial to achieve better throughput for collective
I/O operations and higher hit rate for the underlying buffer
cache.

5. CONCLUSION
Parallel I/O systems have become increasingly critical due to
many growingly data-intensive high-performance computing
simulations and applications. These data-intensive scientific
simulations and applications rely on a highly efficient par-
allel I/O system to make productive scientific discovery. In
current parallel I/O software stack, collective I/O has been
widely recognized as a critical I/O strategy that leverages
correlations among parallel processes to carry out parallel
I/O requests more efficiently. The current collective I/O
and parallel I/O software stack, however, are not well inte-
grated and suffer dropping out useful access patterns from
applications during the aggregation process of the collective
I/O strategy.

In this study, we have thoroughly demonstrated and ana-
lyzed this issue. We have shown that the collective I/O
filters away many useful I/O access patterns that can be
critical to underlying cache management.These thrown-away
access patterns can have a negative impact on cache man-
agement algorithms on their views of locality, which leads
to many unnecessary cache misses in low level buffer caches
and additional disk accesses. We have thus proposed a new
collective I/O aware cache management methodology that
reveals unseen access pattern to underlying caching algo-
rithms. We have prototyped such an idea and the new
methodology. We have also carried out evaluations with

widely-used cache management algorithms based on recency
and frequency of access patterns. The evaluations have con-
firmed the performance advantage of revealing unseen access
patterns in collective I/O. We believe that the issue identi-
fied in this study and the new methodology proposed can
be helpful and can provide guidance for the community to
build an even more efficient parallel I/O system.

6. ACKNOWLEDGMENT
This research is sponsored in part by the National Science
Foundation under grant CNS-1162488 and supported by the
U.S. Department of Energy, Office of Science, under Con-
tract DE-AC02-06CH11357. The authors thank the High
Performance Computing Center (HPCC) at Texas Tech Uni-
versity at Lubbock for providing HPC resources that have
contributed to the research results reported in this paper.

7. REFERENCES
[1] H. Abbasi, M. Wolf, and G. e. Eisenhauer.

DataStager: Scalable Data Staging Services for
Petascale Applications. In HPDC, 2009.

[2] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and
W. Gropp. Parallel I/O Prefetching Using MPI File
Caching and I/O Signatures. In Proceedings of the
2008 ACM/IEEE conference on Supercomputing, 2008.

[3] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang,
R. Latham, and R. Ross. Understanding and
Improving Computational Science Storage Access
through Continuous Characterization. In Mass Storage
Systems and Technologies (MSST), 2011 IEEE 27th
Symposium on, 2011.

[4] Y. Chen, X.-H. Sun, R. Thakur, P. Roth, and
W. Gropp. LACIO: A New Collective I/O Strategy for
Parallel I/O Systems. In Parallel Distributed
Processing Symposium (IPDPS), 2011 IEEE
International, pages 794 –804, 2011.

[5] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. Towards
Application/File-level Characterization of Block
References: A Case for Fine-Grained Buffer
Management, 2000.

[6] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A.
Patterson. Cooperative Caching: Using Remote Client
Memory to Improve File System Performance. In
Proceedings of the first Symposium on Operating
Systems Design and Implmentation, 1994.

[7] A. Dan and D. Towsley. An Approximate Analysis of
the LRU and FIFO Buffer Replacement Schemes. In
Proceedings of the 1990 ACM SIGMETRICS
conference on Measurement and modeling of computer
systems, SIGMETRICS ’90, New York, NY, USA,
1990. ACM.

[8] J. Dongarra, P. H. Beckman, and T. M. etc. The
International Exascale Software Project roadmap.
IJHPCA, 25(1):3–60, 2011.

[9] J. Li, W. keng Liao, A. Choudhary, R. Ross,
R. Thakur, R. Latham, A. Siegel, B. Gallagher, and
M. Zingale. Parallel netCDF: A high-performance
Scientific I/O Interface. In In Proceedings of
Supercomputing, 2003.

[10] W.-K. Liao, A. Ching, K. Coloma, A. Choudhary, and
L. Ward. An Implementation and Evaluation of
Client-Side File Caching for MPI-IO. In Parallel and

Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, 2007.

[11] W.-k. Liao and A. Choudhary. Dynamically Adapting
File Domain Partitioning Methods for Collective I/O
based on Underlying Parallel File System Locking
Protocols. In Proceedings of the ACM/IEEE
Conference on Supercomputing (SC), SC’08, 2008.

[12] J. F. Lofstead, S. Klasky, and K. e. Schwan. Flexible
IO and Integration for Scientific Codes through the
Adaptable IO System (ADIOS). In Proceedings of the
6th international workshop on Challenges of large
applications in distributed environments, 2008.

[13] N. Megiddo and D. Modha. ARC: A Self-Tuning, Low
Overhead Replacement Cache. In Proceedings of the
2003 Conference on File and Storage Technologies
(FAST), pages 115–130, 2003.

[14] A. Nisar, W.-k. Liao, and A. Choudhary. Scaling
Parallel I/O Performance through I/O Delegate and
Caching System. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08,
pages 9:1–9:12, 2008.

[15] R. Oldfield, L. Ward, R. Riesen, A. B. Maccabe,
P. Widener, and T. Kordenbrock. Lightweight I/O for
Scientific Applications. In CLUSTER, 2006.

[16] N. J. Sarhan and C. R. Das. Caching and Scheduling
in NAD-Based Multimedia Servers. IEEE Trans.
Parallel Distrib. Syst., 15(10):921–933, Oct. 2004.

[17] R. Thakur, W. Gropp, and E. Lusk. Users Guide for
ROMIO: A High-Performance, Portable MPI-IO
Implementation. Mathematics and Computer Science
Division, Argonne National Laboratory, Oct. 1997.

[18] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and
Collective I/O in ROMIO. In Proceedings of the The
7th Symposium on the Frontiers of Massively Parallel
Computation, FRONTIERS ’99, 1999.

[19] M. Vilayannur, A. Sivasubramaniam, M. Kandemir,
R. Thakur, and R. Ross. Selective Caching for Parallel
File Systems on Clusters. Special Issue on Parallel
I/O in Computational Grids and Cluster Computing
Systems, Jan 2006.

[20] T. M. Wong and J. Wilkes. My Cache or Yours?
Making Storage More Exclusive. In Proceedings of the
General Track of the Annual Conference on USENIX
Annual Technical Conference, 2002.

[21] W. Yu and J. Vetter. ParColl: Partitioned Collective
I/O on the Cray XT. In Proceedings of the 2008 37th
International Conference on Parallel Processing, ICPP
’08, 2008.

[22] X. Zhang, S. Jiang, and K. Davis. Making Resonance
a Common Case: A high-performance Implementation
of Collective I/O on Parallel File Systems. In
Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, 2009.

[23] F. Zheng, H. Abbasi, C. Docan, J. F. Lofstead,
Q. Liu, S. Klasky, M. Parashar, N. Podhorszki,
K. Schwan, and M. Wolf. PreDatA - Preparatory data
Analytics on Peta-scale Machines. In IPDPS’10, pages
1–12, 2010.

[24] Y. Zhou, J. F. Philbin, and K. Li. The Multi-Queue
Replacement Algorithm for Second Level Buffer
Caches. In Proceedings of the 2001 USENIX Annual
Technical Conference, pages 91–104, 2001.

