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The dynamics of open quantum systems is often modelled using master equations, which describe
the expected outcome of an experiment (i.e., the average over many realizations of the same dynam-
ics). Quantum trajectories, instead, model the outcome of ideal single experiments—the “clicks” of
a perfect detector due to, e.g., spontaneous emission. The correct description of quantum jumps,
which are related to random events characterizing a sudden change in the wave function of an open
quantum system, is pivotal to the definition of quantum trajectories. In this article, we extend the
formalism of quantum trajectories to open quantum systems with ultrastrong coupling (USC) be-
tween light and matter by properly defining jump operators in this regime. In such systems, exotic
higher-order quantum-state- and energy-transfer can take place without conserving the total num-
ber of excitations in the system. The emitted field of such USC systems bears signatures of these
higher-order processes, and significantly differs from similar processes at lower coupling strengths.
Notably, the emission statistics must be taken at a single quantum trajectory level, since the sig-
natures of these processes are washed out by the “averaging” of a master equation. We analyze
the impact of the chosen unravelling (i.e., how one collects the output field of the system) for the
quantum trajectories and show that these effects of the higher-order USC processes can be revealed
in experiments by constructing histograms of detected quantum jumps. We illustrate these ideas
by analyzing the excitation of two atoms by a single photon [Garziano et al., Phys. Rev. Lett. 117,
043601 (2016)]. For example, quantum trajectories reveal that keeping track of the quantum jumps
from the atoms allow to reconstruct both the oscillations between one photon and two atoms, as
well as emerging Rabi oscillations between the two atoms.
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I. INTRODUCTION

A. Interacting quantum systems, ultrastrong coupling, and
virtual processes

In a system consisting of two (or more) interacting sub-
systems, coherent energy transfer can take place between
these subsystems. If the interaction is small and the
subsystems are resonant, a single excitation can be ex-
changed and the total number of excitations is conserved
along the dynamics. Instead, if the interaction strength is
ultrastrong [1, 2], i.e., comparable to the bare transition
frequencies of the individual subsystems, novel quantum
processes can be realized, where the excitation number
is not conserved [1, 3]. In this regime, the transition
from an initial state |i〉 to a final state |f〉, characterized
by different numbers of excitations, but whose energy is
comparable, can take place through a series of virtual
transitions (intermediate states). The effective |i〉 → |f〉
process can be described by an effective interaction po-
tential, whose form can be determined by perturbation
theory involving a sum over all the possible contributing
virtual transitions.

Processes mediated by virtual transitions are com-
mon also in open quantum systems, where the energy-
conservation condition is relaxed by the inclusion of dis-
sipation. For example, in nonlinear quantum optics [4]
and polaritonics [5], the χ(3) interaction is due to the vir-
tual creation of an electron-hole pairs. Similarly to the

Hamiltonian case, also in open quantum system an effec-
tive Hamiltonian can capture an emergent coupling be-
tween different states. While the dynamics of the closed
system is completely determined by the effective Hamil-
tonian, in the open-system case, the presence of dissipa-
tion can mix different Hamiltonian manifolds and affect
the dynamics in nontrivial ways.

An interesting example of a system with virtual transi-
tions is that of ultrastrong coupling (USC) between light
and matter. While the Hamiltonian processes are char-
acterized by USC, the elecromagnetic field cannot be iso-
lated from the environment, resulting in an open sys-
tem dynamics. The USC regime was defined for inter-
subband polaritons [6] and experimentally observed in
a microcavity-embedded doped GaAs quantum well [7]
and in circuit quantum electrodynamics (QED) [8]. After
that, USC has been reached in several others experimen-
tal platforms, including cavity QED and circuit optome-
chanics (see Refs. [1, 2, 9] and references therein). Fol-
lowing these experimental developments, interest in USC
has blossomed, stimulating many theoretical studies [10–
32]. In particular, processes that do not conserve the
total number of excitations have attracted considerable
attention [33–38]. Among them, the possibility of single
photons simultaneously exciting two or more atoms [39–
41] will be used in this article as an illustrative example.
This intriguing process arises from the interplay of a com-
plex combination of higher-order virtual processes.

B. Quantum trajectories

For a weakly coupled Markovian environment, the
physics of an open quantum system is described by a
Lindblad master equation (LME) [42–45]. The state of
the system evolving with the LME is captured by the
density matrix, which represents the average state of the
system over many experiments. The effect of the envi-
ronment on the system is described via an ensemble of
quantum jumps acting on the density matrix through the
dissipation superoperators.

Although the physics of the system can be encoded
by the LME, this theoretical treatment does not allow
for an easy description of a single experiment. For this
purpose, the stochastic evolution of the system’s wave
function constitutes an efficient alternative to the LME
approach [46–48]. In quantum trajectories, the interac-
tion between the system and its environment is modelled
as a set of ideal detectors, which continuously monitor
the output field of the system [45]. Quantum jumps have
been observed in many experimental platforms, ranging
from solid-tate physics to superconducting circuits (see,
e.g., Refs. [49–53]). The stochastic evolution of the wave
function under such a procedure is known as a quantum
trajectory [54–56]. Since the LME describes the average
evolution of the system, it can be obtained by averaging
over an infinite number of quantum trajectories.

Even if the LME and quantum-trajectory approaches
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are equivalent on average, there may exist behaviours
witnessed by single quantum trajectories that cannot be
directly observed at the LME level because: (i) sponta-
neous decay processes, induced by the environment, oc-
cur randomly and averaging can cancel several features;
(ii) there can be rare processes whose visibility is re-
duced by averaging. Examples of such processes have
been found in bosonic and spin systems, both concerning
the states explored by the dynamics and the emergence
of different timescales [44, 57–60]. The first goal of this
article is the study of how such hidden processes can be
used to reveal USC in open quantum systems.

Experimentally, there exist different ways in which
the output field of a cavity can be monitored. The-
oretically, this translates into different types of evolu-
tion for the quantum trajectories [61]. One such type is
a non-Hermitian continuous time evolution interrupted
by abrupt changes in the wave function due to quan-
tum jumps. This is the widely used Monte-Carlo-wave-
function (MCWF) method [56]. Another type of evo-
lution is continuous stochastic infinitesimal changes of
the wave function due to a noise term. This is the
quantum-state-diffusion (QSD) method [62–65]. For pho-
tons escaping an electromagnetic resonator, the MCWF
method describes the ideal photodetection of the output
field, while the QSD method describes homodyne mea-
surements.

Furthermore, the access to the emitted field of a USC
system allows to reconstruct some of the correlation func-
tions of the system [66]. In this regard, quantum trajec-
tories allow to predict the presence of USC phenomena by
histogramming the statistics of quantum jumps. While
normally this would be a nonessential remark, in USC
it is often difficult to reconstruct the presence of higher-
order processes, due to both the fragility of these pro-
cesses with respect to external perturbation (they are
higher-order perturbative effects) and to the intrinsic
difficulty in measuring the effects of virtual excitations
[20, 67–69]. The second aim of this article is to show
that an accurate study of quantum trajectories allows to
demonstrate the presence of higher-order USC processes.

C. Outline and original results of this article

In Sec. II, we first present the one-photon–two-atoms
system, introduced in Ref. [39], and explain how higher-
order processes allow a single photon to excite two atoms,
and vice versa. We provide an effective Hamiltonian for
the system we study, and we then show how the formal-
ism of quantum trajectories can be adapted to handle
such a USC system. Moreover, within this section, we
provide analytical results by describing the one-photon–
two-atom and the qubit-qubit processes, where the latter
is a second-order sub-process that is part of the main
effect.

We use this system as an example to show that individ-
ual quantum trajectories can clarify the dynamic evolu-

tion of interacting quantum systems by revealing hidden
behaviour that cannot be trivially witnessed by the LME.
We do it in two cases: In Sec. III, we consider only local
dissipation, while in Sec. IV, we introduce also a collec-
tive dissipation channel for the two qubits [70].

We identify several dynamics stemming from higher-
order processes that are revealed by individual quantum
trajectories. In particular, we show that the quantum
jumps back-action induces a dissipative quantum state
transfer between the two qubits, similar but not identical
to what was shown in Ref. [60].

In addition, we show how higher-order processes can
be identified also by constructing histograms of detection
events. This is a viable experimental technique, where
photodetection from multiple experiments allows to re-
construct the correlation functions. Finally, we conclude
and give an outlook for future work in Sec. V

In the appendices, we provide a detailed derivation of
the effective Hamiltonian for the system we study, a com-
parison between this effective Hamiltonian and the full
system Hamiltonian, and a more detailed analysis of all
processes involved. Moreover, we analyze the quantum
trajectories that arise when the system output is detected
by a homodyne measurement instead of photodetection,
demonstrating the importance of the unravelling proto-
col. We conclude the appendices showing a comparison
between the LME and MCWF approaches for obtaining
the averaged system dynamics.

Beyond the interest in interacting quantum systems,
this article provides a new way to probe the presence
of USC effects in a light-matter system, a task which
normally is challenging since one cannot directly access
the virtual photons populating the dressed states of the
system.

II. MODEL AND MATHEMATICAL TOOLS

The system studied in Ref. [39] is composed of two
subsystems: (i) Two qubits noninteracting with each
other; (ii) A single cavity mode. The subsystems are
ultrastrongly coupled, and their Hamiltonian is (~ = 1
throughout this article)

Ĥ = ωcâ
†â+ 1

2

2∑
i

ω(i)
q σ̂(i)

z

+ g
(
â+ â†

) 2∑
i

[
σ̂(i)
x cos θ + σ̂(i)

z sin θ
]
,

(1)

where â† (â) is the creation (annihilation) operator for

the photons in the cavity mode, σ̂
(i)
z and σ̂

(i)
x are the

Pauli operators for the ith qubit, and g is the coupling
rate of each qubit to the cavity mode. We indicate with
|n, g, e〉 the state with n photons in the cavity, qubit 1 in
the ground state, and qubit 2 in the excited state. The
Hamiltonian in Eq. (1) is the sum of two elements: a non-
interacting part (the first two terms), which describes
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the bare energy of the subsystems, and the last term,
which describes the USC light-matter interaction. No-
tably, the interaction contains the counter-rotating terms

σ
(i)
+ â† (σ

(i)
− â), which create (destroy) two excitations, and

σ
(i)
z â† (σ

(i)
z â), which create (destroy) one excitation. The

latter term in Eq. (1) breaks the parity symmetry, and
can be realized in superconducting circuits [8].

As shown in Ref. [39], at the resonance condition

ωc ' ω
(1)
q + ω

(2)
q , the counter-rotating terms enable vir-

tual transitions, allowing the system to oscillate between
the two bare states |1, g, g〉 and |0, e, e〉, i.e., a single pho-
ton can excite both qubits.

A. Effective system Hamiltonian

To observe the one-photon–two-atoms process one
must avoid the Rabi oscillations between a single qubit
and the photonic mode. As such, the cavity-qubit detun-
ing in Eq. (1) is large compared to the coupling strength:

g � (ωc − ω(i)
q ).

For interacting quantum systems that are strongly de-
tuned, an effective Hamiltonian can be derived using the
generalized James’ effective Hamiltonian method [71]. To
apply this method to Eq. (1), we assume that the bare
transition frequencies are close to the resonance condi-

tion ωc ' ω(1)
q +ω

(2)
q = 2ω0. With this notation, we indi-

cate that the qubits and cavity have been finely tuned to
take into account effective energy shifts induced by the
interaction “dressing” the bare states [see also the dis-
cussion in Appendix A]. Thus, considering processes up
to third order in the interaction, and neglecting dressing
energy shifts which have been reabsorbed by an appro-
priate choice of the coefficients, the effective Hamiltonian
reads

Ĥeff = Ĥ
(2)
eff +H

(3)
eff . (2)

By defining the qubit detuning 2∆ = ω
(1)
q −ω(2)

q (such

that ω
(1)
q = ω0 + ∆ and ω

(2)
q = ω0 −∆), we distinguish

two regimes of work for the effective Hamiltonian Ĥeff :
(i) Identical qubits (∆ = 0 and same dissipation rates);
(ii) Non-identical qubits (∆ 6= 0 and/or different dissi-

pation rates).
A detailed derivation is provided in Appendix A, and

in Appendix B we show the excellent agreement between
the full model and the effective Hamiltonian near the
resonance ωc ' ω(1)

q + ω
(2)
q and for small enough ∆.

1. Identical qubits

If ∆ = 0, we have

Ĥ
(2)
eff = Ω(2)

eff

(
σ̂

(1)
− σ̂

(2)
+ + σ̂

(1)
+ σ̂

(2)
−

)
, (3a)

Ĥ
(3)
eff = Ω(3)

eff

(
âσ̂

(1)
+ σ̂

(2)
+ + â†σ̂

(1)
− σ̂

(2)
−

)
. (3b)

The second- and third-order effective Hamiltonains
Ĥ

(2, 3)
eff represent second- and third-order perturbative

couplings, with effective interactions

Ω(2)
eff = −4g2 cos2 θ

3ω0
, (4a)

Ω(3)
eff = −8g3 cos2 θ sin θ

3ω2
0

. (4b)

Ĥ
(2)
eff in Eq. (3a) is an effective coherent resonant cou-

pling which describes oscillations between the states

|0, e, g〉 and |0, g, e〉. The coupling Ω(2)
eff is thus relevant

only when ∆� Ω(2)
eff . As we numerically show in Sec. III

and analytically discuss in Appendix C, Ĥ
(2)
eff plays an

important role when, during the system evolution, one of
the two qubits excitations is lost into the environment.

The third-order effective Hamiltonian in Eq. (3b) is the
one responsible for the one-photon–two-atoms process.
Indeed, the term âσ̂1

+σ̂
2
+ (â†σ̂1

−σ̂
2
−) destroys (creates) a

photon and simultaneously creates (destroys) two qubit-
excitations. As such, the states |1, g, g〉 and |0, e, e〉 are

connected with the effective resonant coupling rate Ω(3)
eff .

2. Non-identical qubits

If 0 < Ω(2)
eff � ∆, the second-order effective interaction

Ĥ
(2)
eff in Eq. (2) can be neglected, applying the rotating-

wave approximation (RWA). However, the third-order ef-
fective Hamiltonian can still couple |1, g, g〉 and |0, e, e〉
when the resonance condition ωc ' ω

(1)
q + ω

(2)
q = 2ω0 is

satisfied. In this case, Heff = Ĥ
(3)
eff , where Ĥ

(3)
eff is the one

in Eq. (3b), but the coupling rate now is

Ω(3)
eff = −

8g3 cos2 θ sin θ
(
3ω2

0 + ∆2)
(ω2

0 −∆2)(9ω2
0 −∆2) . (5)

Notice that the case ∆ = 0 can be trivially obtained from
Eq. (5).

B. Quantum jump operators in the USC regime

Having derived the effective Hamiltonians, we need to
correctly introduce the action of the environment. Any
LME contains a Hamiltonian part, describing a coherent
unitary evolution, and a series of dissipators D[Ôm] such
that

∂t%̂ = −i[Ĥ, %̂] +
∑
m

γmD[Ôm]%̂, (6)

where γm is the dissipation rate of the operator Ôm and

D[Ôm]%̂ = Ôm%̂Ô
†
m −

Ô†mÔm%̂+ %̂Ô†mÔm
2 . (7)
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1. Dressed jump operators

When dealing with the light-matter coupling, the spon-
taneous emission in the LME must be modified to take
into account the presence of virtual excitations [29]. A
general approach to do that was developed in Ref. [43]
and has been the workhorse of various other studies of
USC dissipative systems [15, 72–77]. Every field, cou-
pling the system with the environment, can be expressed
as Ŝm = ŝm + ŝ†m. When the coupling is not too
strong, e.g., a Jaynes–Cummings (JC) model, there are

no virtual excitations. Thus, the overall effect of Ŝm
is only to eject excitations into the environment, i.e.,
Ôm = {â, σ̂−}.

Instead, in the USC regime a correct treatment of
input-output, dissipation, and correlation functions re-
quires that the coupling with the environment does not
induce transitions increasing the energy of the system for
spontaneous emission. A physically consistent approach
consists of separating each operator Ŝm into its positive
Ŝ+
m =

∑
j,k>j〈j|Ŝm|k〉 |j〉〈k| and negative Ŝ−m = (Ŝ+

m)†
frequency components. Those are expanded in terms
of the eigenstates {|j〉, |k〉} of the total system Hamil-
tonian, and k > j indicates that the energy of |k〉 is
larger than that of |j〉. This properly defines the jump

operators for any arbitrary LME as D[Ŝ+], which by con-
struction acts like an excitation annihilation operator.
In this dressed picture, the quantum jumps are between
the dressed states (the eigenstates) of the system Hamil-
tonian which, in USC, contain contributions from bare
states with an arbitrary number of excitations [1].

Physically speaking, this procedure amounts to distin-
guishing between the bare and dressed excitations, i.e.,
those excitations which cannot be detected versus those
which can. Not satisfying these conditions leads to the
prediction of non-physical behaviours, such as a contin-
uous emission of photons from the system ground state
of an undriven USC system [78]. As such, when we com-

pute 〈Ŝ−mŜ+
m〉 we are describing the expected values of

the dressed excitations inside the system, which can be
emitted into the environment.

2. Quantum trajectories in USC

Having obtained a well-defined LME, we can now prop-
erly introduce the MCWF. Following Refs. [54, 56], we
introduce the non-Hermitian Hamiltonian

Ĥ = Ĥ − i

2
∑
m

γm Ŝ
−
mŜ

+
m , (8)

describing the effect of the environment between two
quantum jumps. Here, Ĥ represents the Hamiltonian
part of the dynamics, and one can either use the full or
the effective Hamiltonian (for the right value of ∆). The
evolution of a quantum trajectory is thus dictated by a

non-Hermitian evolution via Ĥ interrupted by random
quantum jumps.

The algorithm to obtain such a dynamics reads:
• |ψ(t)〉 is the normalized wave function at the initial

time t.
• The probability that a quantum jump occurs

through the mth dissipative channel in a small amount
of time dt is

δpm(t) = dtγm 〈ψ(t)|Ŝ−mŜ+
m|ψ(t)〉, (9)

such that δpm(t)� 1.
• One randomly generates a real number ε ∈ [0, 1].
• If

∑
m δpm(t) < ε, no quantum jump occurs, and

the system evolves as

|ψ(t+ dt)〉 = exp
(
−iĤdt

)
= 1− idtĤ|ψ(t)〉+O(dt2) .

(10)
• Otherwise, if

∑
m δpm(t) > ε, a quantum jump oc-

curs. To decide which channel dissipates, a second ran-
dom number ε′ is generated, and each quantum jump is
selected with probability δpm(t)/(

∑
n δpn(t)). The wave

function then becomes

|ψ(t+ dt)〉 = Ŝ+
m|ψ(t)〉 (11)

• At this point, independently of whether a quantum
jump took place, the wave function |ψ(t + dt)〉 is renor-
malized and used for the next step of the time evolution.

Any quantum jump corresponds to the projection of
the wave function associated with a generalized measure-
ment process (wave-function collapse through a positive
operator-valued measure) [45]. Although the results of
MCWF recovers those of LME by averaging over an in-
finite number of trajectories, noise effects determine the
convergence rate. A discussion on this point is provided
in Appendix E, where we compare the dynamics using
both the LME and MCWF approaches for the system
under consideration.

C. Analytical results for the time evolution in the general
case

Now we want to show how, by analyzing a single quan-
tum trajectory, we can analytically describe the phe-
nomena which are taking place and, via the detection
of the quantum jumps, reconstruct the one-photon–two-
atoms process and the higher-order sub-processes (which
are part of the main effect) that are taking place. A
more detailed discussion of this analysis can be found in
Appendix C.

We consider four quantum jump operators:

D
[√

κX̂+
]
, D

[√
γ1,2Ĉ

+
1,2

]
,

D
[√

γC
2 (Ĉ+

1 + Ĉ+
2 )
]
.

(12)
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They represent the cavity loss, local qubit de-excitation,
and collective qubit emission through a common bath,
respectively. Here,

√
κX̂+ is the dressed operator for

the cavity field, and
√
γ1,2Ĉ

+
1,2 are the qubit ones derived

from σ̂
(i)
x . As such, κ, γ1,2, and γC describe the photon

decay rate, individual qubit dissipation, and collective
qubit dissipation [60, 70], respectively.

1. One-photon–two-atoms

By projecting the time-evolution operator

Û(t) = exp
(
−iĤt

)
onto the two-dimensional subspace

{|1, g, g〉, |0, e, e〉}, one describes the one-photon–two-
atom process, which takes place independently of ∆. In
this case, the time-evolution operator Û(t) will be

Û(t) = e−
1
4 (κ+Γ)t

{[
cos(ηt/4)− κ− Γ

η
sin(ηt/4)

]
|1, g, g〉〈1, g, g|

−
4iΩ(3)

eff
η

sin(ηt/4)
[
|1, g, g〉〈0, e, e|+ |0, e, e〉〈1, g, g|

]
+
[
cos(ηt/4) + κ− Γ

η
sin(ηt/4)

]
|0, e, e〉〈0, e, e|

}
,

(13)

where η =
√(

4Ω(3)
eff

)2
− (κ− Γ)2, and Γ = γ1 +γ2 +γC is the sum of the qubit loss rates. The time evolution operator

Û(t) describes the unnormalized oscillations of the wave function. For |ψ(t)〉 initialized in |1, g, g〉, we obtain

|ψ(t)〉 = e−
1
4 (κ+Γ)t

{[
cos(ηt/4)− κ− Γ

η
sin(ηt/4)

]
|1, g, g〉 − 4iΩ(3)

eff
η

sin(ηt/4)|0, e, e〉
}
. (14)

By appropriately renormalizing the wave function we
obtain the mean photon number 〈X̂−X̂+〉 and mean ex-

citation numbers of the two qubits 〈Ĉ−i Ĉ
+
i 〉 (i = 1, 2):

〈X̂−X̂+〉 =
cos2(ηt4 ) +

(
κ−Γ
η

)2
sin2(ηt4 )− κ−Γ

η sin2(ηt2 )

1− κ−Γ
η sin(ηt2 ) + 2

(
κ−Γ
η

)2
sin2(ηt4 )

,

〈Ĉ−i Ĉ
+
i 〉 =

(
4Ω(3)

eff
η

)2
sin2(ηt4 )

1− κ−Γ
η sin(ηt2 ) + 2

(
κ−Γ
η

)2
sin2(ηt4 )

.

(15)

If η is real, the system oscillates. Interestingly, if one
matches the condition κ = Γ the system has a purely
sinusoidal behavior, and the process takes place with the
same rate as in the purely Hamiltonian case even if the
system is dissipative. If, instead, κ 6= Γ, the oscillation
occurs with a reduced amplitude and a non-sinusoidal
shape. This is a first remarkable prediction of the open-
system case: by tuning the dissipation rate, we can de-
duce the behaviour of the system by considering how the
emission statistics (depending on 〈X̂−X̂+〉 and 〈Ĉ−i Ĉ

+
i 〉)

changes.

2. First quantum jump

Knowing the state at time t allows us to predict
through which channel, and with which probability, the
system is expected to lose an excitation. As such, ana-
lyzing the first quantum jump allows to reconstruct the

oscillation parameter η. Indeed, by repeating the exper-
iment several times, the probability (of a quantum jump
to take place) can be reconstructed, and such a probabil-
ity must oscillate with the same period as |ψ(t)〉.

Thus, let us analyze what occurs when a quantum
jump takes place through the four possible dissipation
channels (for the sake of brevity, we indicate them with
their rates κ, γ(1,2), and γC). If there is a cavity jump κ,
the wave function is projected onto the state |0, g, g〉. At
this point, the system does not evolve anymore. This
behaviour, shown in Fig. 1(a), can occur both in the
presence of local and collective qubit dissipation for both
identical and non-identical qubits.

On the other hand, an excitation can be detected from
one qubit γ(1,2) or via collective dissipation γC . In the
case of a local jump for qubit 1 via γ1, the wave function
|ψ(t)〉 in Eq. (14) is projected onto

|φ〉 = Ĉ+
1 |ψ(t)〉[

〈ψ(t)|Ĉ−1 Ĉ
+
1 |ψ(t)〉

]1/2 = −i|0, g, e〉 , (16)

i.e., qubit 2 (qubit 1) is instantly excited (de-excited).
Similarly, if qubit 2 jumps the system ends up in |0, e, g〉.
In the case of a collective qubit jump, |ψ(t)〉 is projected
onto
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|χ+〉 =

[
Ĉ+

1 + Ĉ+
2

]
|ψ(t)〉[

〈ψ(t)|
[
Ĉ−1 + Ĉ−2

][
Ĉ+

1 + Ĉ+
2

]
|ψ(t)〉

]1/2
= −i√

2

(
|0, g, e〉+ |0, e, g〉

)
.

(17)

3. Qubit-qubit interaction

By just collecting the first quantum jump of the sys-
tem, one cannot know if the expected simultaneous qubit
excitation takes place. Indeed, it is not only necessary to
detect (at a given time t) one excitation coming out from
qubit 1, but to be sure that qubit 2 was also excited at
the same time as the quantum jump occurred.

As such, the analysis of the dynamics between the first
and the second quantum jumps allows to reconstruct
all those sub-processes which take place when there is
an excitation emitted from the qubits. Note that the
only possible states after the first quantum jump are
|0, g, g〉, |0, e, g〉, |0, g, e〉 or (|0, g, e〉+ |0, e, g〉)/

√
2. So

this demonstrates that the qubits have been excited si-
multaneously. Thus, one needs to correctly describe
the dynamics after the first quantum jump to charac-
terize the second quantum jump taking place. In the
three cases where the dissipation occurs via the qubits
(γ(1,2) or γC), each jump is followed by a new dynamics.
Notably, this occurs into the two-dimensional subspace
{|0, e, g〉, |0, g, e〉}, because the loss of one quibit excita-
tion makes it impossible to excite back the cavity. The

Hamiltonian part of the evolution is captured by Ĥ
(2)
eff ,

and we recall that Ω(2)
eff = 0 for ∆ 6= 0 (see Appendix A).

As such, we obtain:

Û(t) = e−
1
4 Γt

{[
cos(ζt/4)− δγ + i∆

ζ
sin(ζt/4)

]
|0, e, g〉〈0, e, g|

− i
4Ω(2)

eff − iγC
ζ

sin(ζt/4)
[
|0, e, g〉〈0, g, e|+ |0, g, e〉〈0, e, g|

]
+
[
cos(ζt/4) + δγ + i∆

ζ
sin(ζt/4)

]
|0, g, e〉〈0, g, e|

}
,

(18)

where ζ =
√

(4Ω(2)
eff − iγC)2 − (δγ + i∆)2 is the new pa-

rameter determining the oscillation frequency, and δγ =
γ1−γ2. Similarly to the previous case, the non-Hermitian
evolution operator Û(t) captures the dynamics before a
quantum jump takes place. Note that, since we are in
the manifold where only the qubits are excited, the pho-
ton dissipation plays no role. No matter which quantum
jump occurs, this time the system ends in |0, g, g〉.

Having detailed the most general possible dynamics
after the first quantum jump, several different types of
behavior can take place, as detailed in Table I. Although
all of them are interesting to analyze, demonstrating the
different effects of the environment, hereafter we focus on
particular cases to efficiently characterize the presence of
the one-photon–two-atom process. This complete land-
scape of the possible behavior of the system allows to
characterize the emission of the system, so that one can
undoubtedly know if the simultaneous excitation of the
two atoms by a photon has taken place in an experiment.

In the following sections, we will numericaly simulate
the full Hamiltonian and dissipative dynamics to prove
the validity of this analysis. A detailed analytical deriva-
tion of these results (using the effective Hamiltonian) is
provided in the Appendix C.

III. RESULTS I: SINGLE TRAJECTORIES WITHOUT
COLLECTIVE DISSIPATION

We now investigate the signatures of USC in the emis-
sion spectrum by considering the simplest case, where
only the local dissipation γ(1,2) can act (γC = 0).

A. One photon exciting two atoms

In Fig. 1 and in the discussion below, we always initial-
ize the system in |1, g, g〉 and we consider the case where
the sum of the energy of the two qubits is resonant with

the energy of the single photon (ωc ' ω
(1)
q + ω

(2)
q ). As

such, an oscillation where one photon excites two qubits
occurs (as seen from all the panels in Fig. 1). This os-
cillation is well captured by Eq. (15), as described in
Sec. II C 1. After the initial evolution takes place, sooner
or later, a quantum jump occurs. If it is a photon emis-
sion, the wave function is projected onto |0, g, g〉, where

〈X̂−X̂+〉 = 〈Ĉ−i Ĉ
+
i 〉 = 0 as shown in Fig. 1(a). If,

instead, γ1 or γ2 occurs, the wave function |ψ(t)〉 [see
Eq. (14)] is projected onto the new initial normalized
state |φ〉 = −i|0, g, e〉 or onto |φ〉 = −i|0, e, g〉. For the
qubit emission, the new dynamics taking place between
the two qubits is due to the second-order processes, as
described in Sec. II C 3.
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∆ = 0, δγ = 0 ∆ 6= 0, δγ = 0 ∆ = 0, δγ 6= 0 ∆ 6= 0, δγ 6= 0

γ
C

=
0

|φ〉 JC-like oscillations by

Ω(2)
eff [Fig. 1(b)]

No evolution Û(t) ∝ 1̂

[Fig. 1(c,d)]

Non-sinusoidal
oscillations if δγ < Ω(2)

eff ,
exponential decay

otherwise (not shown)

Û(t) 6∝ 1̂, |φ〉 is

eigenstate of Û(t): no
evolution (not shown)

γ
C
6=

0

|φ〉

Damped JC-like
oscillations around the

Bell state
(|0, g, e〉 − |0, e, g〉)/

√
2

[Fig. 3(a)]

Competition between ∆
and γC generates
damping or small

oscillations (not shown)

Competition among γC ,

δγ, and Ω(2)
eff generates

damped JC-like
oscillations towards a

state different from the
Bell state

(|0, g, e〉 − |0, e, g〉)/
√

2
(not shown)

If γ1 > γ2: negligible
state transfer [Fig. 6(b)].

If γ1 < γ2: dissipative
state transfer induced by
competition between ∆,
δγ and γC (not shown

here, see Ref. [60])

|χ+〉
|χ+〉 is an eignestate of

Û(t): no evolution
[Fig. 3(b)]

Oscillation between the
Bell states

(|0, g, e〉 ± |0, e, g〉)/
√

2
(not shown)

|χ+〉 is not an eigenstate

of Û(t): continuous
undamped oscillations
around the Bell state

(|0, g, e〉 − |0, e, g〉)/
√

2
(not shown)

δγ favors either |0, g, e〉
or |0, e, g〉, the dynamics

depending on δγ, γC ,
and ∆ [examples are
given in Fig. 3(c,d)]

Table I. Evolution of the system in the qubit-subspace {|0, g, e〉,|0, e, g〉} as it stems from Eq. (18). |φ〉 represents the initial
state for the evolution in the qubit-qubit excitation manifold after a local quantum jump of γ1, see Eq. (16). |χ+〉 is the initial
state for the evolution in the qubit-qubit excitation manifold when a collective jump γC occurs, see Eq. (17).

1. Histogram of quantum jumps

Let us detail how the statistics of quantum jumps al-
lows to witness the behaviours described in the preceding
section. Although recording all the quantum jumps and
then post-selecting trajectories corresponding to certain
processes is possible, e.g., in experiments with supercon-
ducting circuits [79], it can be difficult, not only because
the energy transfer is a rare event, but especially when
dealing with collective jumps. As discussed in Ref. [60],
a simple way to enable observation of all the processes
of interest is to reconstruct them by creating histograms
showing the distribution of the local quantum jumps as
a function of time.

To observe the one-photon–two-atom excitation pro-
cess, we need to collect all the local quantum jumps from
the cavity (D[X̂+]) and from either of the two qubits

(D[Ĉ+
1 ] and D[Ĉ+

2 ]). Such a reconstruction of the pro-
cess is shown in Fig. 2(a). The characteristics of the
energy exchange can be determined up to arbitrary pre-
cision by collecting enough data. Note that for finite-
efficiency detectors that fail to detect some jumps, the
overall jump statistics is unaffected, since on average the
same amount of quantum jumps will be missed from the
cavity and from the qubits. Reaching the wanted preci-
sion thus simply requires a higher number of realizations
for worse detectors.

Before considering the second-order processes, let us
motivate on a mathematical ground why such a pro-
cedure of collecting the quantum jumps allows to de-
scribe the dynamics. Since the initial state |1, g, g〉 is

X̂−|0, g, g〉, by considering the dynamics of the first jump
we are witnessing the two-time correlation functions of

the effective Hamiltonian of the system. For example,
the emission of a cavity quantum jump at time t can be
described as

〈0, g, g|X̂+(t)X̂−(0)|0, g, g〉 (19)

This is the definition of the two-time correlation function
of the real photon detection when no quantum jumps
occur [the blue bars in Fig. 2(a)]. Although this is not
exactly the Hamiltonian of the non-dissipative process,
by appropriately determining the dissipation rates one
can simulate the closed system, as we also argued using
Eq. (15).

B. Identical qubits

The system eventually undergoes a quantum jump.
It either emits a photon, ending in |0, g, g〉 as shown
in Fig. 1(a), or the quantum jump leads the system to
|0, g, e〉 or |0, e, g〉 in Fig. 1(b-d). What now strongly de-
pends on the parameters is how the evolution takes place
in the qubit-qubit excitation manifold (see Sec. II C 3 and
Table I).

If we consider identical qubits, Ĥ
(2)
eff in Eq. (3a) is

nonzero and |0, g, e〉 (or equivalently |0, e, g〉) is not an
eigenstate of the Hamiltonian. The cavity cannot be re-
populated because there is not enough energy in the sys-
tem. Nevertheless, the remaining energy continues to be
exchanged between the qubits until a qubit jump occurs
and the system wave function is projected onto the state
|0, g, g〉 (see Appendix C). For example, γ1 emits a sec-
ond time in Fig. 1(b).
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Figure 1. Examples of single quantum trajectories, numerically obtained with the full Hamiltonian in Eq. (1) and the dissipators
in Eq. (12) in the absence of collective qubit decay (γC = 0). All panels show the time evolution of the mean photon number

〈X̂−X̂+〉 (blue dashed curves) and of the mean excitation numbers of the two qubits 〈Ĉ−i Ĉ
+
i 〉 (i = 1, 2) (red dotted and black

solid curves, respectively). The system is always initialized in |1, g, g〉 at the resonant condition ωc ' ω
(1)
q + ω

(2)
q . All the

panels initially display the oscillation in Eq. (14) until a quantum jump occurs. The panels represent a quantum trajectory
where (a) a cavity jump occurs. The detection of an emitted cavity photon projects the wave function onto |0, g, g〉, where

〈X̂−X̂+〉 = 〈Ĉ−i Ĉ
+
i 〉 = 0; (b) Identical qubits case in which a qubit 1 jump occurs, projecting the wave function onto a state

with qubit 2 excited. The qubits then start to exchange their excitation between themselves until a second qubit jump takes
place, projecting the system onto the state |0, g, g〉. (c) Non-identical qubits case in which a qubit 1 jump occurs. As in (b),
the system is projected onto a state where qubit 2 is excited. Being off resonance, this time the qubits do not exchange an
excitation and qubit 2 remains excited until a jump projects the system to |0, g, g〉; (d) Non-identical qubits case in which
a qubit 2 jump occurs, leading to a dynamics similar to panel (c). In all panels, the parameters are g = 0.1ω0, ωc ' 2ω0,

κ = γ(1,2) = 4× 10−5ω0, and γC = 0. In panels (a)-(b), ω
(1)
q = ω

(2)
q (∆ = 0), while in panels (c)-(d), 2∆ = ω

(1)
q −ω(2)

q = 0.3ω0.

1. Histograms of the qubit quantum jumps

To observe the excitation exchange between two reso-
nant qubits that follows when a local qubit jump occurs,
we need to be careful about how the quantum jumps are
detected. If we were to simply create a histogram of the
time distribution of the second quantum jump, we would
not capture this phenomenon, since this procedure would
reproduce the LME, which does not show the oscillations
between the qubits (see Appendix E). Instead, the pro-
cedure to obtain the correct histogram is:

1. Monitor the dynamics until the first quantum jump
takes place.

2. If the monitored event is a local quantum jump
from one of the two qubits, restart the clock.

3. Monitor from which qubit the second jump takes
place.

4. Collect data and make the histogram for the second
quantum jump.

Suppose that at a time t there is a jump of Ĉ+
2 . As

such, the wave function collapses onto |0, e, g〉. Mathe-
matically, we have

|0, e, g〉 = Ĉ−1 |0, g, g〉 (20)

In other words, the procedure of monitoring the time t+τ
when the second quantum jump occurs is equivalent to

〈0, g, g|Ĉ+
j (t+ τ)Ĉ−1 (0)|0, g, g〉 (21)

This again is a well-defined two-time correlation func-
tion describing a non-Hermitian Hamiltonian evolution,
whose characteristics can be obtained from Eq. (18).

We plot the results of this histogram procedure in
Fig. 2(b). We focus on those events where the first jump

is caused by Ĉ+
1 . We see that a periodic exchange of an
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Figure 2. Histograms of the ratio of the total local quantum jumps as a function of time. (a) Local quantum jumps due to X̂+

(the cavity, blue bars), Ĉ+
1 (qubit 1, red bars), and Ĉ+

2 (qubit 2, unfilled black bars surrounding the red ones). The histogram
is constructed from simulations of 2 × 105 trajectories. The system was initialized in the state |1, g, g〉. (b) Local quantum

jumps due to Ĉ+
1 (qubit 1, red bars) and Ĉ+

2 (qubit 2, black bars) after an initial qubit 1 jump. The histogram was constructed

from simulations of 4× 105 trajectories and reveals oscillations like those in Fig. 1(b). Parameters for both panels: ω
(1,2)
q = ω0

(∆ = 0), ωc ' 2ω0, g = 0.1ω0, κ = γ(1,2) = 4× 10−5ω0, and γC = 0.

excitation between the qubits takes place at a rate given

by Ω(2)
eff . This process is much faster than the oscillation

between the cavity and the two qubits (for our param-

eters, Ω(2)
eff ' 10Ω(3)

eff ), and thus requires the time bins
to be much shorter than in Fig. 2(a). Furthermore, the
qubit-qubit oscillations only occur in a subset of all pro-
cesses. Thus, with respect to the case shown in Fig. 2(a),
one is required to repeat the experiment more times in
order to obtain sufficient statistics to generate Fig. 2(b).
From it, we obviously can reconstruct the oscillations in
Fig. 1(b).

The two histograms in Fig. 2 allow to reconstruct
both the amplitude and the frequency of the oscilla-
tions. Combined toghether, not only do they demon-
strate that a single photon excite the two atoms, but they
also show the dynamics between the two qubits as part
of the main effect. This dynamics (enabled by a quan-
tum jump) is completely missed by other protocols (see
Appendix D) or by the averaging process of the Lindblad
master equation (hidden by the averaging processes as
in Appendix E). Signatures of such an oscillation could
not be witnessed starting from |1, g, g〉, but would re-
quire to initialize the system in |0, e, g〉 or |0, g, e〉 (see
Appendix B).

C. Non-identical qubits

For non-identical qubits (∆ > Ω(2)
eff ), the second-order

effective terms Ĥ
(2)
eff in Eq. (3a) can be neglected thanks

to the RWA. Although a nontrivial dynamics can occur
in this manifold due to the different decay rates of |0, g, e〉
and |0, e, g〉 [cf. Eq. (18)], this effect cannot be witnessed
along a single quantum trajectory, since after a quantum
jump the state will never be a superposition of |0, g, e〉
and |0, e, g〉 due to the nature of the local quantum jumps

(see the discussion in Sec. IV, where a jump of γC will,
instead, unveil this effect). Thus, the qubits cannot ex-
change the remaining excitation anymore. This process
is shown in Fig. 1(c,d), where a quantum jump first takes
place in qubit 2 (qubit 1) and then in the other qubit.

1. Histogram of the quantum jumps

As we previously stated, in the case of different qubits
no exchange of excitations takes place between the two
qubits. This fact can be used as a immediate witness of
the simultaneous excitation of the two qubits by a sin-
gle photon. Indeed, once one of the qubit emits, for in-
stance quibt 1, the state of the system remains in |0, g, e〉.
Therefore, the only possible event is an emission from
qubit 2. In this case, we expect that the number of qubit
jumps is identical for qubit 1 and qubit 2 independently
of the dissipation rates γ1 and γ2. This indirectly demon-
strates that the photon is simultaneously exciting both
atoms. A more detailed time analysis reveals that the
first quantum jump occurs more frequently in the more
dissipative qubit, and then the less dissipative qubit fol-
lows. We numerically verified this analysis (not shown
here), and we stress that this prediction is true only for
γC = 0.

IV. RESULTS II: SINGLE TRAJECTORIES
CONSIDERING BOTH LOCAL AND COLLECTIVE

DISSIPATION

The previous section undoubtedly demonstrate the
presence of the main one-photon–two-atoms process in
the case γC = 0. However, in actual experimental re-
alization, collective dissipation naturally emerges due to
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the coupling of the qubits with a common environment.
In this case, although the evolution operator for the one-
photon–two-atoms in Eq. (13) depends on γC , the plots
in Fig. 3 do not significantly deviate from those in Fig. 1
for small-enough γC . As we detail below, such a coupling
deeply changes the characteristics of the qubit-qubit dy-
namics, requiring a different analysis if the two qubits
can lose their excitations via the collective jump opera-
tor
√

γC

2 (Ĉ+
1 +Ĉ+

2 ). We again study the cases of identical
and non-identical qubits separately.

A. Identical qubits

After a local qubit jump, as in Fig. 3(a), the cavity
cannot be repopulated and the two qubits start exchang-
ing an excitation as in the case of Fig. 1(b). However,
differently from the other case, the collective dissipation
forces the system toward the superposition state |χ−〉 =
(|0, g, e〉 − |0, e, g〉)/

√
2 until a collective or local qubit

jump occurs, projecting the wave function onto the state
|0, g, g〉. Such a peculiar behavior can be argued from the
action of the three dissipation channels. Indeed, any state
in the qubit-qubit manifold can be described via the su-
perposition of Bell states |χ±〉 = (|0, g, e〉 ± |0, e, g〉)/

√
2.

While the local dissipations γ(1,2) act identically on |χ±〉,
the collective one does not affect the evolution of |χ−〉.
As such, the presence of γC forces the system onto the
“dark state” |χ−〉, because the “bright” state |χ+〉 decays
more rapidly even when quantum jumps do not occur (see
the discussion in Appendix C and in Ref. [60]). Thus, no
matter the details of the initial state, the wave function
tends towards the superposition state |χ−〉.

When the collective dissipation acts, the wave function
is instead projected onto the superposition state propor-
tional to |χ−〉 [see Eq. (17)]. Since |χ−〉 is an eigenstate

of the effective Hamiltonian Ĥeff in Eq. (2), the state does
not evolve with Eq. (18), as shown in Fig. 3(b).

1. Histograms in the presence of collective dissipation

Even in the presence of collective dissipation, we can
use the histogram of the local quantum jumps to char-
acterize the phenomena taking place. While the one-
photon–two-atoms process remains almost identical, the
qubit excitation exchange is affected by γC as just de-
scribed. Using the same procedure as in Sec. III B, we
can again obtain the two-time correlation functions al-
lowing to witness the presence of the damped-oscillation
behavior. This is plotted in Fig. 4, where we see that the
qubit-qubit oscillations gradually decrease in amplitude
towards the value 1/2. This is due to the system con-
verging to the Bell state |χ−〉 (see the discussion in the
Appendix C).

Although for collective dissipation we only plot cases
in which the two qubits were exactly on resonance, the
technique demonstrated here can also be applied to cases
where ∆ 6= 0 and γ1 6= γ2. In the latter case, the compe-
tition between these several processes can induce inter-
esting behaviours, whose discussion goes beyond the pur-
pose of this article, requiring a detailed study of the com-
peting ratios. We refer the interested reader to Ref. [60],
and we note that anyhow these histograms can be used

to extract the effective couplings Ω(2)
eff and Ω(3)

eff as well as
the collective dissipation rate γC .

B. Non-identical qubits

For non-identical qubits the second-order effective

terms Ĥ
(2)
eff in Eq. (3a) can be neglected. Although there

is no Hamiltonian interaction, the presence of the col-
lective dissipation enables a non-Hermitian coupling be-
tween the qubits (see the discussion in Appendix C and
Ref. [60]). Mathematically, this can be seen by the action
of the off-diagonal terms of the time evolution operator
activated by γC , as it stems from Eq. (18).

At first, let us consider the collective-qubit jump
case where the wave function after the jump |χ−〉 [see
Eq. (17)] evolves as

|ψ(t)〉 = − ie
− 1

4 Γt
√

2

{[
cos(ζt/4)− γC

ζ
sin(ζt/4)

][
|0, e, g〉+ |0, g, e〉

]
− δγ + i∆

ζ
sin(ζt/4)

[
|0, e, g〉 − |0, g, e〉

]}
, (22)

where Γ = γ1 + γ2 + γC and ζ =
√

(∆− iδγ)2 − γ2
C .

For γ1 = γ2 (and sufficiently small γC), ζ is real and
the state |χ+〉 oscillates between the two Bell states |χ±〉
(see Table I). Indeed, the effect of ∆ can be seen as a
term inducing a rotation of the Bell states. By select-
ing the correct δγ one can fix the initial state that re-
mains in the initial superposition state |χ−〉, until a jump
projects the wave function onto the state |0, g, g〉. Oth-
erwise, the state oscillates but the expectation values re-

main constant and 〈Ĉ−1 Ĉ
+
1 〉 = 〈Ĉ−2 Ĉ

+
2 〉 = 1/2 as shown

in Fig. 3(b).

In the case γ1 = γC � γ2, we find that the probabil-
ity of measuring qubit 1 in its excited state decreases as
time increases, while the probability of qubit 2 being in
its excited state increases. This behavior is due to the
difference between the loss rates, which imply that, if no
jump occurs, it is more likely for the system to be in
the excited state of qubit 2, since that state has a lower
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Figure 3. Examples of single quantum trajectories, numerically analyzed using the full Hamiltonian in Eq. (1) and the dissipators
in Eq. (12) in the presence of collective qubit decay (γC 6= 0). All panels show the time evolution of the mean photon number

〈X̂−X̂+〉 (blue dashed curves) and of the mean excitation numbers of the two qubits 〈Ĉ−i Ĉ
+
i 〉 (i = 1, 2) (red dotted and black

solid curves, respectively). The system is always initialized in |1, g, g〉 and all the panels, starting in the resonant condition of the
one-photon–two-atom process, initially display the oscillation in Eq. (14) until a quantum jump occurs. The panels represent a
quantum trajectory where (a) for identical qubits case, a qubit 1 jump occurs projecting the wave function onto the excited state
of qubit 2. The two qubits start to exchange their excitation around the superposition state |χ−〉 = (|0, g, e〉 − |0, e, g〉)/

√
2,

slowly converging towards this state until another qubit jump occurs (local or collective), projecting the system onto the state
|0, g, g〉 (as discussed in Sec. IV A); (b) For identical qubits case, a collective qubit jump occurs projecting the wave function
onto the superposition state |χ+〉 = −i(|0, g, e〉+ |0, e, g〉)/

√
2. Despite this being the “bright” state (c.f. Sec. IV A), the system

remains in this state until another jump occurs, projecting the system onto the state |0, g, g〉; (c) For non-identical qubits case,
a collective qubit jump occurs with non-identical relaxation rates as discussed in Sec. IV B. Since γ1 = 4 × 10−4ω0 > γ2 =
4 × 10−5ω0, the probability of measuring qubit 1 (qubit 2) in its excited state decreases (increases) as time increases until
another jump occurs, projecting the system onto the state |0, g, g〉. (d) For non-identical qubits case, a collective qubit jump
occurs with non-identical relaxation rates but with the values of γ1 and γ2 interchanged with respect to (c), leading to the
opposite process. In all panels, the parameters are g = 0.1ω0, ωc ' 2ω0, κ = 4 × 10−5ω0, and γC = 5 × 10−4ω0. In panels

(a)-(b) ω
(1,2)
q = ω0 (∆ = 0) while in (c)-(d), 2∆ = ω

(1)
q − ω(2)

q = 0.3ω0.

probability of leading to a jump, as shown in Fig. 3(c,d).
A more detailed analytical discussion can be found in
Appendix C.

V. CONCLUSION AND OUTLOOK

We have shown how to apply the theory of quantum
trajectories to systems with ultrastrong coupling between
light and matter. This has at least two applications.
Firstly, we can now obtain the time evolution of dissi-
pative ultrastrongly coupled systems by averaging over
the stochastic wave functions of several quantum trajec-
tories instead of using a Lindblad master equation for
the system density matrix. In some cases, the quantum-

trajectory method is preferable to use, since the density
matrix dynamics requires more computer resources than
the wave function one.

The second application of quantum trajectories for ul-
trastrongly coupled systems is that individual trajecto-
ries can reveal behaviours of the system, connected to
measurement back-action, that are hidden by the aver-
aging inherent in a master-equation approach. We illus-
trated this for the setup in Ref. [39], where two atoms
(qubits) are ultrastrongly coupled to a cavity mode.

When the energy of the two qubits sum up to the en-
ergy of a single photon in the cavity, the USC enables a
process where the system state oscillates back and forth
between having one photon in the cavity and having both
qubits excited. By studying quantum trajectories where
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Figure 4. Histograms of the ratio of the total local quantum jumps as a function of time, due to Ĉ+
1 (qubit-1, red bars)

and Ĉ+
2 (qubit 2, black bars), after an initial qubit 1 jump. As time progresses from panel (a) to panel (c), the oscillation

amplitude decreases reaching the superposition state |χ−〉 = (|0, g, e〉 − |0, e, g〉)/
√

2 . The histograms are constructed from
simulations of 8× 105 trajectories and reconstruct dynamics similar to Fig. 3(a). Parameters are the same as in Fig. 2, except
for γC = 5× 10−4ω0.

the system output is measured with photodetectors, we
showed that if a quantum jump in one of the qubits is de-
tected, the system dynamics switch from the oscillation
between one photon and the two qubits to oscillation be-
tween the two qubits.

We further studied the example with the one-photon–
two-atom excitation process for the qubits on and off
resonance with each other, with and without collective
qubit dissipation. We showed how these different cases
can modify the behaviour that the system displays after
detecting a quantum jump from one of the qubits.

We also put forward an experimental protocol for ob-
serving the above-mentioned effects using photodetec-
tion. In such an experiment, which we believe is feasible
using circuit QED, the output photon flux emitted by a
resonator can be measured in a photodetection experi-
ment, while qubit emission can be detected by coupling
it to an additional microwave antenna [80].

Looking to the future, we hope that the theoretical

methods presented herein will find applications in ex-
periments on systems with USC that take advantage of
individual measurements to characterize processes that
otherwise are hidden by averaging. The literature con-
tains many examples beyond that of Ref. [39], which was
analyzed here. Furthermore, having the theoretical de-
scription of quantum trajectories should enable the de-
velopment of feedback schemes that could control ultra-
strongly coupled systems in new ways.
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Appendix A: Derivation of the effective Hamiltonian

In order to derive the effective Hamiltonian in Eq. (2),
we start from Eq. (1) in Sec. II A of the main text, trans-
forming it to the interaction picture we obtain

ĤI(t) = g cos θ â†
2∑
i=1

[
σ̂

(i)
− e

i(ωc−ω(i)
q )t + σ̂

(i)
+ ei(ωc+ω(i)

q )t
]

+ g sin θ â†
2∑
i=1

σ̂(i)
z ei2ω0t + H.c. ,

(A1)

where H.c. denotes Hermitian conjugate.

Taking the resonant cavity frequency ωc = ω
(1)
q +

ω
(2)
q = 2ω0 and defining 2∆ = ω

(1)
q − ω

(2)
q , such that

ω
(1)
q = ω0 + ∆ and ω

(2)
q = ω0 −∆, we can define the five

operators

ĥ1e
iω1t =g cos θ â†σ̂1

−e
i(ω0−∆)t

ĥ2e
iω2t =g cos θ â†σ̂2

−e
i(ω0+∆)t

ĥ3e
iω3t =g cos θ â†σ̂1

+e
i(3ω0+∆)t

ĥ4e
iω4t =g cos θ â†σ̂2

+e
i(3ω0−∆)t

ĥ5e
iω5t =g sin θ â†

2∑
i=1

σ̂(i)
z ei2ω0t .

(A2)

In terms of these operators, the system Hamiltonian in
Eq. (A1) can be written as

ĤI(t) =
5∑

m=1

[
ĥme

iωmt + ĥ†me
−iωmt

]
. (A3)

We now apply the generalized James’ effective Hamil-
tonian method [71] which at the second order gives

Ĥ
(2)
I (t) =

∑
j,k

1
ωk

[
ĥj ĥ
†
ke
i(ωj−ωk)t − ĥ†j ĥke

−i(ωj−ωk)t
]
,

(A4)
while at the third order it gives

Ĥ
(3)
I (t) =

∑
i,j,k

[
ĥiĥ
†
j ĥke

i(ωi−ωj+ωk)t + ĥ†i ĥj ĥ
†
ke
i(−ωi+ωj−ωk)t + ĥiĥj ĥ

†
ke
i(ωi+ωj−ωk)t + ĥ†i ĥ

†
j ĥke

i(−ωi−ωj+ωk)t

ωk(ωj − ωk)

+
ĥ†i ĥj ĥke

i(−ωi+ωj+ωk)t + ĥiĥ
†
j ĥ
†
ke
i(ωi−ωj−ωk)t

ωk(ωj + ωk)

]
.

(A5)

In the RWA, all frequency contributions which are sig-
nificantly different from zero can be neglected. Since the
frequencies ωm are all different, we only keep the terms

in Ĥ
(2)
I (t) [Ĥ

(3)
I (t)] where the sum of any two (three)

frequencies is zero both for identical (∆ = 0) and non-
identical (∆ 6= 0) qubits cases.

1. Identical qubits

For the identical-qubit case, the second-order effective
Hamiltonian [Eq. (A4)] in the interaction picture reads

Ĥ
(2)
I = −2g2 cos2 θ

3ω0

(
σ̂(1)
z + σ̂(2)

z

)(
â†â+ 1

2

)
− g2 sin2(θ)

2ω0

(
σ̂(1)
z + σ̂(2)

z

)2

− 4g2 cos2 θ

3ω0

(
σ̂

(1)
− σ̂

(2)
+ + σ̂

(1)
+ σ̂

(2)
−

)
.

(A6)

We are always interested in the processes between the
states |1, g, g〉 and |0, e, e〉 (one-photon–two-atoms mani-
fold) and those between |0, e, g〉 and |0, g, e〉 (qubit-qubit
excitation manifold).
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a. One-photon–two-atoms manifold

In the one-photon–two-atoms manifold, the first two
terms dress the two bare states, inducing a positive shift
in the energy of noninteracting eigenstates, |1, g, g〉 and
a negative one for |0, e, e〉. As such,

Ĥ
(2)
shift = 4g2 cos2 θ

3ω0

(
|1, g, g〉〈1, g, g| − |0, e, e〉〈0, e, e|

)
(A7)

This diagonal shift can be always eliminated by appro-

priately tuning ωc and ω
(i)
q in Eq. (1). As such, we do

not report these terms in the main text, but we always
specify ωc ' 2ω0. The third term of Eq. (A6), instead,
plays no role because it is always zero in the one-photon–
two-atoms manifold.

The main term leading to the one-photon–two-atom
excitation exchange is described by the third-order effec-
tive Hamiltonian which, starting from Eq. (A5) we obtain
the Eqs. (3b) and (4b) in the main test, which reads

H
(3)
eff = −8g3 cos2 θ sin θ

3ω2
0

(
âσ̂

(1)
+ σ̂

(2)
+ + â†σ̂

(1)
− σ̂

(2)
−

)
. (A8)

b. Qubit-qubit manifold

In the qubit-qubit excitation manifold, the first two
terms of Eq. (A6) are always zero, while the last term
is an effective Jaynes–Cummings-like qubit-qubit inter-
action, which in the main text [see Eqs. (3a) and (4a)]
we call

Ĥ
(2)
eff = −4g2 cos2 θ

3ω0
(σ̂(1)
− σ̂

(2)
+ + σ̂

(1)
+ σ̂

(2)
− ) . (A9)

The third-order term in Eq. (A6) plays no role in this
manifold.

Equations (A8) and (A9) yield the effective Hamilto-
nian

Ĥeff = Ĥ
(2)
shift + Ĥ

(2)
eff + Ĥ

(3)
eff , (A10)

which is equivalent to Eq. (2) in the interaction picture
(see Sec. II A in the main text).

2. Non-identical qubits

For the non-identical qubits (∆ � 4g2 cos2 θ/3ω0), in
the Schrödinger picture Eq. (A4) is written as

Ĥ
(2)
I = Ĥ

(2)
shift =

[
2ω0 −

2g2 cos2 θ(ω0 + ∆)
(ω0 −∆)(3ω0 + ∆) σ̂

(1)
z −

2g2 cos2 θ(ω0 −∆)
(ω0 + ∆)(3ω0 −∆) σ̂

(2)
z

]
â†â− g2 sin2 θ

2ω0

(
σ̂(1)
z + σ̂(2)

z

)2

+
[
ω0 + ∆− g2 cos2 θ(ω0 + ∆)

(ω0 −∆)(3ω0 + ∆)

]
σ̂(1)
z +

[
ω0 −∆− g2 cos2 θ(ω0 −∆)

(ω0 + ∆)(3ω0 −∆)

]
σ̂(2)
z .

(A11)

Notice that the second-order effective Hamiltonian does
not induce any coherent resonant coupling between the
two qubits, since they are out of resonance, but it still
induces an energy shift (which can be compensated by
an appropriate choice of the parameters).

Despite the absence of a coherent interaction between
the qubits in the qubit-qubit interaction manifold, the
main one-photon–two-qubit process can still take place.
Indeed, from Eq. (A5) we obtain

Ĥ
(3)
I = H

(3)
eff =− 8g3 cos2 θ sin θ(3ω2

0 + ∆2)
(ω2

0 −∆2)(9ω2
0 −∆2)(

âσ̂
(1)
+ σ̂

(2)
+ + â†σ̂

(1)
− σ̂

(2)
−

)
.

(A12)

Notice that Eq. (A12) recovers Eq. (A8) for ∆ = 0.

Appendix B: Comparison of energy levels obtained using the
effective and the full system Hamiltonian

Here, we compare the lowest energy levels obtained for
the effective Hamiltonian in Eq. (2) with those calculated
using the full system Hamiltonian in Eq. (1). Figure 5(a)
shows the lowest energy levels of the full system Hamil-
tonian (blue solid curve) and those obtained by diago-
nalizing the effective Hamiltonian (red dotted curves), as
a function of the frequency difference of the bare qubits
∆. The results are plotted for parameters fulfilling the

resonance condition ωc ' ω
(1)
q + ω

(2)
q and show excellent

agreement. In the inset [Fig. 5(b)] an enlarged view of
the first avoided level crossing [marked by a small black
dashed rectangle in Fig. 5(a)] is shown. As expected,
at its minimum (∆ = 0, green square) the energy dif-
ference between the Hamiltonian eigenstates is twice the

effective resonant coupling Ω(2)
eff . This coupling is only

important when the qubits are almost identical (∆ ≈ 0).

For ∆� Ω(2)
eff , instead, the Jaynes–Cummings-like effec-
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Figure 5. Energy levels for the system at the resonance

ωc ' ω(1)
q + ω

(2)
q that enables the one-photon–two-atom exci-

tation process. (a) Lowest energy levels as a function of ∆/ω0
of the full Hamiltonian from Eq. (1) (blue solid curves) and
the effective Hamiltonians for identical (green dot) and non-
identical (red dotted curves), obtained for g/ω0 = 0.1. The
large dotted black rectangle delimits the region where the
avoided level crossing (related to the one-photon–two-atom
excitation process) appears. The red arrows indicate the limit
of validity of the approximation. For large ∆, the coherent

resonant coupling Ω(3)
eff tends to become too small, so that the

one-photon–two-atom excitation process becomes less likely.
(b) An enlarged view of the first avoided level crossing [the
small black dashed rectangle in panel (a)]. The avoided level

crossing is due to the second-order effective interaction Ω(2)
eff

in Eq. (3a) which is non-negligible only for ∆ = 0 (green
squares).

tive interaction is negligible due to the RWA (red dots),
meaning that there is no longer a Hamiltonian coupling
between the two qubits. The large dotted black rectan-
gle in the centre of Fig. 5(a) delimits the region for which
the one-photon-two-atom excitation process occurs. This
region is quite large, meaning that, for various values of

∆ the coherent resonant coupling Ω(3)
eff between the two

states |1, g, g〉 and |0, e, e〉 does not change significantly.
However, when the energies of the qubits becomes too

different the coherent resonant coupling Ω(3)
eff tends to be

too small and the one-photon–two-atom excitation pro-
cess becomes less likely. For even larger values, the energy
of one quibt become comparable to that of the cavity,
and the James’ approximation breaks, as marked by the
deviation of the red dots indicated by the red arrows.

Appendix C: Analytical results

Here, we carry out analytical calculations using the
non-Hermitian Hamiltonian in Eq. (8) with the effective
Hamiltonian in Eq. (2). The main one-photon–two-atom
process has already been described in the main text.
Here, we focus on the second-order processes occuring
in the qubit-qubit manifold once the first quantum jump
took place. We recall that

ζ =
√

(4Ω(2)
eff − iγC)2 − (δγ + i∆)2

δγ = γ1 − γ2

(C1)

1. Single trajectories considering only local qubit jump
operators

We suppose that a quantum jump γ1 or γ2 occurs, and
the wave function |ψ(t)〉 is |φ〉 = −i|0, g, e〉 in Eq. (16)
(the other case being just a relabelling). For the sake of
simplicity, we identify t with the elapsed time after the
firt jump took place.

The evolution of an initial state |0, g, e〉 is give by

|φ(t)〉 = −ie− 1
4 Γt
{[

cos(ζt/4) + δγ

ζ
sin(ζt/4)

]
|0, g, e〉

−
4iΩ(2)

eff
ζ

sin(ζt/4)|0, e, g〉
}
.

(C2)

Until another quantum jump occurs, and appropriately
renormalizing |φ(t)〉, the qubit excitation numbers evolve
as

〈Ĉ−1 Ĉ
+
1 〉 =

(
4Ω(2)

eff
ζ

)2
sin2( ζt4 )

1 + δγ
ζ sin( ζt2 ) + 2

(
δγ
ζ

)2
sin2( ζt4 )

〈Ĉ−2 Ĉ
+
2 〉 =

cos2( ζt4 ) +
(
δγ
ζ

)2
sin2( ζt4 ) + δγ

ζ sin2( ζt2 )

1 + δγ
ζ sin( ζt2 ) + 2

(
δγ
ζ

)2
sin2( ζt4 )

.

(C3)

a. Identical qubits

Since Ĥ
(2)
eff in Eq. (3a) is nonzero for identical qubits,

and δγ = ∆ = 0, |0, g, e〉 is not an eigenstate of
the system and the oscillations with |0, e, g〉 are si-
nusoidal. In the case shown in Fig. 1(b), the wave
function |φ(t)〉 is projected onto the state |0, g, g〉 =
|〈φ(t)|φ(t)〉|−1/2Ĉ+

i |φ(t)〉 after γ1 emits a second time.
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Figure 6. Time evolution of the mean qubit excitation numbers 〈Ĉ−1 Ĉ
+
1 〉 (red dotted curves) and 〈Ĉ−2 Ĉ

+
2 〉 (black solid curves)

after: (a) A collective qubit jump, as given by Eq. (C11); (b) A local qubit 1 jump, as given by Eq. (C9). In both cases, the

parameters 2∆ = ω
(1)
q − ω(2)

q = 0.3ω0, γ1 = γC = 4× 10−4ω0, and γ2 = 4× 10−5ω0 were used.

b. Non-identical qubits

For non-identical qubits there are two cases to take into
consideration. First, if ∆ = 0 the shape and form of the
oscillations depends on the difference between the emis-
sion rates δγ. For large values of δγ the oscillations are

completely suppressed. Indeed, the condition δγ > 4Ω(2)
eff

makes ζ imaginary and the oscillations become exponen-
tial decays (not shown in the figures).

For ∆ 6= 0, the second-order effective terms Ĥ
(2)
eff (t)

in Eq. (3a) can be neglected thanks to the RWA. The
time-evolution operator then acquires the simple form

Û(t) = e−
1
2γ1t |0, e, g〉〈0, e, g|

+ e−
1
2γ2t |0, g, e〉〈0, g, e| .

(C4)

Starting from the state |φ〉 = |0, g, e〉 (which now is an
eigenstate of the system effective Hamiltonian), the sys-
tem does not evolve. Thus, the time evolutions of the

qubit excitation numbers are simply 〈Ĉ−1 Ĉ
+
1 〉 = 0 and

〈Ĉ−2 Ĉ
+
2 〉 = 1. This process is shown in Fig. 1(c,d), where

a quantum jump first takes place in qubit 2 (qubit 1) and
then in the other qubit.

2. Single trajectories considering local and collective qubit
jump operators

Here we analyze the case γC 6= 0. If the first jump is
γ1, the time-evolution operator in Eq. (18) to the (nor-
malized) initial state |φ〉 = |0, g, e〉 gives

|φ(t)〉 = −ie− 1
4 Γt
{[

cos(ζt/4) + δγ

ζ
sin(ζt/4)

]
|0, g, e〉

− i
4Ω(2)

eff − iγC
ζ

sin(ζt/4)|0, e, g〉
}
.

(C5)
If, instead, the first quantum jump is γC , the initial state
χ+ = (|0, g, e〉+ |0, e, g〉)/

√
2 evolves as

|χ(t)〉 =− ie−
1
4Γt

√
2

{[
cos(ζt/4)− i4Ω

(2)
eff − iγC
ζ

sin(ζt/4)
]

(|0, e, g〉+ |0, g, e〉) − δγ + i∆

ζ
sin(ζt/4)(|0, e, g〉 − |0, g, e〉)

}
,

(C6)

We do not report the general formulas for 〈Ĉ−1,2Ĉ
+
1,2〉,

but we provide them for the specific cases below

a. Identical qubits

For a γ1 jump, and contrary to the case γC = 0, this
time ζ is always a complex number, meaning that the
system dynamics will have an oscillating part with expo-

nential decay. Considering the case γ = γ1 = γ2 6= γC as
in Fig. 3(a), Eq. (C5) becomes

|φ(t)〉 = −ie
− 1

2γt

2

{
eiΩ

(2)
eff t

[
|0, g, e〉 − |0, e, g〉

]
+ e−

1
2γCte−iΩ

(2)
eff t

[
|0, g, e〉+ |0, e, g〉

]}
.

(C7)
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Notice that the symmetric superposition |0, g, e〉 +
|0, e, g〉 decays faster than the antisymmetric one due to
the factor e−γCt/2. Therefore, the antisymmetric super-
position is a dark state of the evolution without quan-
tum jumps, while the symmetric superposition plays the
role of a bright one. With the state |φ〉 = i|0, e, g〉
we end up in the same situation (neglecting a collective
phase factor). Thus, no matter the details of the ini-
tial state, normalizing |φ(t)〉 in Eq. (C7), we see that it
tends towards the superposition state |φ(γCt � 1)〉 '
(|0, g, e〉 − |0, e, g〉)/

√
2.

The time evolutions of the qubit excitation numbers
are given by

〈Ĉ−1 Ĉ
+
1 〉 = 1

2 −
e−

1
2γCt

[
1− 2 sin2

(
Ω(2)

eff t
)]

1 + e−γCt

〈Ĉ−2 Ĉ
+
2 〉 = 1

2 −
e−

1
2γCt

[
1− 2 cos2

(
Ω(2)

eff t
)]

1 + e−γCt
,

(C8)

which have sinusoidal oscillations with exponential de-
cay (depending on γC) towards the value 〈Ĉ−1 Ĉ

+
1 〉 =

〈Ĉ−2 Ĉ
+
2 〉 = 1/2. The two qubits keep exchanging their

excitation around the superposition state |φ(γCt � 1)〉
until a collective or local qubit jump occurs, projecting
the wave function onto the state |0, g, g〉, as shown in
Fig. 3(a).

With the same parameters, the superposition state
|χ+〉 resulting from a collective jump [cf. Eq. (17)] is an

eigenstate of the effective Hamiltonian Ĥeff in Eq. (2),
and |χ(t)〉 does not evolve, as shown in Fig. 3(b).

b. Non-identical qubits

For a local qubit jump γ1 and |φ〉 = i|0, g, e〉 the mean
qubit excitation numbers are

〈Ĉ−1 Ĉ
+
1 〉 = a′1(cos[Im(ζ)t/4]− cos[Re(ζ)t/4])

c′1 cos[Im(ζ)t/4] + c′2 cos[Re(ζ)t/4]− c′3 sin[Im(ζt/4] + c′4 sin[Re(ζ)t/4]

〈Ĉ−2 Ĉ
+
2 〉 = b′1 cos[Im(ζ)t/4] + b′2 cos[Re(ζ)t/4]− c′3 sin[Im(ζ)t/4] + c′4 sin[Re(ζ)t/4]

c′1 cos[Im(ζ)t/4] + c′2 cos[Re(ζ)t/4]− c′3 sin[Im(ζ)t/4] + c′4 sin[Re(ζ)t/4] ,
(C9)

where the coefficients are

a′1 = γ2
C ,

b′1 = |ζ|2 + δγ2 + ∆2 , b′2 = |ζ|2 − δγ2 −∆2 ,

c′1 = |ζ|2 + δγ2 + ∆2 + γ2
C , c′2 = |ζ|2 − δγ2 −∆2 − γ2

C , c′3 = i∆Re(ζ) + δγIm(ζ) , c′4 = i∆Im(ζ) + δγRe(ζ) .
(C10)

In the cases considered in Fig. 6(b), the equations (C9)
correctlty predict almost no evolution in the system.

When considering instead a collective γC jump, i.e.,
the initial state is |χ+〉 in Eq. (22), the mean excitation
number of qubits for |χ(t)〉 is

〈Ĉ−1 Ĉ
+
1 〉 = 1

2
a1 cos[Im(ζ)t/4] + a2 cos[Re(ζ)t/4] + a3 sin[Im(ζ)t/4]− a4 sin[Re(ζ)t/4]
c1 cos[Im(ζ)t/4] + c2 cos[Re(ζ)t/4] + c3 sin[Im(ζt/4]− c4 sin[Re(ζ)t/4]

〈Ĉ−2 Ĉ
+
2 〉 = 1

2
b1 cos[Im(ζ)t/4] + b2 cos[Re(ζ)t/4] + b3 sin[Im(ζ)t/4]− b4 sin[Re(ζ)t/4]
c1 cos[Im(ζ)t/4] + c2 cos[Re(ζ)t/4] + c3 sin[Im(ζt/4]− c4 sin[Re(ζ)t/4] ,

(C11)

where the coefficients are

a1 = |ζ|2 + (δγ + ∆)2 + γ2
C , a2 = |ζ|2 − (δγ + ∆)2 − γ2

C ,

a3 = Im(ζ)(γC + δγ) + iRe(ζ)∆ , a4 = Re(ζ)(γC + δγ) + iIm(ζ)∆ ,

b1 = |ζ|2 + (δγ −∆)2 + γ2
C , b2 = |ζ|2 − (δγ −∆)2 − γ2

C ,

b3 = Im(ζ)(γC − δγ)− iRe(ζ)∆ , b4 = Re(ζ)(γC − δγ)− iIm(ζ)∆ ,

c1 = |ζ|2 + δγ2 + ∆2 + γ2
C , c2 = |ζ|2 − δγ2 −∆2 − γ2

C , c3 = γCIm(ζ) , c4 = γCRe(ζ) .

(C12)

Equation (C11) is in agreement in describing a single trajectory after a collective qubit jump has occurred, as
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Figure 7. Quantum trajectories for fully and partial homodyne measurement of the system output. The plots show the
expectation value of the mean photon number 〈X̂−X̂+〉 (blue dashed curves) and the mean excitation numbers of the two

qubits 〈Ĉ−i Ĉ
+
i 〉 (i = 1, 2) (red dotted and black solid curves). (a) A quantum trajectory where the output fields of all

subsystems are detected through homodyne detection. (b) A quantum trajectory where only the output field of the cavity is
measured with homodyne detection, while the qubit outputs are measured with photodetection. For both panels, parameters
are the same as in Fig. 1(a,b).

shown in Fig. 3(c,d) for the cases γ1 > γ2 and γ1 < γ2,

respectively. For γ1 = γ2, 〈Ĉ−1 Ĉ
+
1 〉 = 〈Ĉ−2 Ĉ

+
2 〉 = 1/2.

In this case, the system oscillates between the Bell states
|0, g, e〉 ± |0, e, g〉 and |0, g, e〉 ± i|0, e, g〉 .

Appendix D: Quantum trajectories for homodyne detection

To appreciate the importance of the unraveling proto-
col and of detecting single quantum jumps, let us now
consider how the system would evolve under homodyne
detection. We can choose to mix a reference coherent
field with the output field from either all the subsystems
or only some of them. In the continuum limit (infinite
amplitude for the reference field), the detectors continu-
ously reads a signal, but the back-action of this signal on
the quantum trajectory is minimal. With this protocol,
the evolution of the system is diffusive, and dictated by
a non-Hermitian Hamiltonian [45]

ĤHom = Ĥ − i

2
∑
m

[
γ2
m〈
(
Ŝ−m − Ŝ+

m

)
〉+ γmξm(t)

]
Ŝ+
m ,

(D1)
where ξm(t) = dWm/dt is a noise process stemming from
the Wiener increment dWm, which has zero mean and
variance dt. Similarly to quantum trajectories for pho-
todetection, the diffusive stochastic evolution contains
the non-Hermitian Hamiltonian Ĥ from Eq. (8). How-
ever, the effect of quantum jumps is modified by the ref-
erence field and enter as the second part of Eq. (D1).

Two examples of the resulting diffusive quantum tra-
jectories are plotted in Fig. 7, where we re-analyze the
one-photon–two-atom excitation process without collec-
tive dissipation as plotted in Fig. 1(a,b). In Fig. 7(a), the
outputs from all subsystems contribute to the measured

homodyne current. In this case, the evolution is damped
and no instantaneous change takes place. This demon-
strates the importance of the correct unraveling in order
to witness all the processes taking place.

To further demonstrate the importance of the collec-
tion of the qubit jumps, Fig. 7(b) shows a trajectory
where we detect the cavity output through a homodyne
measurement, while the output of the qubits is collected
by photodetection. The trajectory shows that a quan-
tum jump of one of the qubits can take place, allowing
the two qubits to exchange their remaining excitation as
in Fig. 1(b).

Appendix E: Comparison of system dynamics obtained using
the LME and MCWF approaches

Here, we compare the dynamics of the LME and of av-
eraged MCWF trajectories for the one-photon–two-atom
excitation process. In doing this, we consider all the
numerical simulations are carried out taking |1, g, g〉 as
the initial state and using the full system Hamiltonian
[see Eq. (1) in the main text] near the resonance condi-

tion ωc ' ω
(1)
q + ω

(2)
q . In Fig. 8(a,b), we show the main

one-photon–two-atom excitation process without collec-
tive qubit dissipation included. We clearly see that the
MCWF approach (right column) is in complete agree-
ment with the LME approach (left column), which was
used in Ref. [39]. However, the average washes out the
qubit-qubit dynamics. Such a hidden behaviour is com-
pletely lost due only to the averaging (the quantum tra-
jectory protocol is identical to the single one shown in
the main text). Since this quantum-jump induced pro-
cess is fundamental to demonstrate the presence of the
main one-photon–two-atom process, it is thus fundamen-
tal to collect single trajectories without averaging them.
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Figure 8. Comparison of system dynamics for the one-photon–two-atom excitation process using the (a,c) LME and (b,d)
MCWF approaches. In (a,b) the collective qubit dissipation is γC = 4 × 10−5ω0 while in (c,d) γC = 0. The plots show the

time evolution of the mean photon number 〈X̂−X̂+〉 (blue dashed curves) and the mean excitation numbers of the two qubits

〈Ĉ−i Ĉ
+
i 〉 (i = 1, 2) (red dotted and black solid curves). All the numerical simulations are carried out taking |1, g, g〉 as the

initial state and using the full system Hamiltonian [see Eq. (1) in the main text] near the resonance condition ωc ' ω(1)
q + ω

(2)
q

for a normalized coupling strength g = 0.1ω0.
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[21] V. Macŕı, L. Garziano, A. Ridolfo, O. Di Stefano, and
S. Savasta, Deterministic synthesis of mechanical NOON
states in ultrastrong optomechanics, Phys. Rev. A 94,
013817 (2016).

[22] L. Garziano, A. Ridolfo, S. De Liberato, and S. Savasta,
Cavity QED in the ultrastrong coupling regime: photon
bunching from the emission of individual dressed qubits,
ACS Photonics 4, 2345 (2017).

[23] O. Di Stefano, R. Stassi, L. Garziano, A. F. Kockum,
S. Savasta, and F. Nori, Feynman-diagrams approach
to the quantum Rabi model for ultrastrong cavity QED:
stimulated emission and reabsorption of virtual particles
dressing a physical excitation, New J. Phys. 19, 053010
(2017).

[24] V. Macr̀ı, F. Nori, and A. F. Kockum, Simple prepara-
tion of Bell and Greenberger-Horne-Zeilinger states us-
ing ultrastrong-coupling circuit QED, Phys. Rev. A 98,
062327 (2018).

[25] O. Di Stefano, A. F. Kockum, A. Ridolfo, S. Savasta, and
F. Nori, Photodetection probability in quantum systems
with arbitrarily strong light-matter interaction, Sci. Rep.
8, 17825 (2018).

[26] D. De Bernardis, P. Pilar, T. Jaako, S. De Liberato, and
P. Rabl, Breakdown of gauge invariance in ultrastrong-
coupling cavity QED, Phys. Rev. A 98, 053819 (2018).

[27] O. Di Stefano, A. Settineri, V. Macr̀ı, L. Garziano,
R. Stassi, S. Savasta, and F. Nori, Resolution of gauge
ambiguities in ultrastrong-coupling cavity quantum elec-
trodynamics, Nat. Phys. 15, 803 (2019).

[28] A. Stokes and A. Nazir, Implications of gauge-freedom
for nonrelativistic quantum electrodynamics, (2020),
arXiv:2009.10662.
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Tudela, D. Jaksch, and D. Porras, Symmetries and con-
servation laws in quantum trajectories: Dissipative freez-
ing, Phys. Rev. A 100, 042113 (2019).

[60] F. Minganti, V. Macr̀ı, A. Settineri, S. Savasta, and
F. Nori, Dissipative state transfer and Maxwell’s demon
in single quantum trajectories: Excitation transfer be-
tween two noninteracting qubits via unbalanced dissipa-
tion rates, Phys. Rev. A 103, 052201 (2021).

[61] M. B. Plenio and P. L. Knight, The quantum-jump ap-
proach to dissipative dynamics in quantum optics, Rev.
Mod. Phys. 70, 101 (1998).

[62] N. Gisin and I. C. Percival, The quantum-state diffusion
model applied to open systems, J. Phys. A 25, 5677 (1992).

[63] N. Gisin and I. C. Percival, Quantum state diffusion, lo-
calization and quantum dispersion entropy, J. Phys. A 26,
2233 (1993).

[64] N. Gisin and I. C. Percival, The quantum state diffusion
picture of physical processes, J. Phys. A 26, 2245 (1993).

[65] I. Percival, Quantum State Diffusion, Vol. 33 (Cambridge
University Press, Cambridge, England, 2002).

[66] T. Fink, A. Schade, S. Höfling, C. Schneider, and
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