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Microelectrode arrays and microprobes have been widely utilized to measure neuronal

activity, both in vitro and in vivo. The key advantage is the capability to record and

stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or

single-channel resolution of intracellular recording, microelectrodes detect signals from

all possible sources around every sensor. Here, we review the current understanding of

microelectrode signals and the techniques for analyzing them. We introduce the ongoing

advancements in microelectrode technology, with focus on achieving higher resolution

and quality of recordings by means of monolithic integration with on-chip circuitry. We

show how recent advanced microelectrode array measurement methods facilitate the

understanding of single neurons as well as network function.

Keywords: microelectrode array, neuronal function, extracellular recording, stimulation, CMOS, multielectrode
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INTRODUCTION

Studying the function and connectivity of neurons in the brain

involves coordinated, interdisciplinary efforts among scientists

from various fields. Through the years, advancements in genetic

markers, immunostaining, optical and electro-optical methods,

electrophysiology, and computational tools have been made

to identify neuronal types, explain their molecular machinery,

untangle their wiring, decipher principles of neural coding, and

to attribute functional roles to specific regions of the brain. The

brain is a complex system and its activity spans over multiple

temporal and spatial scales that require a comprehensive set of

technologies to address these scales. Innovations in experimental

methods to observe and perturb brain activity and in computa-

tional tools to analyze recorded data are needed to master the

brain’s complexity and advance our understanding of its func-

tion. Systems biology has allowed to bridge between molecular

dynamics and whole cell simulations using multi-scale mod-

eling. Applying similar approaches to brain activity will allow

us to gain a more encompassing understanding of it. However,

quantitative data at all these spatial and temporal scales are

a prerequisite.

Electrophysiology has been the preferred means of analyzing

brain activity due to the ability to capture a wide range of neu-

ral phenomena, from the spiking activity of individual neurons to

the slower network oscillations of small populations (Llinás, 1988;

Contreras, 2004; Assad et al., 2014). The electrical nature of neu-

ronal activity makes it possible to detect signals on electrodes at a

distance from the source, but not without caveats. It is necessary

to determine the recording capabilities and limits of the device

used and to understand how the neuronal signal is transduced

into a recorded digital form. Typical electrophysiological methods

are shown in Figure 1 and further described below.

At the microscale, patch-clamp can be used to measure cur-

rents of single ion channels. The function of single neurons is

often explored by direct measurements of the intracellular volt-

age, using patch-clamp or a sharp microelectrode. It is a powerful

but tedious method and often its use is limited to a few neu-

rons per experiment (Wood et al., 2004). Planar patch-clamp

systems allow rapid in vitro patch-clamping, mostly used for high-

throughput ion channel screening of dissociated cells (Dunlop

et al., 2008). Automated patch-clamp allows for fast in vivo intra-

cellular recording and it is feasible to extend the method to

measure several neurons simultaneously (Kodandaramaiah et al.,

2012). The bulkiness of current micromanipulators and patch-

clamp systems together with the necessity for accurate and precise

control have limited simultaneous patch-clamp recordings to a

few—maximum of four and twelve for in vivo (Kodandaramaiah

et al., 2014) and in vitro (Perin et al., 2011), respectively.

At the macroscale, indirect measurement of large areas of

the brain’s activity is achieved via functional magnetic resonance

imaging (fMRI), positron emission tomography (PET), and elec-

troencephalography (EEG). These methods can be used to resolve

functional connectivity among brain regions. For example, EEG

detects spontaneous or evoked electrical activity from the scalp

with low spatial resolution (cm range).

In this review, we focus on electrophysiology at the

mesoscale—extracellular recordings via metal electrodes, open-

gate field-effect transistors (OGFETs) or oxide-semiconductor

FET (OSFET) integrated into large arrays, so-called microelec-

trode arrays (MEAs). This method enables simultaneous and
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FIGURE 1 | Typical electrophysiological methods. (A) Macroscopic

recording via electroencephalography (EEG) and mesoscopic recording

through electrocorticography (ECoG) and implantable electrodes, with the

corresponding representative waveforms recorded in a patient with

drug-resistant epilepsy. The measured signal amplitudes are larger for ECoG

and implanted electrodes (local field potential or LFP recording) compared to

EEG. The waveforms for EEG, ECoG, and implant are modified with

permission from Buzsáki et al. (2012). (B) Mesoscopic and microscopic

recording using a tetrode (extracellular) and a glass micropipette

(intracellular), respectively. The fast EAP extracted from the raw tetrode

recordings correlate with the intracellular APs recorded from a pyramidal cell.

(Left) Illustration of cells across cortical layers modified with permission from

Buzsáki et al. (2012). (Right) Signals for simultaneous extracellular and

intracellular recordings modified with permission from Henze et al. (2000).

long-term recordings of local field potentials (LFPs) and extra-

cellular action potentials (EAPs) from a population of neurons at

millisecond time scale. It also allows perturbing neuronal activ-

ity using electrical stimulation. As data obtained from in vivo

and in vitro experiments are often very similar, the MEA tech-

nology, concepts, and applications we include here apply to both

and will be helpful for scientists and engineers from either field.

In particular, we explain the interface between the neuron and

the electrode in order to understand how to interpret the record-

ings. We highlight trends in the development of complementary

metal-oxide-semiconductor (CMOS) based high-density MEAs

(HDMEAs). The advantages of HDMEAs include the capability

to map neuronal activity at sub-cellular resolution, localize single

cells, and to constrain full-compartmental neuron models.

The outline is as follows. Chapter 2 gives an overview of the

MEA technologies, including the comparison between in vivo

and in vitro MEA devices from a technical aspect. Chapter 3

describes the current understanding on microelectrode record-

ings and introduces the different factors that shape the recorded

signals. Chapter 4 discusses how to process MEA signals and

reviews recent works on using MEAs for neuroscience studies.

We then conclude in Chapter 5 with perspectives on advanced

measurements and applications of MEAs for studying neuronal

function.

MEA TECHNOLOGY

This chapter reviews the technology involved in MEA develop-

ment.

DEVICE TYPES AND TERMINOLOGY

Over the years, a wide repertoire of terms has been used to refer

to and distinguish between all the different forms of MEAs, e.g.,

emphasizing the type of transducers used (multi-transistor array,

microelectrode array, multielectrode array, micro-nail array,

capacitive-coupled array, 3D MEA), the type of substrate (active

array, passive array, silicon array, CMOS array), the shape of the

device (needle-type probe, polytrode, neuro dish), the channel

count (multichannel array), the electrode density (HDMEA) or

the application (implantable array, in vivo MEA, in vitro MEA)

and more. We would therefore like to briefly explain the termi-

nology used in the context of this review. We generalize the term

microelectrodes and MEA to cover both substrate-integrated

planar MEAs and implantable neural probes. We also include

capacitive-coupled devices, such as multi-transistor arrays in the

definition of MEAs. We then distinguish between implantable,

in vivo MEAs, such as polytrodes and neural probes, and in vitro

MEAs that generally include a cell culture dish or some other sort

of medium chamber. Further, we classify the different array archi-

tectures, as will be explained in Section Advances in MEA and

Probe Devices (Figure 3). Briefly, we distinguish between “fixed

wiring” arrays, meaning that each transducer in the array has a

direct wire to the outside of the array and “multiplexed arrays,”

in which some sort of switching mechanism is employed within

the array. We use the term “array” to refer to the actual area

that encompasses the transducer elements only and we use device

or MEA to refer to the entire device. With system, we refer to

the MEA and all required components to operate it, such as the

data acquisition hardware and software. We use the terms “active”

and “passive” to distinguish between devices with active circuit

elements, such as transistors, and devices without such elements.

ELECTRODES AND TRANSDUCERS

There are various techniques for fabricating microelectrodes,

which are reviewed by Li et al. (2003), Park and Shuler (2003),

Huang et al. (2009). Choosing the materials for the insulator, con-

ductor, microelectrode, and substrate is crucial, in particular with

respect to biocompatibility. All materials in the MEA that will be

near to or in contact with cells and tissue need to be tested for tox-

icity in prolonged periods of time (Hassler et al., 2011). It is also

important to consider the biological experiments for which the

microelectrodes will be used, whether in vivo or in vitro, culture or

acute preparation. Moreover, deciding the type of MEA to use is
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highly dependent on the type of recorded signals needed, whether

EAPs and/or LFPs or intracellular action potentials (IAPs), single

cell resolution or not. If the MEA is to be used for stimulation, the

charge capacity of electrodes is an important aspect. The electrode

needs to be able to mediate reactions at the electrode-electrolyte

interface to allow electron flow in the electrode to transition into

ion flow in the electrolyte toward stimulating nearby cells (Cogan,

2008).

Generally, an important goal of electrode fabrication is to

achieve low impedance. Low electrode impedance results in

higher signal-to-noise ratio (SNR), with the usual target SNR of

5:1 or higher. Uniformity of the electrode impedance across an

array of electrodes may also be important to obtain consistent

data.

Typically, electrodes are made with metallic conductors such as

gold (Au), titanium nitride (TiN), platinum (Pt), stainless steel,

aluminum (Al), and alloys like iridium oxide (IrOx). Since the

electrodes used in MEAs are on the micrometer scale, it is a

challenge to achieve low electrode impedance with plain conduc-

tors only. Increasing the effective surface area of electrodes can

be achieved by modification with porous conductive materials

such as Pt-black, Au nanostructures, carbon nanotubes (CNTs),

and conductive polymers like poly(3,4-ethylenedioxythiophene)

(PEDOT). Emerging materials aside from PEDOT and CNTs

include doped diamond and graphene. By modifying the sur-

face, the electrode impedance can be decreased drastically and

neuronal recording can be improved (Cui et al., 2001; Franks

et al., 2005; Ludwig et al., 2006; Keefer et al., 2008; Viswam et al.,

2014). Nam and Wheeler (2011), Kim et al. (2014) for a review of

electrode materials and surface modification.

Non-metallic electrodes have been mostly used in conjunction

with field-effect transistor (FET) based transducers (Bergveld,

1970; Fromherz et al., 1991). An OGFET can, e.g., be obtained

if the fabrication process of a FET is stopped before deposit-

ing the gate material (Jenkner et al., 2004). Easier to fabricate is

the so-called extended-gate FET (EGFET), in which the FET is

fabricated without modification from a standard CMOS process.

Metal and via interconnections are used to extend the gate to the

surface of the chip, where an insulated electrode implements the

“extended gate.” Such insulation ensures that no faradaic currents

occur. However, as Hierlemann et al., pointed out, devices with

metal electrodes also usually connect to a FET directly (Imfeld

et al., 2008) or through a filter capacitor (Heer et al., 2006),

resulting in a largely capacitive recording situation (Hierlemann

et al., 2011). OGFET, EGFET, and devices that directly connect

the electrode to the first FET usually need to include some mea-

sures to properly bias the gate or some calibration mechanism,

which may cause transient currents to flow at the electrode.

Whereas for devices with a capacitively coupled front-end stage,

controlling the electrode input node is generally not needed.

Devices with a FET-based transducer, but using a metalized gate

exposed to the liquid, have also been developed (Jobling et al.,

1981).

Recently, ultra-small electrodes are being developed to record

intracellular activity, including subthreshold signals, as reviewed

in Spira and Hai (2013). This is achieved by 3D structured

electrodes such as silicon nanowires (Robinson et al., 2013) and

Au mushrooms (Hai et al., 2009) penetrating the cell membrane.

Electroporation was shown to facilitate measurement of intracel-

lular activity (Koester et al., 2010; Hai and Spira, 2012).

ADVANCES IN MEA AND PROBE DEVICES

Since the single extracellular microelectrodes used in the middle

of the last century (Weale, 1951; Gesteland et al., 1959), devel-

opment quickly proceeded to MEAs with multiple transducers

for the purpose of increasing the number of neurons observed

(Thomas et al., 1972; Gross et al., 1977; Pine, 1980; Csicsvari et al.,

2003) to increase reliability of spike sorting (Gray et al., 1995;

Harris et al., 2000) and to allow for source localization (Blanche

et al., 2005; Chelaru and Jog, 2005; Frey et al., 2009b; Somogyvári

et al., 2012; Delgado Ruz and Schultz, 2014). The advances in

lithographic techniques, fueled by the semiconductor industry,

allowed a gradual increase in performance and reliability of such

multichannel devices. Passive transducer devices based on elec-

trodes embedded in glass or silicon substrates with fixed wiring

to amplifiers for in vitro and also in vivo applications became

commercially available in the late 90 s and early years of this

century. Already early on, silicon-based biosensors for interfac-

ing cells with microelectronics were developed (Bergveld, 1970;

Parce et al., 1989). Active devices, employing FETs were fabricated

and 2D arrays demonstrated (Besl and Fromherz, 2002). Devices

using CMOS technology were fabricated in academic facilities

(DeBusschere and Kovacs, 2001) and industrial foundries, usually

in conjunction with additional processing steps for biocompati-

bility reasons (Berdondini et al., 2002; Eversmann et al., 2003b;

Franks et al., 2003).

The key advantage of integrating active electronic components

on the same substrate as the actual electrodes is the possibil-

ity of a much higher electrode number and density. Due to the

possibility of using active switches to time multiplex signals,

integrated circuits make it feasible to transfer data from such

high channel counts off chip and to overcome the connectiv-

ity limitation of passive devices. Additionally, such co-integration

allows amplifying the signals with optimal quality, due to minimal

parasitic capacitances and resistances (Hierlemann et al., 2011).

The monolithic co-integration also allows including additional

functionality, e.g., on-chip spike detection, closed-loop capabil-

ities, electrical stimulation, electronic chip identification, device

calibration, and other type of sensing modalities, such as temper-

ature, pH or optical sensing (Baumann et al., 1999; Tokuda et al.,

2006; Johnson et al., 2013b).

Figure 2A compares a variety of historical and current devices,

to illustrate the evolution of MEAs with respect to overall sensing

area and electrode densities. The electrode count is shown with

solid lines. The devices are categorized into fixed wiring (Type

A&B in Figure 3) and multiplexed arrays (Types C–E in Figure 3).

Fixed-wiring arrays include devices without any on-chip cir-

cuitry (Alpha MED Science Co., Ltd.1 ; Multi Channel Systems

GmbH2 ; Thomas et al., 1972; Gross et al., 1977; Pine, 1980;

1Alpha MED Science Co., Ltd. MED64: A low-noise and user-friendly multi-

electrode array system for in-vitro electrophysiology. Available at: http://www.

med64.com [Accessed December 1, 2014].
2Multi Channel Systems GmbH. MCS: Innovations in Electrophysiology.

Available at: http://www.multichannelsystems.com [Accessed December 1,

2014].
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FIGURE 2 | Device comparison. MEA comparison with respect to (A)

electrode density and total sensing area, and (B) parallel recording channel

count and noise level. (A) For devices with a regular sensor pitch, such as

most in vitro MEA devices, the total area is calculated as number of

electrodes times the pixel area. For all devices, the number of electrode

times the inverse of the electrode density matches the total area. The light

gray lines illustrate the number of electrodes. (B) The noise values shown are

approximated RMS values stated in the respective citations. The conditions

under which these measurements were taken usually differ significantly

(such as noise bandwidth, in- or exclusion of electrode noise, inclusion of

ADC quantization noise, etc.). Therefore, this graph only serves as a rough

comparison. The waveforms to illustrate the noise levels are simulated and

have a spectrum typical for MEA recordings. The simulated spikes are typical

spikes for acute brain slice measurements recorded with microelectrodes.

The recorded amplitudes may vary significantly depending on preparation and

sensor characteristics. See Footnotes:3,4,5,6,7.

Regehr et al., 1989; Nisch et al., 1994; Oka et al., 1999; Litke et al.,

2004; Segev et al., 2004; Greschner et al., 2014), but also MEAs

with on-chip circuitry limited to the surrounding of the array

(Greve et al., 2007) and arrays that include FETs (Offenhäusser

et al., 1997) and source follower devices directly wired to circuitry

outside the array (DeBusschere and Kovacs, 2001). Multiplexed

arrays employ some sort of multiplexing within the actual array

3The area is calculated as the rectangle of the maximum vertical extend times
the maximum horizontal extend, whereas for probes, the horizontal extend is
taken as the shaft width.
4Only a single sub array of 16 electrodes is considered.
5Features a frame rate significantly lower as compared to the other devices.
6Noise values are taken from Lambacher et al. (2010).
7The authors state that with a new acquisition board, the parallel channel
count could be increased to 1024 at 9300 fps.
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(Eversmann et al., 2003a, 2011; Heer et al., 2006; Tokuda et al.,

2006; Aziz et al., 2009; Berdondini et al., 2005, 2009; Frey et al.,

2010; Huys et al., 2012; Johnson et al., 2012, 2013a,b; Maccione

et al., 2013; Ballini et al., 2014; Bertotti et al., 2014).

For in vivo MEAs, the connectivity limitation is even more

severe, as connections cannot be wired out on all four sides of

the array, but only on one of the narrow sides. Figure 2A includes

some examples of such devices using fixed wiring (Wise et al.,

1970; Najafi and Wise, 1986; Jones et al., 1992; O’Keefe and Recce,

1993; Gray et al., 1995; Bai and Wise, 2001; Csicsvari et al., 2003;

Kipke et al., 2003; Blanche et al., 2005; Olsson and Wise, 2005;

Fujisawa et al., 2008; Montgomery et al., 2008; Herwik et al., 2009;

Du et al., 2011; Berényi et al., 2014) and three recent in vivo MEAs

with multiplexing on the shaft itself (Shahrokhi et al., 2010; Seidl

et al., 2011; Lopez et al., 2014). For detailed reviews of in vivo

MEAs (see Wise et al., 2008, 2004; Ruther et al., 2010).

Figure 2B, on the other hand, focuses only on CMOS-based

devices and illustrates the tradeoff between the number of par-

allel (or quasi parallel) readout channels and the input referred

noise of the amplification chain. It illustrates the fundamental

fact that a low-noise front-end amplifier requires both area and

power. Limiting either will inherently increase the noise levels.

The power budget for the entire device, including all circuitry

within the array and surrounding it, is limited by the amount of

produced heat that one can tolerate. For the area constraints, one

has to separately consider the area within the array and surround-

ing it. Within the array, the electrode density dictates the available

area per pixel. Outside the array, the area is limited mostly by

the fabrication cost. As a trivial approach to decouple the area

requirement from the noise specifications, one can simply place

the amplifiers outside the array and directly wire one electrode to

one amplifier (Figure 3B). However, this approach still does not

allow achieving both a high density and a large electrode count

at the same time. Figure 3 lists these fixed-wiring approaches and

typical array architectures using multiplexing within the array to

overcome this limitation.

Active switching can be integrated into the array, allowing to

time multiplex the signals from many electrodes to a few wires

that carry the signals out of the array. We now consider two

types of time multiplexing, static (Figures 3C,D) and dynamic

(Figure 3E) operation (Imfeld et al., 2008). In dynamic mode,

each pixel (or electrode) is sampled once within each frame,

with typical frame-rates of 2–10 kHz for CMOS-based MEAs

(Eversmann et al., 2003a; Johnson et al., 2013b) and some devices
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FIGURE 3 | Array architectures. This table summarizes and classifies the

different architectures that are typically used for MEAs. Advantages,

disadvantages are stated and representative selected references given. (A,B)

Fixed wiring. (A) Electrodes are directly connected to signal pads with no

active circuitry. (B) Electrodes are directly connected to on-chip active

circuitry for signal conditioning. (C–E) Multiplexed arrays. (C) Signals are

multiplexed to the signal pads via column, row addressing in static mode. (D)

More flexible addressing is achieved by adding more routing resources within

the array in the switch-matrix mode. (E) All electrodes can be sampled at fast

speeds in full-frame readout implemented in active pixel sensor (APS) MEAs.
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allowing as high as 77 kHz (Bertotti et al., 2014). This mode is

similar to image sensors used in cameras. Typically, rectangular

sub-arrays can be chosen as regions of interest and sampled at

faster rates. From a circuit perspective, the challenge in design-

ing full-frame readout MEAs lies in the fact that the multiplexing

within the array requires the front-end amplifier to be located

within the pixel itself, as the electrode alone exhibits a high

impedance and therefore cannot drive the multiplexed readout

lines at sufficient speed. Inherently, the available area within the

pixels is limited in high-density arrays, making it difficult to build

very low noise amplifiers. In addition, the electrodes themselves

and the activity within the culture medium show wide band noise

(see Section Noise and SNR), thus requiring a low-pass filter

within the pixel to prevent noise from being aliased into the sig-

nal band due to the sampling. Generally full-frame readout arrays

have a high channel count, and therefore the power budget per

channel is very limited.

Alternative approaches to circumvent this issue and to allow

for devices in which the circuit itself is not the limiting factor with

respect to noise performance have been demonstrated. Arrays

operating in static mode (Figures 3C,D) have only switches and

no amplifiers as active devices within the array. The switches are

used to wire electrodes to front-end amplifiers placed outside of

the array, where sufficient area for the implementation of low-

noise amplifiers is available. This also decouples the number of

electrodes from the number of readout channels, which allows

budgeting of the available power in more flexible ways. Devices

that employ a simple column and row based static addressing

are limited in the flexibility of choosing electrodes for parallel

readout. A switch-matrix implementation, which consists of a

large set of routing wires, routing switches, and local memory,

such as SRAM cells within the array, allows the use of complex

routing paths to rewire a subset of electrodes to the available

readout and stimulation channels in a flexible manner. Often,

such an approach is sufficient to observe biological phenomena

of interest, as typically not all electrodes exhibit activity. However,

experimental protocols tend to get more complex, as one needs

to select the “right” electrodes during the experiment. One of

the protocols commonly used for such devices is to first scan the

entire array in static mode, i.e., record from each rectangular sub

block for, e.g., a few minutes, run some online or quasi online

data processing on the recorded data, and select a more refined

subset based on the recorded activity and the scientific objective

of the experiment.

Apart from the array, CMOS devices also require the design

of neuronal amplifiers and some sort of data transmitter, either

of the amplified analog signals or, more typically, of the already

digitized data. Generally, a neural amplifier needs to have high

input impedance, which is significantly higher than the electrode

impedance, to ensure signal integrity. The amplifier should be of

low power to prevent substrate heating that could damage cells

or tissue. For in vitro MEA devices, a variety of target applica-

tions have to be considered. Therefore, gain and dynamic range

requirements can be quite demanding and should be adjustable,

such as to cover applications with maximal amplitudes of a few

hundred microvolts in acute slice preparations and, on the other

hand, up to 10 mV in measurements from cardiomyocytes. The

same also holds true for the flexibility in the recording band-

width. Some applications may require lower frequency signals

only, some only spikes in the EAP band, some both bands with

different gain requirements at the same time. The circuits need

to implement some sort of high-pass filter to block the large 1/f

noise of the electrode-liquid interface typically observed. MEA

systems can also include stimulation circuitry, covered in the

next section, and analog-to-digital conversion (ADC). They need

to include an interface to transmit the data and receive com-

mands for controlling the system’s operation. The requirements

are different for implantable devices, where usually the target

application is much more defined, but also the power, reliability,

and safety requirements are more stringent. These systems often

implement spike detection or classification and wireless trans-

mission in the system, either as a monolithic implementation

or hybrid approach using multiple ICs. They may also be pow-

ered wirelessly. On the other hand, in vitro MEA systems do not

require wireless power or data transmission, as they can gener-

ally be directly wired to the data-receiving device. In this case,

often common interface standards are employed, such as USB

(Multi Channel Systems GmbH2), Ethernet (Frey et al., 2010),

National Instrument’s DAQ card (Alpha MED Science Co., Ltd.1),

CameraLink (Imfeld et al., 2008), or others. Most of these sys-

tems support online storage of the full raw data to hard disks,

sometimes including some form of lossless data compression

(Sedivy et al., 2007).

Many of the circuit requirements can be traded against each

other, e.g., one can easily lower the noise by increasing the area

or power consumption. The key challenge therefore is to set the

target specifications for the given application accurately and opti-

mize the systems for it, without overdesigning specific require-

ments. Further considerations with respect to noise are given

in Section Noise and SNR. Reviews focusing on circuit related

issues can be found here: (Wise et al., 2004, 2008; Harrison, 2008;

Jochum et al., 2009; Gosselin, 2011).

STIMULATION

MEAs allow passive observation, and also active influence and

control of neuronal activity. Metal electrodes can deliver electrical

stimuli directly using the microelectrodes, whereas for OGFET-

based devices, typically an extra capacitive stimulation spot is

used to deliver stimuli (Stett et al., 1997). In addition, monolithic

CMOS integration of MEAs opens up the possibility to include

electrical stimulation circuitry directly on-chip, in turn allowing

a high degree of flexibility in generating spatiotemporal patterns

of stimulation, higher spatial resolution for stimulation and direct

on-chip stimulation artifact blanking or suppression.

Already the very first electrophysiological experiments with

frogs by Galvani (1791) involved electrical stimulations using

metal wires connected to various sources, e.g., Leyden jars,

Franklin’s magic squares, and even atmospheric electricity dur-

ing lightning. In vivo, electrical stimulation is commonly used

to stimulate nerves for transmitting sensory information to the

brain, such as for cochlear implants (Wilson and Dorman, 2008)

and retinal implants (Ahuja et al., 2011; Zrenner et al., 2011); to

control, e.g., limbs for neurorehabilitation after nervous system

injury; and to treat disorders, e.g., Parkinson’s disease by deep
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brain stimulation using brain pacemakers (Montgomery and

Gale, 2008). In such applications, the physical distance between

the stimulation electrode and target nerves can be rather large,

requiring the delivery of high amplitude stimuli.

Lilly et al. (1955) established charged balanced methods using

biphasic brief pulses to limit the damage to the tissue and the

degradation of the electrodes themselves. Merrill et al. reviewed

electrical stimulation using electrodes, listing various materials

(Merrill et al., 2005). For in vitro MEAs, effective stimulation pro-

tocols were characterized by Wagenaar et al. (2004). The authors

studied different stimulation parameters (pulse width, amplitude,

pulse shape) that evoke neuronal activity.

One application of electrical stimulation is the use of it as

a “trigger,” so-called stimulus-triggered averaging (Cheney and

Fetz, 1985). Electrical stimulation allows delivering trigger pulses

of high temporal resolution in the order of a few microseconds,

depending on the stimulation buffer used and the capacitive load

of the electrode. Stimulation can evoke responses with small

temporal jitter, e.g., Bakkum et al. observed a jitter of 160 µs

using passive MEAs (Bakkum et al., 2008). Bakkum et al. used

trigger signals to study the velocity of action potential (AP) prop-

agation in axons of cultured neurons (Bakkum et al., 2013).

Figure 4A shows how such stimulus-triggered averages revealed

small axonal spikes of different shapes, such as bi- and tri-phasic

types. Figure 4B illustrates the reduction in uncorrelated noise

with increasing number of averaged repetitions. One potential

issue with delivering electrical stimulation to neuronal cells and

tissue is the occurrence of artifacts in recording channels, due

to the fact that stimulation pulses are typically three to four

orders of magnitude larger than the recorded signals. This cou-

pling between stimulation and recording is difficult to prevent,

and artifacts are picked up both within the wiring of the array

and circuits, but also through the medium of the cell culture or

tissue. However, as long as the coupling is purely capacitive, arti-

facts usually only prevent recording during the stimulation period

itself. If the amplitude of an artifact is large, which can occur when

a recording electrode is near the stimulation electrode, the artifact

may saturate the amplification circuits of the recording electrode.

This saturation will prevent recording for an extended period

of time after the stimulation ended. Figure 4C shows an exam-

ple of such a saturated signal from an electrode located 18 µm

(center-center) away from the stimulation electrode and a signal

without saturation from an electrode located about a 1 mm away.

Figure 4D shows the relationship between the distance from stim-

ulation to recording electrode and the duration of saturation for

a 11,011-electrode MEA (Frey et al., 2010), without employing

any artifact suppression measures. As long as the amplifiers do

not fully saturate, it is possible to suppress such artifacts in soft-

ware by subtracting the estimated artifact (based on templates,

filters or local curve fitting) from the data (Hashimoto et al.,

2002; Wagenaar and Potter, 2002). To also allow recording from

electrodes on which saturation would occur, counter measures in

hardware have to be employed. One solution is to use a “reset”

switch that can bring back the saturated amplifier into normal

operation quickly, by resetting the high-pass filter of the front-end

amplifier (Heer et al., 2006; Frey et al., 2010). To suppress arti-

facts even on the stimulation electrode itself, more sophisticated

methods are used. Jimbo et al. proposed a method to decouple

the recording amplifiers during stimulation, sample the electrode

potential during recording and add the stimulation pulse to the

stored electrode potential (Jimbo et al., 2003). This scheme has

also been implemented on dedicated ASICs to be used in conjunc-

tion with MEA devices (Brown et al., 2008; Hottowy et al., 2012;

Tateno and Nishikawa, 2014). Figures 4E,F show stimuli activated

neuronal responses with high spatiotemporal precision. In a study

to track axonal APs (Bakkum et al., 2013) several ten thousands

of stimuli were required, which was possible without damaging

the electrodes or cells. In this case, voltage-mode stimulation was

used, although the stimulation hardware supported both current-

and voltage-mode (Livi et al., 2010).

Closed-loop experiments, in which neural activity triggers

electrical stimulation, employing on-chip stimulation circuitry

have been presented by Hafizovic et al. (2007) and Müller et al.

(2013). In both cases, the spike detection is performed off-chip on

dedicated FPGA hardware. The actual decision to stimulate and

the selection of the stimulation waveform patterns is performed

on a personal computer in Hafizovic et al. (2007), whereas in

Müller et al. (2013) an event engine performing this task is imple-

mented directly on the FPGA platform, making the latency until

stimulation shorter and, importantly, reducing its temporal jitter.

CMOS-based devices exclusively devoted to stimulation at

high spatio-temporal resolution of close to 7000 electrode per

square millimeter and with variable voltage mode pulses have

been developed as well (Lei et al., 2008, 2011). Circuit considera-

tions for CMOS-based devices for clinical in vivo application are

reviewed (e.g., Ortmanns et al., 2008; Ohta et al., 2009).

APPLICATIONS OF IN VITRO CMOS-BASED MEAs

In vitro CMOS MEAs have already been used in a wide vari-

ety of applications, for recording, for electrical stimulation or

for both. Figure 5 lists in vitro CMOS MEAs, their key specifi-

cations and preparations for which they have been used so far.

Some additional in vitro CMOS-based MEAs that are not listed

in Figure 5 can be found here: (Tokuda et al., 2006; Greve et al.,

2007; Meyburg et al., 2007; Yegin et al., 2009; Johnson et al., 2012).

In addition, the functionality of some in vivo CMOS MEAs has

also been demonstrated using in vitro applications (Aziz et al.,

2009).

The two most prominent preparations investigated with

in vitro CMOS MEAs so far are acute retina preparations from

mice (Menzler and Zeck, 2011; Fiscella et al., 2012; Maccione

et al., 2014), rats (Eickenscheidt et al., 2012; Lloyd et al., 2014;

Stutzki et al., 2014), rabbits (Zeck et al., 2011; Ballini et al.,

2014; Fiscella et al., 2014), guinea pig (Velychko et al., 2014)

and humans (Reinhardt and Blickhan, 2014); and cultured neu-

ronal cells from snails (Eversmann et al., 2003a), rats (Hafizovic

et al., 2007; Heer et al., 2007; Gandolfo et al., 2010; Lambacher

et al., 2010; Bakkum et al., 2013; Ballini et al., 2014) and chicken

(Hafizovic et al., 2007). Additionally, data from acute slices of

the cerebellum (Frey et al., 2009a; Obien et al., 2014), cortex

(Ferrea et al., 2012; Medrihan et al., 2014) and olfactory bulb

(Johnson et al., 2013a) have been shown. Also cultured cardiomy-

ocytes were studied (DeBusschere and Kovacs, 2001; Heer et al.,

2004; Imfeld et al., 2008; Sanchez-Bustamante et al., 2008; Huys
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FIGURE 4 | Stimulation capability of high-resolution CMOS-based MEA.

(A) Examples of evoked spikes detected at three sites (columns) along the

same axon. The top row shows individual raw traces, and the other rows

show traces averaged as indicated. Scale bars, 1 ms horizontal, 10 µV vertical.

(B) The amount of averaging necessary to detect a spike with a given height

(0.5–3 σ) with respect to the detection threshold. (C) Left: A raw voltage

trace recorded at an electrode neighboring a stimulation electrode

(Continued)
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FIGURE 4 | Continued

saturated for about 4 ms (flat line). Right: A raw voltage trace recorded at

an electrode located 1.46 mm away from a stimulation electrode did not

saturate. (D) The duration of a saturated signal occurring after stimuli is

plotted vs. distance from the stimulation electrode (mean ± s.e.m.;

N = 18 stimulation electrodes from five CMOS-based MEAs). Stimuli

consisted of biphasic voltage pulses between 100 and 200 ms duration

per phase and between ± 400 and 800 mV amplitude. (E) Locations of

stimulation electrodes that directly evoked (black boxes) or did not evoke

(empty or filled gray boxes) APs detected at a soma located ∼890 µm

away. The line arrow indicates the orthodromic propagation direction.

Scale bar, 20 µm. (F) Voltage traces of somatic APs elicited by biphasic

voltage stimuli. Traces in response to eight stimuli are overlaid for each

of three stimulation magnitudes (indicated at the top), plotted for all

effective (black) and four ineffective stimulation sites (gray at the bottom).

Stimulation electrode locations are represented as numbered boxes in

(E). Scale bar, 200 µV. All panels and description adapted with permission

from Bakkum et al. (2013).

et al., 2012) and first results from mice organotypic slices were

presented (Gong et al., 2014).

Certainly, in vitro CMOS-based MEAs, being still an emerg-

ing technology with commercial availability only starting recently,

have a high potential for future biomedical research and

diagnostics (Jones et al., 2011).

UNDERSTANDING MEA SIGNALS

Here, we describe the parameters that contribute to neuronal

signal transduction from the source into digital form.

WHAT DO MICROELECTRODES DETECT?

A microelectrode can detect the changes in the extracellular field

caused by the current flows from all ionic processes across the

morphology of the closest neuron and from other nearby cells,

not only neurons (Buzsáki et al., 2012; Anastassiou et al., 2013).

The effect of the transmembrane currents on the electric field and

the detected potential on a microelectrode depend on the magni-

tude, sign, and the distance from the recording site (Nunez and

Srinivasan, 2006), see Section The extracellular space.

An AP is a biophysical event that occurs once the neuron’s

transmembrane potential reaches a threshold due to stimuli or

other inputs (e.g., synapses, gap junctions). On the other hand, we

consider a “spike” to be the signal from a putative AP. For extracel-

lular recordings, spikes are commonly identified as voltage signals

that exceed a threshold. During an AP, the initial rapid Na+ ion

influx creates a sink and results in a large negative spike in the

EAP. Thereafter, the slow K+ efflux produces a source resulting in

a small positive spike. In contrast, IAP first shows a positive spike

and later a negative volley. EAPs are usually around tens to hun-

dreds of microvolts in amplitude and <2 ms in duration while

IAPs are at tens of millivolts and around the same duration as

EAPs (Buzsáki et al., 2012). If IAPs can only be detected by direct

access inside the neuron, e.g., patch-clamp, EAPs can be identi-

fied when electrodes are placed at the vicinity (∼100 µm) of the

spike origin (Henze et al., 2000; Egert et al., 2002), usually at the

perisomatic area, i.e., around the soma or near the axon initial

segment.

Aside from measuring single- and multi-unit spiking activity,

electrodes also sample LFPs. The LFP is assessed by the signal con-

tent in the low-frequency band of the recorded signal (<300 Hz)

(Belitski et al., 2008; Buzsáki et al., 2012), while EAPs are ana-

lyzed after filtering the LFP out (300–3000 Hz) (Quian Quiroga,

2009). Although the contribution of EAPs to LFP is still unclear, a

synchrony of APs from many neurons can participate in the gen-

eration of LFPs (Buzsáki et al., 2012). The current opinion is that

synchronized synaptic currents in cortical neurons produce LFPs,

through the formation of dipoles (Niedermeyer and da Silva,

2005; Nunez and Srinivasan, 2006). We refer the reader to Einevoll

et al.’s extensive review on the modeling and analysis of LFPs for

further details (Einevoll et al., 2013). The relationship between

LFPs and spikes has also been discussed and studied in several

works (Khazipov et al., 2004; Belitski et al., 2008; Montemurro

et al., 2008; Minlebaev et al., 2011; Kayser et al., 2012; Cingolani,

2014).

MEA SIGNAL FLOW

We consider the components of the MEA recording and stimu-

lation system diagram as shown in Figure 6: (A) the conductive

extracellular volume where the electric field caused by neu-

ral signal sources forms; (B) the substrate with the embedded

microelectrodes; and (C) the hardware connected to the elec-

trodes, including amplifiers, filters, digitizer, data transmission,

and stimulator (Stett et al., 2003; Fejtl et al., 2006).

Noise and SNR

One crucial aspect of the MEA signal flow is how noise is fed

into the amplification chain and how it affects the SNR of the

recorded data. SNR is the key specification for the amplifier

design, regardless of the actual amplification (Jochum et al.,

2009). It is important to consider where the noise, or interfer-

ence, is injected in the signal chain, as the implications on SNR

will differ.

(a) Biological noise. This is a major source of noise stems from

the electrical activity of other cells around the recording elec-

trode, e.g., APs of distant cells, but also ionic activity, e.g.,

subthreshold events in neurites of nearby cells, and synaptic

noise due to the stochastic nature of synaptic transmis-

sion. Several models of biological noise, or sometimes also

called background noise, have been developed by simulat-

ing uncorrelated single-unit spiking activities or examining

multi-compartmental neuron models located at distances far

enough away from the electrodes such that the spikes can-

not be resolved (Eaton and Henriquez, 2005; Martinez et al.,

2009; Lempka et al., 2011; Jäckel et al., 2012; Camuñas-Mesa

and Quian Quiroga, 2013). Although such models replicate

the average biological noise in experiments, it is possible that

the cell type, size, and morphology, along with the firing rates

and correlated activity, can affect the shape of the background

signal. For spike analysis, the LFP is also considered biological

noise and filtered out.

(b) Electrode-electrolyte interface noise. On top of the biological

noise, the liquid-metal interface also adds to noise. At low
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FIGURE 5 | CMOS-based in vitro MEAs. CMOS-based in vitro MEAs, their

key specifications and references to biological applications for recording and

stimulation are listed in this table. The application list includes only one

representative citation for each type of preparation. The specification for each

device are taken from the reference listed on top and may differ for other

versions of the device.
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FIGURE 6 | MEA stimulation and recording system diagram with

the noise sources. The neuron is stimulated by the pulses or

waveform generated digitally through the MEA. The response of the

neuron, typically an action potential, is transformed by different

parameters across the components of the MEA toward the recorded

signal.

frequencies, such as below 10 Hz, processes at the electrode

generate noise with a steep roll-off of 1/f or even 1/f 2 (Hassibi

et al., 2004; Heer, 2005). More relevant for electrophysiol-

ogy are the frequencies above that, where thermal noise is the

main contributor (Gesteland et al., 1959; Liu et al., 2007). The

equivalent thermal noise can be calculated as follows:

vn =
√

4 · k · T · Re
(

Z′
e

)

· �f ,

where k is the Boltzmann constant, T is the absolute tem-

perature, Re(Z
′
e) is the real part of the effective electrode

impedance (see Section Neuron-electrode interface), and �f

is the noise bandwidth. Another source of noise is the 50–

60 Hz hum from power lines. This noise is largely picked

up between the microelectrode and the connection to the

input of the preamplifier, due to its high impedance at that

frequency. Hence, minimizing the distance between the elec-

trode and the amplifier is a major design requirement for

MEA circuits (Harrison, 2008). Proper grounding and shield-

ing of the MEA setup can minimize interference.

(c) Device noise. Finally, the device or the system that amplifies

and digitizes the signals further adds to noise. Usually, the

front-end amplifier is the most important factor to consider.

A general design objective for such amplifiers is to ensure

that the signal acquisition system does not limit the system

performance with regard to noise. As discussed above, this is

a design tradeoff in which also power and circuit area may

play a role. For example, if the maximal allowed contribu-

tion to noise from the circuitry is set to 10%, the amplifier

noise needs to be 45% or less as compared to the noise of

the electrode. A commonly used figure of merit that captures

the tradeoff between noise and amplifiers’ supply current is

the noise efficiency factor (NEF) proposed in Steyaert and

Sansen (1987). This figure has also been adapted to capture

the different supply voltages used to allow a better compar-

ison with respect to power consumption, coined the power

efficiency factor or PEF (Muller et al., 2012). For in vitro

MEAs, area is also of critical importance, as it usually impacts

electrode density and total channel count. The efficient use of

the overall area is reflected in the ratio of the actual array area

divided by the overall chip area (see Figure 5). Quantization

noise is another noise contributor of the hardware. It origi-

nates from the discretization error made at the ADC part of

the MEA system. As an approximation for the quantization

noise, typically a value of 1√
12

times the magnitude of the

least significant bit (LSB) is used. Typical ADCs applied for

MEA systems have a minimum of 8-bit resolution, with sys-

tems that employ off-chip ADCs often using 16-bit or higher

resolution. The transmission of data may also affect the qual-

ity of the recorded signal, e.g., if a lossy compression has to be

used due to bandwidth constraints.

The extracellular space

The analysis of EAPs and LFPs usually assume a homogeneous,

resistive extracellular space based on the volume conductor the-

ory, i.e., Kirchhoff ’s current law or charge conservation and

Ohm’s law (Nunez and Srinivasan, 2006). The difference in wave-

forms of a signal recorded at different locations in the tissue is

mainly due to how each neuronal source linearly sums up, with

source contributions weighted inversely proportional to their dis-

tance (Nunez and Srinivasan, 2006). Under the assumption of a

purely homogeneous, isotropic, and ohmic extracellular medium,

Maxwell’s equations of electromagnetism can be rewritten with

appropriate Laplace boundary conditions, such that for a single

point current source the following equation holds true for the

potential at an electrode, Ve (Klee and Rall, 1977; Nunez and

Srinivasan, 2006; Anastassiou et al., 2013):

Ve =
I

4πσ r
,

where I is the point current, σ is the conductivity of the medium,

and r is the distance between the point source and the recording
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electrode. Since the membrane currents are distributed over the

cable-like morphology of a neuron, a line source approximation

(LSA) of current sources was also proposed (Holt, 1997; Gold

et al., 2006; Einevoll et al., 2007).

The presence of numerous cell bodies, dendritic structures,

axonal bundles, blood vessels, and white matter in brain tissue

raises questions as to whether the brain can really be consid-

ered as purely ohmic. Moreover, the frequency spectra observed

in LFP and EEG (Pritchard, 1992; Freeman et al., 2003; Bédard

et al., 2006a; Buzsaki, 2006; Bédard and Destexhe, 2009; Miller

et al., 2009; Milstein et al., 2009) led to uncertainties regarding

the role of extracellular space in frequency dependent filtering.

Pettersen and Einevoll (2008) clarified that in a purely resistive

and homogeneous extracellular medium, amplitude variability

and low-pass filtering of EAPs occur due to the spatial sepa-

ration of correlated current sources and sinks during a spike.

Similarly, Lindén et al. (2010) found that an intrinsic dendritic

low-pass filtering affects the LFP, not the extracellular space.

Other interesting studies described how low-pass filtering effects

can be achieved in a medium of radially decaying conductivity

(exponential) around the source (Bédard et al., 2004, 2006b).

Already in 1968, Robinson (1968) suggested that inhomo-

geneities, such as the presence of glial cells in brain tissue, can

considerably impact the extracellular recording of spiking activ-

ity. He also argued that since the resistance of the paths around the

glial cells are lower (for signals at 1 kHz) than the paths through

them (due to the membranes), the extracellular signals would

flow between the cells, not through them. Thus, the structures

in the tissue can cause directional differences in the conduc-

tion of signals (Rice et al., 1993; Okada et al., 1994). Similar

results were achieved by Nelson et al. (2013) across fiber and

cell obstructions. Various studies explored different properties

of brain tissue conduction, such as anisotropy (Nicholson and

Freeman, 1975; Logothetis et al., 2007); anisotropy and inhomo-

geneity (Ranck, 1963a,b; Hoeltzell and Dykes, 1979; Goto et al.,

2010); and capacitive property (Gabriel et al., 1996a,b; Bédard

et al., 2004; Bédard and Destexhe, 2009). Whole brain analysis

of the electrical tissue properties at the microscale may be use-

ful for modeling and analyzing EAPs and LFPs from different

groups of neurons in different brain areas. Using the four-point

probes method (Kelvin sensing, with separate pairs of current-

carrying and voltage-sensing electrodes) is advisable for measur-

ing the electrical impedance of brain tissue, since it minimizes the

influence of the impedance of the current carrying electrodes.

Neuron-electrode interface

Using an equivalent circuit model, the interface between neurons

and microelectrodes in vivo has been described and character-

ized by Robinson (1968). Later, this concept has been adapted for

substrate integrated MEA devices, e.g., to compare metal micro-

electrodes with OGFET devices in simulations (Grattarola and

Martinoia, 1993). This representation of the neuron-electrode

interface was then coined the point-contact model (Weis and

Fromherz, 1997) and is shown in Figure 7A. It is a standard

model of the electrical characteristics of the interface, which has

also been extended to an area-contact model (Buitenweg et al.,

2003; Fromherz, 2003) to consider the spatial distributions that

can accurately describe the interface at subcellular resolution.

Detailed characterizations of the electrode model for various

materials have been carried out, see Section Electrodes and

Transducers. Other studies on similar neuron-electrode equiv-

alent circuits were conducted by Ingebrandt et al. (2005), Joye

et al. (2008), Thakore et al. (2012). These models assume that a

tight seal between the neuron and electrode is needed to mea-

sure EAPs from isolated neurons. In the in vivo situation, such

close contacts usually do not exist and models usually focus less

on the electrode properties themselves, but more on the electric

field generated by current sources in a conductive volume (Lind

et al., 1991; Moffitt and McIntyre, 2005; Gold et al., 2006). For

HDMEAs, such volume conductor models match measurements

for, e.g., the idealized case of point source in saline (Obien et al.,

2013), but also for complex neuronal morphologies in acute brain

slices (Frey et al., 2009a). In cell cultures, it has been observed

that EAPs are also detected by electrodes that do not have a tight

seal with the isolated neuron, even by electrodes that are relatively

distant from the neuronal source (Bakkum et al., 2013). Thus,

we generalize the neuron-electrode model in Figure 7B, which

applies to tissue slices and dissociated cell cultures.

One important assumption for this generalization is that we

can treat the MEA surface as an insulator allowing us to sepa-

rate the neuron-electrode interface problem into two parts: (i)

“fluid”-side and (ii) “metal”-side. We are able to do this separa-

tion because the high input impedance of MEA amplifiers largely

prevents any effect of the metal electrode on the potential at the

“fluid”-side of the interface. This is valid, as long as the impedance

on the “metal”-side seen by the electrode is much larger as com-

pared to the tissue or fluid impedance at all frequencies of interest.

The generalized interface model can then be interpreted such that

an electrode detects the average voltage present at the record-

ing site, as claimed by Robinson (1968), Nunez and Srinivasan

(2006), Nelson et al. (2008). The detected voltage is then shaped

by the electrical characteristics of the interface. It should be noted

that the model, as shown here, is adapted for the recording sit-

uation, focusing on the understanding of the neuronal signals

as recorded by MEAs. Similar models have also been developed

and used for the application of electrical stimulation using micro-

electrodes or capacitive stimulation spots, as discussed in Section

Stimulation.

“Fluid”-side: voltage at the electrode by volume conduction. For

simple geometries of the “fluid”-side, assuming that the MEA sur-

face is an insulating infinite plane and the fluid a homogenous,

isotropic medium, we can apply the method of images to the

point-source equation given in Section The extracellular space,

such that the potential Ve at any given electrode e can be solved

using the following equation (Obien et al., 2013):

Ve =
1

2πσ

∑ In

rn
.

In represents the nth point current source and rn represents

the distance between the point source and the recording elec-

trode, with n = 1. . . N, where N is the number of individual

point sources. For electrodes larger than an ideal point electrode,

Ve can be solved at multiple locations of the surface area of
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FIGURE 7 | MEA neuron-electrode interface. (A) The classic point or area

contact model derived from Fromherz (2003). The cell membrane is

represented with an equivalent model based on the Hodgkin-Huxley model

of the squid axon (Hodgkin and Huxley, 1952). CM represents the

capacitance across the neuronal membrane, i.e., the lipid bilayer. The

voltage-gated ion channels (K for potassium and Na for sodium) are

represented by non-linear conductances, gK and gNa, and the leak is shown

as a linear conductance, gL. The reversal potentials that drive the flow of

ions are represented by EK, ENa, and EL. The ion flow is shown by IK, INa, IL,

and IC. The other elements are described in the text. Vrec is the recorded

voltage signal. Typical IAP and EAP recordings are shown. The location of

the scissors indicates where the “cut” can be made to separate the

neuron-electrode interface into two parts. (B) Generalized neuron-electrode

interface separating the problem into two parts. Upper—“Fluid”-side: The

potential at the electrode sites can be solved using the volume conductor

theory. The MEA surface is assumed to be an insulator such that the

method of images can be applied on Coulomb’s law to solve the potential at

any point on the MEA surface. The neuron-electrode distance influences the

signal amplitude measured at the electrodes. High spatial resolution allows

for recording at several locations of a single neuron, with large negative

spikes located at the perisomatic area and positive spikes at the dendritic

area, i.e., return current. Lower—“Metal”-side: The voltage measured at the

electrode is shaped by the electrical parameters of the electrode-electrolyte

interface, represented by Ze’ as the effective electrode impedance and Za’

as the effective input impedance. This model is derived from Robinson

(1968), Nelson et al. (2008), Hierlemann et al. (2011).

the microelectrode and then averaged. The larger the electrode

area, the larger the averaging effect (Grimnes and Martinsen,

2008). Anisotropy can also be incorporated in this model easily

(Nicholson and Freeman, 1975). However, more complex geome-

tries of, e.g., the MEA device (such as in vivo neural probes) or

an inhomogeneous medium generally require a finite element

method to solve for the electric field and the potential at the

electrode.

The orientation and distance between the neuronal source and

the measuring electrode affect the amplitude and shape of the

signals detected, as discussed in Section The extracellular space.

The spread and decay of the signal over the MEA surface plane is

highly correlated with the distance of the signal source from the

surface. This makes it possible to estimate the distance between

a current source and the MEA electrodes by measuring the volt-

ages at high spatial resolution using an HDMEA (Obien et al.,

2013). The same concept can be applied to estimate the neuron-

electrode distance given a good model of the membrane currents

of the neuron being recorded (Somogyvári et al., 2005, 2012; Frey

et al., 2009b; Delgado Ruz and Schultz, 2014).

“Metal”-side: signal transformation by the electrode-electrolyte

interface. The “metal”-part of the model is an equivalent circuit

of the microelectrode modified from Robinson (1968), Franks

et al. (2005), Nelson et al. (2008), Hierlemann et al. (2011). In this

model, the input to the circuit is a low impedance voltage source

with the value corresponding to the potential resulting from the

currents in the volume conductor discussed above. This voltage

(Ve) is connected to the effective electrode impedance Z′
e, con-

sisting of Rspread, Rm, Re, Ce. Rspread is the spreading resistance,

which is the resistance a current sees, that spreads from the micro-

electrode into the electrolyte. Its value is mostly dependent on

the electrode geometry and the electrolyte conductivity. Re and

Ce are the resistance and capacitance, respectively, of a simplified

model of the electric double layer that forms at the electrode-

electrolyte interface. This is a reduction of the more complex

model, consisting of a constant-phase-angle impedance, a charge-

transfer resistance, and a Warburg impedance. Rm is an additional

resistance representing the metallic part of the microelectrode.

The effective amplifier input impedance, Z′
a, is connected in

series to Z′
e, which includes the actual input impedance of the

amplifier Za and the shunting paths to ground outside the ampli-

fier (Rs and Cs). Input amplifiers are designed to have a high

Za (above 10 M� at 1 kHz) to limit the influence of Za on the

measured voltage (Robinson, 1968). The shunt resistance (Rs)

is usually negligible, but the shunt capacitance (Cs) reduces Z′
a,

especially at higher frequencies (Robinson, 1968; Nelson et al.,

2008). Cs is the combination of all capacitances from connec-

tors and wires from the bath to the amplifier, and the capacitance

from metal of the electrode (through the insulation) to the bath
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(Robinson, 1968). The ratio of Z′
e (mostly Ce) and Z′

a is of

importance, so if the electrode impedance is low enough, the

influence of shunt capacitance to the signal is small (Robinson,

1968; Nelson et al., 2008). HDMEAs require small electrodes to

achieve a high resolution, and therefore also the Ce is usually

small. However, monolithic integration allows keeping Cs small

too. For example, Cs is estimated to be below 0.5 pF for the

HDMEA presented in Frey et al. (2010), whereas passive MEA can

have a significantly larger parasitic capacitance, depending on the

thickness of the insulation and the track width [e.g., James et al.

measured values of 60–100 pF (James et al., 2004) and Nisch et al.

estimated it to be below 15 pF (Nisch et al., 1994)]. For measure-

ments requiring a high accuracy despite having a device with a

large Cs, capacitance compensation circuits can be used, as those

commonly used in patch-clamp amplifiers and, e.g., also used for

highly accurate tissue impedance measurements (Logothetis et al.,

2007).

Effect of electrode size and density

Sizes of published microelectrodes range from 5 to 50 µm in

diameter (Kim et al., 2014). Larger electrodes have a higher pos-

sibility of getting physically near the neurons and of picking up

higher amplitude spikes (Camuñas-Mesa and Quian Quiroga,

2013), e.g., studies by Moxon (1999), Paik et al. (2003), Ward

et al. (2009), Andersen et al. (2010) claim that larger record-

ing electrodes can record from more neurons simultaneously.

However, large electrodes (>50 µm diameter) can average out

a neuron’s spatially localized peak signal amplitude with nearby

smaller amplitude signals. This reduces the peak signals, which

can result in a lower SNR. Electrode size also affects the elec-

trode impedance Z′
e, which in turn determines electrode noise

(see Section Noise and SNR). With that, there are three effects

for which SNR improves with larger electrodes (reduced electrode

noise, reduced attenuation due to large Ze/Za ratio, and increased

chance to “being at the right spot”), and one effect for which SNR

gets worse with larger electrodes (increased signal averaging).

As discussed above, for EAP recording in the 300–3000 Hz

frequency band, electrode noise is mostly thermal and compa-

rably small, especially if some sort of electrode coating is used

and the electrode size is >5 µm in diameter. Without consider-

ing electrode noise, Camuñas-Mesa et al. studied via simulation

the optimal electrode size for an in vivo situation, considering

neuronal background activity. For their simulation parameters,

they found 40 µm to be the optimum (Camuñas-Mesa and Quian

Quiroga, 2013). For HDMEAs, the situation is a bit different.

Most importantly, there is no need to enlarge the electrode to be

close to the location with the largest signal, as there will always

be another electrode “at the right spot”. Secondly, the effective

input capacitance can be significantly smaller as compared to pas-

sive devices, due to a small Cs, which in turn allows for a smaller

Ce. As a result, small electrodes are much more preferable in this

situation, with only electrode noise being the limiting factor.

LFP and EAP recordings from neurons located distant to the

electrodes feature lower spatial frequencies and therefore allow

for larger electrodes without signal degradation than recordings

from neurons within close proximity. Especially for LFPs, Nelson

and Pouget (2010) discussed that the electrode impedance and

recording site geometry are not crucial. This is because LFPs only

vary in a spatial scale much larger than the size of electrodes used

for extracellular recordings, e.g., by a few hundred micrometers

(Katzner et al., 2009) or even by 1 mm (Destexhe et al., 1999). In

addition, LFPs are of lower temporal frequency, making electrode

noise a more important factor as in that range, it is dominated by

1/f 2 noise, which makes larger electrodes more favorable.

It is therefore important to choose optimal electrode sizes

depending on the targeted application. In addition, a high density

of electrodes will inherently limit the electrode size.

PRACTICAL APPLICATION OF MICROELECTRODE

RECORDINGS

Here, we provide a brief overview on how to extract relevant

information from distorted, convoluted, and noisy recorded sig-

nals. We then review relevant applications of MEAs for the study

of single neurons and networks using various techniques and

preparations.

MEA SIGNAL PROCESSING AND SPIKE SORTING

MEA signal processing usually includes (1) filtering the raw data

traces, (2) spike detection, and (3) spike sorting.

First, the raw signal is processed to separate the fast APs from

LFP and noise by applying a band-pass filter (Quian Quiroga,

2007), with a typical narrow band of 300–3000 Hz. Filtering

methods aim to attain higher SNR and lower false positive rates.

The filtering process can add phase distortions and therefore alter

the shape of the detected EAP. One can avoid such phase dis-

tortions by using non-causal filters when future inputs are also

used for computation. In hardware implementations and online

filters, causal filters are typically used though, as non-causal filters

would require the usage of a data buffer (Quian Quiroga, 2009).

Depending on the scientific goal, good practice is to record data

with wide-band filters (e.g., 1–7000 Hz) and negligible phase dis-

tortion, then apply the narrower band filters only for the purpose

of the extraction of spike timing information, for which undis-

torted spike shapes are not needed. One can then still use the spike

timing information generated by the spike sorter to re-extract the

undistorted spike shapes from the original data.

Once the signal is filtered, the spikes are detected. Amplitude

thresholding is commonly used, although other spike detec-

tion methods have been implemented, e.g., two-point procedure

(Borghi et al., 2007; Maccione et al., 2009) and template-matching

(Kim and McNames, 2007). The threshold is usually set as a mul-

tiple (5 times) of the baseline noise level, calculated as the root

mean square (RMS) of the signals with a mean value of zero. In

the presence of many spikes, the threshold can be estimated using

a measure based on the median, which is less sensitive to outliers

and therefore more robust with regard to spike frequency (Quian

Quiroga et al., 2004).

After spike detection, spike shapes are grouped according

to their spike shape, which is referred to as spike sorting.

Several feature extraction techniques have been used, e.g., prin-

cipal component analysis or PCA (Quian Quiroga, 2007) and

wavelet transform (Mallat, 1989). In the ideal case, distinct neu-

rons will have spikes whose features belong to well-separated

clusters, and each neuron will only be part of one cluster. In
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practice, spike sorting often requires user supervision in order

to manually evaluate the performance of the procedure and cor-

rect for errors, e.g., to merge nearby clusters or remove outliers.

For a detailed explanation of the spike sorting steps, the reader

is referred to other review articles (Lewicki, 1998; Einevoll et al.,

2012a). Available spike sorting packages and frameworks include

Wave_Clus (Quian Quiroga et al., 2004), NeuroQuest (Kwon

et al., 2012), SigMate (Mahmud et al., 2012), UltraMegaSort

(Hill et al., 2011), EToS (Takekawa et al., 2010, 2012), and

QSpike tools (Mahmud et al., 2014), among others. HDMEAs can

improve spike sorting performance since with high-resolution

spatial information, one can more efficiently separate individual

neurons (Gray et al., 1995; Jäckel et al., 2011; Franke et al., 2012).

A number of concerns have been raised regarding the effec-

tiveness of spike sorting. In fact, it is difficult to validate spike

sorting algorithms and it is important to test them based on

realistic simulated data (Einevoll et al., 2012b). For in vivo experi-

ments, or in acute recordings where the electrodes can move with

respect to the neurons, drift may occur and alter the recorded

signal. Another issue is the amplitude variability of APs from a

single neuron that can lead to clustering errors, either intrinsi-

cally or due to bursts (McCormick et al., 1985; Henze et al., 2000;

Delescluse and Pouzat, 2006; Stratton et al., 2012), such that one

cluster may contain the large amplitude spikes and the second one

the smaller amplitude ones (Van Dijck et al., 2012).

USING MEAs FOR NEUROSCIENCE STUDIES

MEA recordings have been employed to understand neuronal

communication, information encoding, propagation, and pro-

cessing in neuronal cultures as well as in brain slices and retina

explants (Taketani and Baudry, 2006). Recent works start to take

full advantage of the unique abilities of HDMEAs.

Bursts

Bursts and burst rates of APs in a neuron or across a network

of neurons is a common feature extracted from data in MEA

applications. Bursts have several meanings and functions in neu-

roscience, e.g., synchronization, information carrier, and motor

pattern generation. Single neurons can exhibit bursting, or burst

firing, when APs fire at a high frequency for a period of time, fol-

lowed by a quiet period. Bursts can be triggered by the network

activity (environment) or can be intrinsic to the neuron (pheno-

type of the cell). There are many algorithms to detect the presence

of bursts from single neurons (see Samengo et al., 2013; Bakkum

et al., 2014 for some methods).

Besides single neuron bursting, population-wide synchronous

activities are also of interest. For example, repetition of activa-

tion patterns (Abeles and Gerstein, 1988; Sun et al., 2010) can

be considered as memory traces, replayed by the appearance of

a similar stimulus or due to internal processes that occur, e.g.,

during sleep (O’Neill et al., 2008; Abel et al., 2013). Bakkum

et al. (2014) investigated parameters for and compared the per-

formance of various burst detectors on population-wide bursts.

An inter-spike interval (ISI) based network burst detector was

able to identify small and large bursts better than other tech-

niques in cultured networks. Rate-based detectors detected larger

bursts only, while prematurely identifying the end of bursts. See

Kreuz (2013) for further details and methods on quantifying

synchronization.

MEAs and neuronal cultures

Since Pine reported the first MEA recordings from dissociated

neuronal cultures in 1980 (Pine, 1980), the method has been

expanded for pharmacological tests, diagnostics, and investi-

gation of neuronal growth and connectivity. Combination of

immunostaining, fluorescence microscopy, and MEA recording

allows the identification of neuronal types and synapses, e.g.,

GABAergic and glutamatergic, and the analysis of neuronal elec-

trical activity in long-term cultures. Using this technique, Ito et al.

(2013) observed a correlation between synapse densities and elec-

trical activity of cultured rat cortical networks (Figures 8A,B).

The initial increase in glutamatergic and also GABAergic synapses

was accompanied with increasing electric activity, which reached

a plateau after 28 days in culture when the synapses reached their

final density.

More complex neuronal culture analyses can be done using

HDMEAs such as burst pattern tracking (Gandolfo et al., 2010)

and functional connectivity estimation (Maccione et al., 2012).

By plating low-density cultures, it is feasible to not only optically

visualize the network of stained neurons, but also to estimate the

functional connections and to obtain detailed functional maps

at cellular resolution (Maccione et al., 2012), see Figures 8C,D.

Maccione et al. processed and analyzed the HDMEA signals by

ad hoc developed spatio-temporal filtering and by applying a

cross-correlation based method.

MEAs and brain slices

A brain slice is a 3D environment of neurons that can be placed

on MEAs to monitor electrical activity. Cutting the brain into

very thin slices has allowed access to neurons deep in the brain

for imaging, i.e., mapping the anatomy. The same method can

be used for recording the activity of neurons that are otherwise

difficult to reach and identify in vivo. This requires a setup to

keep the neurons viable, i.e., by perfusion with artificial cere-

brospinal fluid (ACSF) with continuous carbogen (95% oxygen

and 5% carbon dioxide) gassing. The neurons and network

structure in slices are physiologically and biochemically more

similar to the in vivo situation. It is possible to observe LFPs

and oscillations inherent in different states of the brain. Such

recordings have been done for different brain areas, e.g., hip-

pocampus, suprachiasmatic nucleus, etc. For instance, MEAs have

been employed to investigate the disruption of normal network

waves and oscillations in the brain caused by the absence of cer-

tain ion channels in neurons. In one particular case, Simeone

et al. studied the effect of the delayed rectifier potassium chan-

nel α-subunit Kv1.1 to the oscillations in the hippocampus shown

in Figures 9A–C (Simeone et al., 2013). By reducing or elimi-

nating the expression of Kv1.1 in the axons of the hippocam-

pal tri-synaptic pathway, the authors were able to observe an

increase in occurrence of fast ripples (80–200 Hz bandwidth, 50%

longer duration) and high frequency oscillations associated with

epilepsy, as shown in Figure 9C. Similar applications have been

done using HDMEAs. Medrihan et al. (2014) showed that the

absence of synapsin II (Syn II), a protein related to epilepsy,
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FIGURE 8 | Neuronal culture studies using MEAs. (A,B) Combination of

MEAs with immunostaining and microscopy to analyze the relationship

between the development of synapses and electrical activity of neurons,

adapted with permission from Ito et al. (2013). (A) Plot showing the number

of synapses along the neuronal dendrites in a long-term primary culture.

The glutamatergic (red) and GABAergic (green) synapses along the

dendrites of neurons were obtained by immunostaining from cultures at

7–35 days in vitro (DIV). The number of synapses at the dendrites

continuously increased for 3 weeks and saturated afterwards. The same is

true for synapses at the soma (not shown), which saturated after 30 DIV.

(B) Plotted data from MEA recordings of a long-term culture. A similar

pattern is observed from the firing rate and synchronized burst rate

measured by a MED64 MEA device from 7 to 35 DIV. Both the firing and

burst rates increased until 30 DIV, which eventually saturated afterwards.

(C,D) Application of HDMEAs to analyze the functional connectivity of

neurons in vitro, adapted with permission from Maccione et al. (2012).

Fluorescent images of stained neurons on an HDMEA are shown with

arrows indicating the functional connectivity (from white—weak to

red—strong) obtained by analyzing spike trains using cross-correlation.

decreases tonic inhibition in mouse hippocampal slices, thus

increasing synchronized bursts (see Figures 9D,E). THIP (4,5,6,7-

tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective

agonist of δ subunit-containing GABAA receptors, restores tonic

inhibition.

Depth recording of EAPs from neurons up to 100 µm dis-

tance from the MEA surface was also shown (Egert et al., 2002;

Frey et al., 2009b). Subcellular resolution recording from single

Purkinje cells (PCs) in acute cerebellar slices was demonstrated

using HDMEAs (Frey et al., 2009a). One important factor is to

ensure tissue adhesion on the MEA surface. Adhesion can be

achieved by cellulose nitrate coating (Egert et al., 2002), but also

by a slice anchor typically used for patch-clamp recordings. EAPs

were observed along the PC layer and, after spike sorting, the EAP

footprint of a single PC was analyzed. The negative spikes were

recorded around the perisomatic area of the neuron, while posi-

tive spikes were obtained along the molecular layer corresponding

to the dendrites of the PC. A comparison of the high spatiotempo-

ral resolution recording with simulations of a full-compartmental

model based on the stereotypical morphology of a PC was done.

Figure 10 shows both measured and simulated EAP data from

PCs at high resolution. Although the planar geometry of PC is

advantageous, similar results might be obtained from neurons in

other brain areas.

Aside from acute preparations, MEAs have been used to ana-

lyze the brain function using organotypic slice cultures. For

example, Ito et al. studied the functional connectivity in hip-

pocampal and cortical organotypic cultures (Ito et al., 2014).

They analyzed the network activity at different frequency ranges

using the wavelet transform of the cross-correlogram.

MEAs and retina

The planar arrangement of retinal ganglion cell (RGC) bodies

and axons is highly compatible with MEA recordings from retina

explants. Responses of RGCs can be recorded using different types

of light stimulations (Segev et al., 2004; Wässle, 2004; Jones et al.,

2011). This allowed the identification of cell types of popula-

tions of RGCs and the mapping of their receptive fields (Meister

et al., 1994; Chichilnisky, 2001), in different regions of the retina.

Fiscella et al. (2012) established a methodology applied to mice

retina that uses light stimulation and HDMEAs to identify, select,

and record from defined populations of RGCs. After spike sort-

ing the HDMEA recordings, the EAP footprints of detected RGCs

were obtained, as shown in Figures 11A,B. Each detected RGC is

assigned to one of the four types of ON–OFF direction-selective

RGCs, depending on the occurrence of the response to different

light stimulation patterns (see Figures 11C–E).

Another study on retina (macaque) using HDMEAs revealed

the identification of the type, location, and strength of the func-

tional input of each cone photoreceptor to each RGC (Field

et al., 2010). Populations of midget, parasol, and small bistratified

RGCs were recorded simultaneously in the presence of white noise

“visual” stimulation. The spatial receptive field and response time

of RGCs were detected by computing the spike-triggered average

of the stimuli. Afterwards, the detected clusters of cells obtained

by PCA were further stimulated with 10-fold smaller pixels (5 ×
5 µm2) to reveal finer details of the receptive fields. The method

was able to map putative cones accumulated across the receptive

field of RGCs, which were verified by overlaying a microscopy

image of cones labeled with peanut agglutinin (see Figure 11F).

The authors were able to quantify the strength of connectiv-

ity between different RGC types and different types of cones

(sensitive to red, green, or blue). These exhibit the capability

of HDMEAs, combined with advanced stimulation and analy-

sis techniques, to resolve the functional connectivity of neurons
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FIGURE 9 | Waves in acute hippocampal slices revealed by MEAs. (A–C)

Studying the effect of the delayed rectifier potassium channel α-subunit Kv1.1

to sharp waves in in vitro hippocampal slices using MEAs, modified with

permission from Simeone et al. (2013). (A) Image of a Kcna1-null (knock-out

of the gene encoding Kv1.1) hippocampal slice on an MEA. Black squares

correspond to the electrodes. The regions of the hippocampus are also

indicated. (B) The sharp waves in wild-type (WT) and Kcna1-null hippocampi

are initiated in CA3 that spread with similar time-courses. (C) Representative

sharp waves from WT and Kcna1-null hippocampi recorded at the location of

red boxes in (A). The sharp waves are longer (with ripples) in Kcna1-null

compared to WT. Scale bars: horizontal, 50 ms; vertical, 50 µV except for WT

CA3sp (100 µV), WT CA3sr (200 µV), KO CA1sp (20 µV), and WT CA1sr

(200 µV). CA, cornus ammonis; DG, dentate gyrus. (D,E) Studying the effect

of deleting synapsin II (Syn II) to the tonic inhibition in mouse hippocampal

slices using HDMEAs, adapted with permission from Medrihan et al. (2014).

(D) Mean firing rate computed from each electrode from WT and Syn II

knock-out hippocampal slices before and after THIP treatment. THIP:

(4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist

of δ subunit-containing GABAA receptors. (E) Raster plots showing highly

synchronized bursts, x-axis corresponds to time, y-axis corresponds to pixels

(electrode). THIP reduced the high frequency bursts in Syn II knock-out

hippocampus. Scale bar: 1 min.

in the retina at single-cell resolution. There are also other recent

works on population coding in the retina using MEA recordings

(Marre et al., 2012; Tkačik et al., 2014).

MEAs and axonal signal tracking

Taking advantage of the spatiotemporal resolution and high sig-

nal quality of HDMEAs, tracking the propagation of APs between

cells can be performed. Bakkum et al. (2013) achieved this in

dissociated neuronal cultures (see Figures 12A–C). Axonal sig-

nals are difficult to identify using conventional methods: thin

axons are difficult to patch and extracellular signal amplitudes are

rather low compared to those from the soma. A major accom-

plishment of this work is the capability to electrically image

the propagation of APs along axons, across the topology of the

whole neuronal network. By using HDMEAs that can record and

dynamically stimulate at defined locations, with little artifact to

the signals, it was possible to quantify the direction, velocity, and

extent of axonal AP propagation. The stimulation and record-

ing techniques are shown in Figures 12B,C. This is a suitable

platform to study the role of axons in neuronal computation in

the future.

Axonal conduction was also measured by Zeck et al. (2011)

from rabbit retina using HDMEAs. The authors were able to mea-

sure the velocity of axonal AP caused by stimuli and discovered

that similar RGC types respond with the same latency and con-

duct with similar velocity (see Figure 12D). Except for the area

where axons are myelinated, axonal signals were detected from

all stimulated RGCs. This work also shows that when axons are

very near or flat on the electrode array surface, it is possible

to map the flow of APs. The axons do not necessarily need a

tight contact on the electrodes, since the potential due to the APs

was also detected from other surrounding electrodes, with lower

amplitude compared to the electrode nearest the axon.

NEURONAL MODELING AND HDMEA RECORDINGS

Computational modeling is useful to interpret the dynamics

and processing of neurons and networks. MEA recordings are

commonly analyzed to model neuronal networks (Taketani and

Baudry, 2006; Kreuz, 2013; Samengo et al., 2013). Here, we

focus on the use of HDMEA data to analyze and model single

neurons.

Localization of neurons

Neuronal circuits are arranged with high spatial precision and

specificity and therefore, spatial information is an important

factor in deciphering neuronal activity. Microscopy, fluores-

cent markers, and transgenic animals have enabled researchers

to localize and classify neurons in a high-throughput man-

ner. Together with dynamic multineuron Ca-imaging using

spinning-disk confocal microscopy with two-photon excitation,

spatial and functional information can be obtained simulta-

neously. However, the temporal resolution of MEA recordings

can capture neuronal responses better than these imaging tech-

nologies (Delgado Ruz and Schultz, 2014) and the optical tools

described above may not be applicable to all experiments, e.g.,

due to the unavailability of the transgenic animals, the duration of

the experiment, optical access such as in in vivo experiments with

freely moving animals, etc. Therefore, localization of neurons in
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FIGURE 10 | High-resolution mapping of spontaneous Purkinje cell

activity using HDMEAs. (A–E) HDMEA recordings from an acute slice

preparation of the caudal half of the cerebellar vermis. (A) Activity map of the

detectable spike activity in the recording area. Small dots correspond to the

electrodes used for recording (∼30% of the available electrodes). Events

exceeding a threshold of ±36 µV were used to calculate the color-coded

event rate. Scale bar: 0.3 mm. (B) Close-up of a region with high activity

delimited in (A). All units identified by spike sorting are marked, i.e., the

somatic region is blue and the dendritic region is red. Scale bar: 0.1 mm. (C)

Schematic of the basic cellular structures in the cerebellar slice (Gray, 1918).

Scale bar: 0.1 mm. ML, molecular layer; PCL, Purkinje cell layer; GL, granular

layer; CF, climbing fiber; MF, mossy fiber; PF, parallel fiber; PC, Purkinje cell;

GgC, Golgi cell; SC, stellate cell; BC, basket cell. (D) Footprint of a PC

selected from the region shown in (B). Scale bar: vertical is 200 µV, horizontal

is 1.9 ms. (E) Current source density (CSD) analysis for the cell shown in (D)

at several points in time (green: sink; yellow: source). The sink moves from

the soma at 0.4 ms to the proximal dendrites at 0.6 ms and covers the

dendritic area, while the soma repolarizes. Frequency band: 180 Hz–3.5 kHz.

(F–H) Matching simulated and measured EAP footprints. (F) Comparison of

the recorded average single-unit spikes (black traces) and the spikes

calculated from a compartment-model simulation of a PC (green traces).

Scale bar: vertical is 100 µV, horizontal is 1.9 ms. (G) Illustration of the

position and orientation of the simulated PC, with the center of the soma

located [blue diamond in (F)] 40 µm above the chip surface. (H) Simulated

potential on the chip surface along a line parallel to the soma-dendrite axis

[dashed blue line in (F,G)] during the spike evolution at 0.1 ms intervals. The

black and white dots on the potential line of maximal amplitude (bold blue

line) represent the HDMEA spatial resolution (18 µm pitch). Significant spatial

undersampling of the potential distribution curve can be observed by

reducing the lateral spatial resolution by 50% (black dots only, pitch 36 µm),

especially for the largest negative peak. All panels and descriptions adapted

with permission from Frey et al. (2009a).

MEA recordings has been of interest for in vivo and acute slice

in vitro experiments too.

Based on the volume conductor theory several current source

density (CSD) methods have been proposed to solve for the cur-

rent sources and sinks from LFP and EAP data (Nicholson and

Freeman, 1975; Mitzdorf, 1985; Plenz and Aertsen, 1993; Okada

et al., 1994; Pettersen et al., 2010; Łȩski et al., 2011). A volume

CSD approach for measurements using a 3D MEA has also been

done (Riera et al., 2014). These methods approximate the location

of the sources prior to solving the CSD and may not be suitable

for localizing single neurons. Different methods to localize sin-

gle neurons depend on the source models used, e.g., monopole

source type models such as exponential decay and inverse power

law models (Blanche et al., 2005; Chelaru and Jog, 2005; Kubo

et al., 2008), dipole models (Blanche et al., 2005; Mechler and

Victor, 2012), line source models (Somogyvári et al., 2005, 2012),

and simplified line model fitted to the perisomatic area of a

full-compartmental neuron model (Delgado Ruz and Schultz,

2014).

Somogyvári et al. (2012) proposed spike CSD (sCSD) to esti-

mate the CSD after optimizing for the best locations of the sources

from the recording electrodes that recreates the spike data (see

Figure 13A). The method has been used to analyze recordings

from a 16-electrode probe in vivo. Although sCSD has been used

to solve for the CSD at the optimized locations of the sources,

it assumes that the number of electrodes is equal to the number

of sources to solve for. The over-simplification of the number of

current sources in sCSD results in errors, especially when the ori-

entation of the neuron being analyzed is at an angle with respect

to the measuring electrodes.

On the other hand, Delgado Ruz and Schultz (2014) intro-

duced a neuronal-based model for localization, utilizing known

current distributions and morphological traits. The method was

tested in simulations and in vivo recordings using high-density

probes. The authors showed that different morphologies and

ion channel distributions of neurons elicit different localiza-

tion accuracies (see Figures 13B–D). This method, however,

assumes that the experimenter knows the type (morphology and
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FIGURE 11 | Identification of retinal ganglion cell receptive fields using

HDMEAs. (A–E) Characterization and analysis of HDMEA recordings from

defined populations of mouse retinal ganglion cells (RGCs), adapted with

permission from Fiscella et al. (2012). (A) Each trace shows the average (thick

black lines) of the 959 superimposed EAPs (gray lines). The electrode

locations are indicated in (B). The propagation speed of the spike was

calculated to be 0.7 m/s. (B) Footprint of an RGC over an area of 0.025 mm2.

The highest peak-to-peak amplitude is shown by the thick dark waveform.

(C–E) Physiological response of RGCs. Left panel: RGC footprint on a

recording block of the HDMEA. The yellow square indicates the location of

the light stimulus, with the gray squares indicating the center of the stimulus

at four positions. Middle panel: Raster plots corresponding to four stimulation

locations indicated in the left panel. Each dot corresponds to a single EAP.

Each raster plot shows the response to five repetitions of the same stimulus.

The firing rate of the RGC (averaged from five responses) is indicated below.

Right panel top: Polar plot showing the responses of the RGC to motion of a

bar in 8 directions at 45◦ radial intervals. Right panel bottom: Inter-spike

(Continued)
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FIGURE 11 | Continued

interval distribution showing the time intervals between consecutive

spikes. (C) Blue = ON RGC. (D) Red = OFF RGC. (E) Green =
ON-OFF RGC. (F) Classification of RGC types and receptive fields at

single cone resolution, adapted with permission from Field et al. (2010).

The RGCs were recorded simultaneously and classified using the

responses to white noise stimuli. Top middle panel: Receptive field

radius vs. the first principal component of the response time course.

The clusters reveal different RGC types. Surrounding panels: Identified

RGC types highlighted at the top middle panel. The RGCs are

stimulated with fine-grained white noise to reveal single cone receptive

fields. Scale bars: 50 µm.

FIGURE 12 | Imaging axonal signal propagation using HDMEAs. (A–C)

Axonal propagation of a cultured neuron on an HDMEA, adapted with

permission from Bakkum et al. (2013). (A) Live image of a neuron at 21 DIV

transfected with red fluorescent protein (RFP). The axon is highlighted.

(B) Illustration of the distributed stimulation method. The crosshair

represents the location of the “somatic” AP observed while stimulating

different electrodes represented by colored dots (color represent the median

latency until AP detection, where light gray corresponds to electrodes that

did not evoke an AP). The small dots represent the location of the HDMEA

electrodes. Scale bar, 40 µm. (C) Illustration of the single-site stimulation

method. The red crosshair represents the stimulated electrode. The colored

dots represent the latencies of detected APs with respect to the largest

voltage signal indicated by the arrow. Scale bar, 40 µm. (D) Axonal

propagation of an RGC from rabbit retina, adapted with permission from Zeck

et al. (2011). Consecutive electrical images of the EAP propagation allow for

the calculation of axonal conduction velocity. (a) Image of a somatic AP (blue

spot in the first window) propagating along the proximal axon. (b) Image of a

biphasic spike recorded from an axon. (c) Plot indicating the distance traveled

of the AP in time. Open symbols represent data calculated from recordings at

16.4 kHz; closed symbols are recordings at 8.2 kHz.

current distributions) of neurons being measured for localiza-

tion and that the dynamics of neurons of the same type are

stereotypical.

Constraining compartmental models

Aside from localization of neurons, it has also been demon-

strated that with known morphology, it is possible to estimate

the ion channel density from extracellular recordings. Gold et al.

(2006, 2007) simulated realistic extracellular signals based on

adjusting the ion channel distributions in full-compartmental

models (see Figure 14). With such a method, the EAP waveforms

across the neuron’s morphology, measured by multielectrodes,

can then be used to constrain compartmental models (Gold et al.,

2007). Frey et al. (2009a) used this approach to model a full-

compartmental Purkinje neuron using HDMEA recordings, see

Figure 10. This shows that using high-density EAP recordings, it

is possible to model the ion channel dynamics during neuronal

function.

OUTLOOK

We have shown the current status of MEA research in terms of

technology, the understanding of signal transduction, and the
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FIGURE 13 | Localization of single neurons. (A) Spike current source

density (sCSD) method by Somogyvári et al. (2012), figure modified with

permission. The experimental setup is shown on the left, where the neuron

is oriented at a distance d parallel to the in vivo MEA. The highest amplitude

comes from the current sources at the soma of the neuron (sink) and is

detected by multiple electrodes. The forward solution at d is given by the T(d )

matrix, which transforms the CSD on the neuron to the EAP detected by the

MEA. The EAPs are shown in the voltage traces per electrode, where one

spike is plotted as a color map, indicating the spatial EAP pattern in time. The

sCSD obtained from the EAP signals by inverse solution T−1(dopt ) is shown

on the right. The EAP spatio-temporal map is transformed into a series of

normalized CSD distributions [I(d )] with different d -values. Localization is

done by solving for dopt . The optimum d (dopt ) is chosen as the value where

I(d ) is the most spike-like, i.e., similar to the normalized amplitude of the EAP

during the whole duration of the spike. Thus, the EAP and sCSD color maps

are similar. (B–D) Localization of simulated neurons using simplified line

model by Delgado Ruz and Schultz (2014), figures adapted with permission.

(B) The simulated neurons are CA1 pyramidal, L2/3 pyramidal, double

bouquet or DB (not shown), NPY interneurons, and PV interneuron.

Localization depends on the location of the sodium trough, which

corresponds to the moment when currents are concentrated near the soma.

(Continued)
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FIGURE 13 | Continued

As shown by the color map embedded on the neuron morphologies,

the sodium trough (red) is displaced from the soma for NPY due to

the contribution of the dendritic arbor and axon, leading to higher

localization error along the Y axis shown in (D). (C) Localization

results for CA1, where the errors along X–Z axes remained low for

neuron-electrode distances under 35 µm and increased thereafter,

especially along the Z axis. (D) The localization errors were not

similar for all simulated neurons. The differences in morphology and

electrophysiology cause the errors, although the maximum EAP

(location of sodium trough) is more or less confined to the

perisomatic area.

FIGURE 14 | Ion channel density estimation. Adapted from Gold et al.

(2006). (A) The extracellular action potentials (EAPs) solved in a grid

from the multicompartmental model of a CA1 pyramidal neuron. The

dotted black line indicates the tip of the electrode used to measure the

EAPs. (B) Enlarged image of the EAP at the electrode tip. Location is

indicated by the white dotted line in (A). Solid line in the plot

corresponds to the simulated EAP, which is superimposed with the

recorded EAP shown as dotted line. (C) Comparison of the simulated

intracellular signal (solid line) at the proximal apical trunk to the

intracellular recording (dotted line). (D) First column: The details of the

intracellular signal simulation for each compartment. White solid lines in

(A) indicate the locations of the compartments. Second column: The

simulated membrane currents in the same compartments as the first

column. The net membrane current across the soma and proximal

dendrites best estimates the EAP waveform. Third column: Membrane

current components in terms of Na+, K+, and mixed-ion capacitive

current. Last column: Conductivity densities of the A, C, D, K, and M

type K+ currents. For further details, see Gold et al. (2006).

application to neuroscience studies. After years of MEA devel-

opment, what is next? One path is to continuously improve the

devices, i.e., better SNR, higher spatial resolution, more paral-

lel readouts, scalability, portability, and increased ease-of-use.

Additionally, device flexibility and biocompatibility are targets

for long-term in vivo recording and stimulation. Another

approach is to enhance MEA signal pre-processing for experi-

menters to easily extract meaningful information from record-

ings in real time. This is crucial for applications where fast,

online analysis is required, e.g., closed-loop experiments and

brain machine interfaces (BMIs) combined with stimulation

therapies.

A promising route is the combination of MEAs with other

modalities. Aside from electrical recording and stimulation,

brain activity mapping and manipulation at cellular resolution

have also been done using optical methods, e.g., fluorescent

calcium indicators, genetic markers, optogenetics, two-photon

microscopy, etc. Similar to extracellular recordings, the pres-

ence of many molecules and compartments in the brain with

different optical properties render optical recording and analysis

challenging. It is of interest to pinpoint the advantages and

constraints of both electrophysiological and optical methods

to determine how they can complement each other. Another

example is the use of optogenetics to manipulate the activity of
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specific cellular subpopulations. By using MEAs to measure the

response of the cortical circuit at multiple locations during opto-

genetic manipulation, it is possible to study the functional roles of

different classes of neurons (El Hady et al., 2013). Simultaneous

multi-scale recording of neuronal electrical activity is also of

interest, e.g., concurrent ECoG, in vivo MEA, and multiple

patch-clamp recordings allow for investigating the relationship

between oscillations, LFPs, EAPs, IAPs, and subthreshold activity

during different brain states. Additionally, other technologies that

can enhance MEA experiments are microfluidics for controlled

delivery of drugs, chemical sensing to study the biochemistry

involved in neuronal function, and measurement of metabolic

processes.

The complexity of the data obtained from all the above men-

tioned advanced measurement schemes necessitates the appli-

cation of systems biology techniques for analysis (Ghosh et al.,

2011). Computational methods such as multi-scale modeling can

combine recordings from different modalities at different time

and/or spatial scales into a topological model of a system, e.g.,

cortical circuit. Through multi-scale modeling, the overall neu-

ronal network activity can be understood, while also having the

ability to zoom in to single neurons and even in a specific part

of a neuron to study the details of the biochemical and electrical

reactions involved. Some works have already started in this direc-

tion (Mattioni and Le Novère, 2013). There are already available

platforms and packages to develop full compartment models of

neurons and neuronal networks based on electrical activity, e.g.,

NEURON (Hines and Carnevale, 1997) and GENESIS (Bower

and Beeman, 1998). There are also tools for modeling biochemi-

cal processes, e.g., E-CELL3 (Takahashi et al., 2004), STEPS (Wils

and De Schutter, 2009; Hepburn et al., 2012), COPASI (Hoops

et al., 2006), SBMLOdeSolver (Machné et al., 2006). The main

challenge is to efficiently combine the modules by synchroniz-

ing the events properly at different time scales, by matching the

spatial information into a topology or morphology, and by using

optimization methods to computationally handle such massive

amounts of data.
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