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Abstract

Genome-wide scans for positive selection have become important for genomic medicine,

and many studies aim to find genomic regions affected by positive selection that are associ-

ated with risk allele variations among populations. Most such studies are designed to detect

recent positive selection. However, we hypothesize that ancient positive selection is also

important for adaptation to pathogens, and has affected current immune-mediated common

diseases. Based on this hypothesis, we developed a novel linkage disequilibrium-based

pipeline, which aims to detect regions associated with ancient positive selection across

populations from single nucleotide polymorphism (SNP) data. By applying this pipeline to

the genotypes in the International HapMap project database, we show that genes in the

detected regions are enriched in pathways related to the immune system and infectious dis-

eases. The detected regions also contain SNPs reported to be associated with cancers and

metabolic diseases, obesity-related traits, type 2 diabetes, and allergic sensitization. These

SNPs were further mapped to biological pathways to determine the associations between

phenotypes and molecular functions. Assessments of candidate regions to identify functions

associated with variations in incidence rates of these diseases are needed in the future.

Introduction

Genome-wide scans of positive selection are a recent advance in genomic medicine, and have

become an important way to infer risk allele variations across populations and elucidate genetic

mechanisms of human evolutionary adaptation to local environments, dietary patterns, and

infectious diseases [1]. Because detection of positive selection will help improve population-spe-

cific disease prevention strategies and treatments, many previous studies revealed that risk

alleles for common complex diseases show substantial variation across human populations and

contribute to disease risk variation among populations [2–8]. For example, risk alleles for type 2

diabetes (T2D) show high frequencies in African populations and low frequencies in Asian pop-

ulations [8]. The patterns of risk allele frequencies are shown to be consistent with the disparity
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in T2D risk across populations of different ancestries, which is thought to be due to adaptations

to different agricultural developments across continents. If we know populations have a higher

T2D risk (e.g., African ancestry), we can take population-specific preventive actions for T2D

based on the genetic background of individuals. Another well-known example is cytochrome

P450 (CYP) genes [9]. The allele of an SNP in CYP3A5, a member of the CYP3A subfamily,

shows large frequency differences between African Americans and non-Africans [9–11]; and

the region that contains this gene also shows a high degree of linkage disequilibrium (LD) that

was affected by positive selection in Europeans [9, 12]. Because this allele is involved in CYP3A5

expression and metabolism of clinically important drugs (e.g., the immunosuppressant tacroli-

mus [13] and the HIV protease inhibitor saquinavir [14]), differences in genetic background

may be associated with differential drug responses among populations [9–11]. Other common

complex diseases with risk allele frequencies that differ across human populations include can-

cers (e.g., breast cancer and prostate cancer), cardiovascular diseases, metabolic diseases (e.g.,

hypertension), neurodegenerative diseases (e.g., Alzheimer’s disease), and systemic autoim-

mune diseases (e.g., systemic lupus erythematosus and rheumatoid arthritis) [3, 15].

Whereas most studies have focused on recent positive selection, ancient human adaptation

to pathogens is known to have affected the immune system and is also associated with risk

allele frequency variation for common diseases, such as autoimmune and metabolic disorders

among populations [16]. It was reported that ancient local adaptation to pathogens affected

celiac disease, type I diabetes, and multiple sclerosis susceptibility loci [17]. It was also reported

that ancient selection in response to a sleeping sickness pathogen in Africa contributed to the

high rate of renal disease in African Americans [18]. Another example is adaptation to malaria

pathogens, Plasmodium spp., which appeared more than 100,000 years ago (100 kya) in Africa.

Most malaria resistance alleles occur in African populations, and the LD segments associated

with the alleles are short and highly variable between populations [16]; however, whether vari-

ation among populations affects the incidence of recent common diseases has not been well

documented [19]. Therefore, in addition to recent positive selection, ancient positive selection

is important for detecting immune-mediated common diseases.

Approaches to finding positively selected regions in the human genome are classified into

four groups [20]: summary statistics, LD-based statistics [21–26], comparative genomics, and

neutrality tests. These approaches are mainly applied to detect recent positive selection. For

example, positive selection signals of the lactase persistence allele at the LCT locus were

detected by long haplotype tests (i.e., LD-based approaches such as LRH, iHS, and XP-EHH)

[27, 28]. XP-EHH [28] also detected positive selection of SLC24A5 that is associated with skin

pigment differences among populations. Significant variations in T2D risk alleles across popu-

lations have been revealed using iHS and XP-EHH [8, 29, 30]. These methods aim to identify

positive selection that occurred after dispersal out of Africa (< 30 kya) [27, 28], and the mean

lengths of detected regions are more than 400 kb. Recently, selection events have been detected

in the ancestral population of all present-day humans [31–33], and 3P-CLP [34] was developed

to detect ancient selection events that occurred before the split of Yoruba and Eurasians but

after their split from Neanderthals.

In this study, we develop a pipeline to detect ancient positive selection events. We use the

term ‘ancient’ to describe the period before the human migrations out of Africa (~100 kya).

We hypothesize that haplotype blocks, i.e., conserved regions, that contain variants that were

selected in ancient times have spread with human migration, and some mutations occurred

for adaptation to each local environment (Fig 1). This pipeline first identifies ancient haplotype

blocks by screening common blocks after extracting those within each population. The pipe-

line then scans the identified ancient haplotype blocks to check whether they have haplotype

frequency variation among populations.

Phenotype-associated functional differences and ancient haplotype blocks
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After extracting ancient haplotype blocks with haplotype frequency variation across popula-

tions by applying the pipeline to HapMap2 genotype data [35], we annotated the genes in the

extracted blocks using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway data-

base [36], and identified genes associated with immune system-related functions that are poten-

tially related to common diseases. We also analyzed SNPs in the blocks using the NHGRI

GWAS catalog [37] to infer the relationships among SNPs, diseases, and genes whose biological

functions are described by functional categories in the KEGG pathway database.

Materials andmethods

HapMap data for genome-wide scan

We downloaded unphased diplotype data sets of 22 autosomal chromosomes from release 24

of the HapMap database [35]. The data sets consisted of unphased diplotypes of 270 individu-

als: 90 Yoruba from Ibadan, Nigeria (YRI); 90 Utah residents with ancestry from northern and

western Europe (CEU, from the CEPH diversity panel); and 90 Japanese from Tokyo and

Japan, and Han Chinese from Beijing, China (ASN). All markers in the data set were diallelic.

We selected 3,619,226 SNPs that were common to the three populations (Fig 2); among these,

879,657 SNPs had no missing data. The genotypes of these 879,657 SNPs were used to identify

ancient haplotype blocks that were present in African populations and spread with migrating

populations.

The Entrez SNP search tool (https://www.ncbi.nlm.nih.gov/snp) was used to retrieve non-

synonymous SNPs (nsSNPs) from dbSNP build 132. We downloaded all three kinds of

nsSNPs: 173,911 missense, 6,838 nonsense, and 24,296 frame-shift SNPs, among which 4,316

nsSNPs were included in the HapMap data sets. CCDS [38] build 36.3 was further used to

Fig 1. Signatures of ancient haplotype blocks with population-specific positive selection. (A) Some important loci adapted to ancient
African environment arose (red triangle) and formed haplotype blocks. The haplotype blocks spread during humanmigration, and some
mutationsmay have occurred for adaptation to each environment (blue and green triangles). This change is a signature of an ancient
haplotype block with population-specific positive selection. (B) A proposed network model to represent the positive selection signature.
Each node represents the population in a region. Throughout this paper, red, blue, and green nodes represent populations in Africa, Europe,
and Asia, respectively. Arrows represent migration routes. Edges represent relationships between populations. In this work, relationships
were evaluated using t-statistic scores that represent degrees of difference between populations. Asterisks represent mutations.

https://doi.org/10.1371/journal.pone.0176530.g001

Phenotype-associated functional differences and ancient haplotype blocks
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evaluate the location of each SNP in terms of protein-coding genes. In total, 3,298 nsSNPs

were mapped to 2,467 genes across the 22 autosomal chromosomes.

KEGG for functional annotation

KEGG is a suite of databases that includes molecular interaction networks (PATHWAY data-

base) and information about genes and proteins (GENES/SSDB/KO databases), and biochemi-

cal compounds and reactions (COMPOUND/GLYCAN/REACTION databases) [36]. We

used KEGG PATHWAY, which includes 430 reference pathway maps (downloaded on 25

February 2015), among which 74 are of human diseases. The human disease maps contain 12

cancer maps.

KEGGmapper is a web-based interface that accepts gene lists as input, and outputs lists of

KEGG pathway maps that contain the genes in the input list. We used KEGGmapper to iden-

tify the functions of the genes obtained by our scans. We also used KEGG pathway maps for a

Monte Carlo test that showed to which pathway maps the genes were likely to belong.

Inter-diplotype distance

In our previous work [39], we defined an inter-diplotype distance called Haplotype Inference

Technique (HIT) Hidden Markov Model-based Distance (HHD). Unlike the allele sharing dis-

tance (ASD) [40], HHD reflects the founder (or ancestral) haplotypes well. HHD assumes mul-

tiple founder haplotypes [39] and calculates the distance between founder and present-day

haplotypes. The distances between founder and present-day haplotypes were used to calculate

the distance between individual SNP genotypes. If we hypothesize the existence of common

founder haplotypes in several populations, HHD performs better than ASD. When specific

Fig 2. HapMap SNPs from three populations. The relationships between the numbers of SNPs in 22
autosomal chromosomes from three populations, YRI, CEU, and ASN, in the HapMap database are shown. A
total of 3,619,226 SNPs were found in all three populations. Among them, 879,657 SNPs were selected under
the condition that all of the SNPs could be attributed to the genotypes of all 270 individuals.

https://doi.org/10.1371/journal.pone.0176530.g002

Phenotype-associated functional differences and ancient haplotype blocks
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haplotypes are conserved in populations, both HHD and ASD produce small values, but when

they are not conserved, HHD produces much larger values than ASD. Thus, for blocks that

have both common founder and population-specific haplotypes, it is highly possible that the

inter-population HHD would be larger than ASD. Therefore, we implemented a pipeline that

utilizes HHD (Fig 3).

Briefly, the difference between HHD and ASD in terms of their algorithms is as follows.

The algorithm for ASD between genotypes first counts allele differences at each SNP site; then,

the total allele differences are normalized. The HHD algorithm first infers candidate haplo-

types and their frequencies in populations for each genotype. Second, it calculates distances

between candidate haplotypes of two genotypes. The distances between candidate haplotypes

are weighted by their frequencies in the populations. Finally, for HHD, the distances between

candidate haplotypes are added and normalized. Unlike ASD, HHD identifies differences

between common founder and present-day haplotypes. When haplotype composition of two

populations are similar, HHD between the genotypes is small like ASD. If two populations

have different haplotype composition, HHD calculates the distance between genotypes more

accurately and becomes larger than ASD. If of the difference between average HHD values

between two populations is large, we infer that the region has haplotype variation and it is pos-

sible that there are population-specific haplotypes.

Fig 3. Pipeline for ancient haplotype block scan and functional annotation. (A) Novel procedure for ancient haplotype block scan using HHDs.
(B) Functional annotation procedure based on biological pathways. Each box shows materials or tools used in that step.

https://doi.org/10.1371/journal.pone.0176530.g003
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Genome-wide scan of ancient haplotype blocks (Fig 3A)

1. Identification of ancient haplotype blocks. We assumed that functionally important

conserved regions in African populations spread with other populations during human migra-

tion. Currently, such conserved regions differ by population but may have shared regions [41].

We defined the shared regions as ancient haplotype blocks.

We first identified haplotype blocks for each population with Haploview 4.2 [42]. Haplo-

view estimates Hedrick’s multiallelic D0 [43, 44] between a pair of SNPs, and 95% confidence

bounds on D0 are used to evaluate the strength of LD between the SNP pair. The default setting

of Haploview ignores pair-wise comparisons of SNPs further than 500 kb apart.

Next, we extracted the haplotype blocks of the YRI population that overlapped with the

haplotype blocks of both the CEU and ASN populations. For a haplotype, letH[i..j] denote the

haplotype, where positions of the first and last SNPs are i (bp) and j (bp) in the genome. Two

haplotypes, H1[i..j] andH2[k..l], are thought to overlap with each other in any of the following:

i� k� j� l, k� i� l� j, i� k� l� j or k� i� j� l. We considered the extracted haplotype

blocks of the YRI population as ancient positive selection candidates that spread with popula-

tion migration.

To identify the shared regions of the haplotype blocks, we detected common haplotype

blocks. Here, the common haplotype blocks were defined as the haplotype blocks obtained

from genotype data of all three populations. To evaluate whether the identified common hap-

lotype blocks were affected by ancient positive selection and really exist for each population,

we further searched the common haplotype blocks that overlapped with the previously

extracted candidates to identify ancient positive selection events. We defined the extracted

final set of haplotype blocks as ancient haplotype blocks.

Fig 4 shows an example of ancient haplotype blocks that were identified from the 879,657

genotypes. The 14-kb haplotype block was identified in 270 individuals, already existed in the

YRI population, and overlapped with the haplotype blocks of the CEU and ASN populations.

Although recent studies analyzed population-specific features of LD distribution [45], we iden-

tified haplotype blocks common to all of the populations for ancient haplotype block regions.

2. Calculation of inter-population distances for ancient haplotype blocks. For the k-th

ancient haplotype block, we calculated HHD between two individuals i and j, dijk (1� i<

j� 270), across all three populations and constructed a 270 × 270 HHDmatrix for each

ancient haplotype block (S1 Text, S1 Fig). To identify ancient haplotype blocks that differed

between populations (i.e., ancient haplotype blocks with common founder haplotypes and

population-specific haplotypes), we used a t-statistic score based on inter-population distance

Xk and intra-population distance Yk for each haplotype block k:

tk ¼
Xk � Yk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sXYk
ð1
m
þ 1

n
Þ

q ; ð1Þ

where

sXYk
¼

ðm� 1ÞsXk þ ðn� 1ÞsYk
mþ n� 2

;

m is the total number of inter-population pairs of individuals that belong to different popula-

tions, and n is the total number of intra-population pairs of individuals that belong to the same

population (S1 Fig). Xk and Yk are the sample means of the inter- and intra-population dis-

tances, and sXk and sYk are the unbiased variances of the inter- and intra-population distances.

This score measures the difference between the mean HHD value for pairs of people that

Phenotype-associated functional differences and ancient haplotype blocks
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belong to different populations (inter-population distance) and pairs of people that belong to

the same population (intra-population distance); if the score is high, the haplotype block is

considered to represent a difference between populations. We ranked the ancient haplotype

blocks with this score for the three populations. We considered that blocks in the upper tail of

the score distribution (i.e., top 1% of blocks) were likely to have common founder and popula-

tion-specific haplotypes that were created by ancient positive selection and population-specific

mutations. In the present work, top 1% of blocks were considered to show population differen-

tiations and further validated by the following steps (see “Relationship between the top 1% of

blocks and Fst” for additional detail).

3. Ancient haplotype block characterization. We used networks that represented differ-

ences between the three populations evaluated using t-statistic scores (Fig 1B) to classify the

ancient haplotype blocks. Each node of the network represented a population (i.e., YRI, CEU

or ASN), and the weight of each edge represented the sample mean of t-statistic scores between

the two populations. k-means clustering was applied to all the ancient haplotype blocks based

on the weights of the three edges, CEU–YRI, CEU–ASN, and ASN–YRI.

Functional annotation of candidate regions (Fig 3B)

1. Monte Carlo test for enrichment analysis. We performed KEGG pathway enrichment

analysis using the genes in the detected ancient haplotype blocks, and evaluated the result by

Monte Carlo test using the genes obtained from 10,000 random samples of 310 ancient haplo-

type blocks (1% of all ancient haplotype blocks). The Jaccard index was used as a measure of

Fig 4. Example of ancient haplotype blocks identified in this work. Four haplotype blocks identified in all
three populations (YRI, CEU, and ASN) are shown. The region of overlap between the dashed lines is defined
as the ancient haplotype block.

https://doi.org/10.1371/journal.pone.0176530.g004

Phenotype-associated functional differences and ancient haplotype blocks
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the overlap between all genes in a KEGG pathway and the genes in the ancient haplotype

blocks. For each pathway, p-values were calculated based on the distribution of the Jaccard

index of random samples.

2. Annotation of genes and SNPs by pathway mapping and GWAS catalog. Wemapped

genes in the detected regions to biological pathways in the KEGG database. We also investigated

known phenotypes associated with SNPs in the regions using the NHGRI GWAS catalog [37],

which collects relationships between SNPs and human phenotypes. The SNPs that have known

phenotypes were then mapped to biological pathways through reported genes. KEGGMapper

was used to identify associated biological pathways and their functional categories.

Results

Identification of ancient haplotype blocks

In the 22 autosomal chromosomes, Haploview [42] identified 62,123, 56,597, and 56,325 hap-

lotype blocks in the YRI, CEU, and ASN populations, respectively. We also identified 76,119

haplotype blocks in all three populations, 39,228 of which were defined as ancient haplotype

blocks. Of these, we used 30,966 ancient haplotype blocks that consisted of more than two

SNPs. The maximum, minimum, and average lengths of the identified ancient haplotype

blocks were 499,794, 42, and 24,584.36 bp, respectively. The average length of 24,584.36 bp is

much shorter than that of the regions identified by studies based on previous LD-based meth-

ods, such as the long-range haplotype test [27, 28], which focuses on recent positive selection

(Table 1). The number of SNPs and genes in the blocks varied from 3 to 97 and 0 to 6, respec-

tively. The total number of SNPs and genes in the identified ancient haplotype blocks were

240,752 and 5,577, respectively.

Inter-population distances

To find haplotype blocks that represent differences among the three populations, we calculated

the t-statistic score, tk, which was defined in Eq (1), for each ancient haplotype block. Fig 5

shows the distribution of the calculated scores. The distribution can be fitted to the generalized

extreme value (GEV) distribution. Larger scores represent greater disparity between inter-pop-

ulation and intra-population distances. In the top 5% of sorted haplotype blocks, there was a

set of 1,548 haplotype blocks that includes 592 genes and 13,955 SNPs. When we examined the

top 1% of sorted haplotype blocks, we identified a set of 310 haplotype blocks. The 310 haplo-

type blocks included 130 genes (S1 Table, S2 Table) and 2,803 SNPs. The average length of the

310 ancient haplotype blocks was 35,803.89 bp (Table 1). Additionally, 35% and 49% of the

SNPs had Fst [2] values larger than 0.2 in the top 5% and 1% of blocks, respectively. The aver-

age Fst values for the SNPs in the top 5% and 1% of blocks are 0.162 and 0.187, which are

Table 1. Average length of regions identified by representative methods.

Method Average lengths (bp)

LRH, iHS [21] 310,049.59

LRH, iHS, XP-EHH [22] 151,579.03

EHHS [23] 336,811.55

CMS [24] 86,178.84

XP-CLR [25] 1,280,084.33

HaploPS [26] 449,043.75

Ancient haplotype blocks by the present study 24,584.36

Top 1% t-score of the ancient haplotype blocks 35,803.89

https://doi.org/10.1371/journal.pone.0176530.t001

Phenotype-associated functional differences and ancient haplotype blocks
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significantly different based on the two-tailed Welch’s t-test (p-value< 0.05). (see “Relation-

ship between the top 1% of blocks and Fst” for additional detail).

Characterization of ancient haplotype blocks

We classified all ancient haplotype blocks into eight clusters (i.e., k = 8 for k-means clustering)

based on the network of populations and their t-statistic score profiles (Fig 6, S3 Table). We

used k = 8, because the network with three edges can be classified into eight patterns if we clas-

sify each edge as either long or short. Using this setting, we could not find Cluster 8 that corre-

sponds to a network with all three edges long. Instead, Cluster 50, which was similar to Cluster

5, was obtained. However, the degrees of the differences for the YRI population pairs were

much smaller for Cluster 50. The largest portion (~30%) of the ancient haplotype blocks was

classified in Cluster 1 (Table 2). Clusters 2, 3, 4, and 5 had almost the same number of cluster

members. Clusters 6 and 7 had almost twice as many cluster members as Clusters 2, 3, 4 and 5.

Association between clustering results and t-statistic score

Based on the score distribution for each cluster shown in Fig 5, the clusters can be classified

into three groups: group I, which consists of Cluster 1; group II, which consists of Clusters 2, 3,

4, and 5; and group III, which consists of Clusters 6, 7, and 50 (Fig 7). The largest portion of the

ancient haplotype blocks was classified in group I, with scores below 18, and showed no large

differences across the three populations. The scores of groups III and II ranged from 11 to 39

and 23 to 86, respectively.

The top 1% of the sorted ancient haplotype blocks contained significantly higher proportions

of Clusters 2 and 5 than the total pool of ancient haplotype blocks (p-value< 0.05) (Table 2).

This result for Cluster 5 is consistent with the previous results, which indicates that the genetic

distance between the African population and the other populations is large [46, 47]. Our results

also showed that twice as many members of Cluster 2 are in the top 1% that of Cluster 4.

Functional annotation of blocks in the top 1% of t-statistic scores

The Monte Carlo test for enrichment of genes in the top 1% of ancient haplotype blocks (310

haplotype blocks) showed that the 130 genes were enriched for 22 pathways categorized in

“Metabolism,” “Genetic Information Processing,” “Cellular Processes,” “Organismal Systems,”

Fig 5. Distribution of calculated scores. The x-axis shows the t-statistic score, and the y-axis shows the
number of ancient haplotype blocks.

https://doi.org/10.1371/journal.pone.0176530.g005
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and “Human Diseases” (Table 3). In the “Human Diseases” pathways, we found several dis-

eases already known to have some differences between populations: hepatitis C, non-alcoholic

fatty liver disease (NAFLD), and some cancers.

Hepatitis C varies (HCV) in incidence rate and treatment response across populations [48].

The chronic HCV infection rate is higher in African Americans than in people of European

Fig 6. Classification of ancient haplotype blocks. Eight clusters of ancient haplotype blocks obtained by clustering based on the network of
populations and their t-statistic score profiles. The number on each edge represents the average t-statistic score; smaller scores reflect shorter
edges.

https://doi.org/10.1371/journal.pone.0176530.g006

Table 2. Summary of screening results.

Cluster 1 2 3 4 5 6 7 5’ Total

Top 1% 0 76 39 35 160 0 0 0 310

(0%) (24.52%) (12.58%) (11.29%) (51.61%) (0%) (0%) (0%)

Total 9,459 1,772 1,657 2,121 2,094 3,682 4,237 5,944 30,966

(30.55%) (5.72%) (5.35%) (6.85%) (6.76%) (11.89%) (13.68%) (19.20%)

Each element in the table shows the number of obtained haplotype blocks. The numbers in parentheses are percentages of the total pool of haplotype

blocks.

https://doi.org/10.1371/journal.pone.0176530.t002
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ancestry in the United States. It has also been reported that histologic progression of HCV

infection is less rapid among African American patients than among those of European ances-

try. Rates of adverse events are higher among patients of European ancestry. The rate of sus-

tained virologic response in African Americans is significantly lower than for patients of

European ancestry. In our results, BRAF (Cluster 5), GSK3B (Cluster 2), and JAK1 (Cluster 5)

were mapped to “Hepatitis C.” BRAF and JAK1 have not previously been found to be affected

by positive selection, but GSK3B was reported to be affected by positive selection in people of

Mexican ancestry in Los Angeles, California, USA [26].

Differences in HCV-specific CD4 T cell responses between African Americans and people

of European ancestry have been previously discussed, and may explain some of these differ-

ences across populations [48]. Previous haplotype analyses have also suggested that variants of

the immunomodulatory IL10 and IL19/20 genes play a role in the spontaneous clearance of

HCV in African American patients but not in patients of European ancestry [49]. The “T cell

receptor signaling pathway” appeared in our results, and IL10 (Cluster 3) GSK3B (Cluster 2)

and PAK7 (Cluster 5) were mapped to this pathway.

NAFLD, an endocrine and metabolic disease, has been suggested to have pathophysiologi-

cal differences among populations [50]. Latinos (45%) show the highest prevalence of hepatic

steatosis and African Americans show the lowest prevalence; people of European ancestry

showed an intermediate prevalence of 33% [50]. There might be differences in metabolic

responses related to NAFLD in different populations. NDUFA8 (Cluster 5), NDUFS6, and

GSK3B (Cluster 2) were mapped to “Non-alcoholic fatty liver disease (NAFLD)”. NDUFA8

has been reported to be affected by positive selection in European populations [23], but

NDUFS6 has not previously been found to be affected by positive selection.

Regarding cancers, higher renal cell carcinoma incidence rates have been identified in men

of African ancestry [51]. Endometrial cancer is reported to have higher incidence rates in

women of European ancestry than in any other population [52, 53]. Basal cell carcinoma is

known to be common in fair-skinned individuals [54]. ARNT2 (Cluster 5), BRAF (Cluster 5),

and PAK7 (Cluster 5) were mapped to “Renal cell carcinoma;” APC (Cluster 5), BRAF (Cluster

5), and GSK3B (Cluster 2) were mapped to “Endometrial cancer;” and APC (Cluster 5) and

GSK3B (Cluster 2) were mapped to “Basal cell carcinoma” in our results. APC has been

Fig 7. Score distributions for each cluster. The score distribution of ancient haplotype blocks is shown for
each cluster. The clusters can be classified into three groups: I, II, and III. Group I consists of Cluster 1 (blue).
Group II consists of Clusters 2, 3, 4, and 5 (red). Group III consists of Clusters 6, 7, and 50 (green).

https://doi.org/10.1371/journal.pone.0176530.g007
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Table 3. Pathways for which the genes in the top 1% of ancient haplotype blocks are enriched.

Category Pathway Genes* p-value

Cluster 2 Cluster 3 Cluster 4 Cluster 5

Organismal Systems
T cell receptor signaling pathway GSK3B IL10, PAK7 0.029Immune system

Nervous system Neurotrophin signaling pathway GSK3B, SH2B3 BRAF,
RPS6KA2

0.007

Endocrine system Progesterone-mediated oocyte maturation BRAF,
GNAI1,
MAD1L1
RPS6KA2

0.005

Metabolism
beta-Alanine metabolism GADL1 ACADM 0.016Metabolism of other amino acids

Genetic Information
Processing Ribosome biogenesis in eukaryotes EFTUD1,

RBM28
0.039

Translation

Environmental Information
Processing Neuroactive ligand receptor interaction GLP2R, ADRA1A,

CHRNB4,
PARD3
GRID2
GRIK1
GRIK2,

0.012

Signaling molecules and
interaction

Signal transduction Hippo signaling pathway GSK3B APC,
DLG2,
PARD3

0.048

Cellular Processes
Focal adhesion GSK3B,

LAMA3
MYLK

ACTN1, BRAF,
PAK7

0.018Cellular community

Signaling pathways regulating pluripotency of stem
cells

GSK3B, APC,
JAK1

0.019

Tight junction ACTN1,
JAM2,

GNAI1,
PARD3,
PRKCH

0.038

Cell motility Regulation of actin cytoskeleton MYLK, ACTN1, APC,
BRAF,
PAK7,
PIP5K1B
SSH2

0.001

Human Diseases
Toxoplasmosis LAMA3 IL10, GNAI1,

JAK1,
0.003Infectious diseases

Hepatitis C GSK3B, BRAF,
JAK1

0.022

Pertussis IL10 GNAI1, 0.023

Leishmaniasis IL10, JAK1 0.025

Cancers Colorectal cancer GSK3B APC,
BRAF,
DCC,

0.001

Renal cell carcinoma ARNT2, BRAF,
PAK7

0.008

Endometrial cancer GSK3B APC,
BRAF,

0.018

Basal cell carcinoma GSK3B APC, 0.023

Viral carcinogenesis ACTN1, JAK1,
MAD1L1

0.046

(Continued )
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reported to be a positive selection candidate in European and Asian populations [24, 26], and

the others have not previously been reported to be affected by positive selection.

Functional annotation of genes and SNPs in each cluster

To check the functional annotation details of the top 1% of regions, which included only mem-

bers of Clusters 2, 3, 4, and 5, as previously discussed, we mapped the genes and SNPs in each

cluster to pathways and the GWAS catalog, respectively.

Cluster 2. The 76 ancient haplotype blocks in Cluster 2 included 34 genes (S2 Table).

Nine genes had previously been reported as being affected by positive selection (S4 Table) [21,

23–26]. ARHGAP30 and USF1 in Cluster 2 have been reported to show especially strong sig-

nals of positive selection in African populations [24].

Ten genes were mapped to 58 pathway maps (i.e., five “Metabolism”, nine “Environmental

Information Processing,” five “Cellular Processes,” 21 “Organismal Systems,” and 18 “Human

Diseases” pathways. In addition to the pathways that appeared in the enrichment analysis,

GSK3B was mapped to the “Immune System” pathways “B cell receptor signaling pathway”

and “Chemokine signaling pathway,” and MYLK was mapped to “Platelet receptor signaling

pathway.” Regarding infectious diseases, GSK3B was mapped to “Amoebiasis,” “Epstein–Barr

virus infection,” “HTLV-I infection,” “Influenza A,” and “Measles.”

In the NHGRI GWAS catalog, five SNPs in 76 haplotype blocks were previously reported

[55–58]. These five SNPs in Cluster 2 were associated with bone mineral density, prostate-spe-

cific antigen levels, hair morphology, and breast cancer (S5 Table). Only one SNP, rs9383951,

which was associated with breast cancer, was mapped to a KEGG pathway through ESR1.

Cluster 3. The ancient haplotype blocks in Cluster 3 included 17 genes (S2 Table). Eight

were previously reported as candidates of positive selection (S4 Table) [26]. SH2B, known to

be associated with celiac disease, is in Cluster 3 and has been reported to be under convergent

evolution in Asia and Europe [26].

Eight genes were mapped to 40 pathway maps, which included one “Genetic Information

Processing,” eight “Environmental Information Processing,” five “Cellular Processes,” eight

“Organismal Systems,” and 18 “Human Diseases” pathways. In addition to the pathways that

appeared in the enrichment analysis, IL10 was mapped to immune system-related pathways

such as the “Jak-STAT signaling pathway,” and immune system-related diseases such as

“Asthma,” “Inflammatory bowel disease (IBD),” “Systemic lupus erythematosus,” “Epstein–

Barr virus infection,” and “Malaria.” IL10 has been reported to be associated with pathogen

diversity and susceptibility to autoimmune diseases [17].

In the NHGRI GWAS catalog, two SNPs in 39 haplotype blocks were previously reported

[59, 60]. We found two SNPs, rs1194289 and rs7101446, in Cluster 3 associated with response

to anti-depressant treatment in major depressive disorder, and economic and political prefer-

ences (S5 Table). These two SNPs were not mapped to any KEGG pathways.

Table 3. (Continued)

Category Pathway Genes* p-value

Cluster 2 Cluster 3 Cluster 4 Cluster 5

Endocrine and metabolic
diseases

Non-alcoholic fatty liver disease (NAFLD) GSK3B
NDUFS6

NDUFA8 0.016

Neurodegenerative diseases Parkinson’s disease NDUFS6 GNAI1,
NDUFA8,

0.013

* Enriched genes in each cluster.

https://doi.org/10.1371/journal.pone.0176530.t003
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Cluster 4. The ancient haplotype blocks in Cluster 4 included nine genes (S2 Table). Two,

ACADM and EML4, were previously reported to be affected by positive selection in Asian

populations (S4 Table) [23, 26].

There were no immune system-related genes in Cluster 4. However, there were some genes

related to metabolism. Two genes, ACADM and EML4, were mapped to six pathways, four of

which were metabolism pathways (S6 Table).

In the NHGRI GWAS catalog, we found only one SNP, rs4949874, in 35 haplotype blocks

that were previously reported [61]. We found that this SNP is associated with blood metabolite

ratio and mapped to four metabolism pathways through the ACADM gene (S5 Table).

Cluster 5. The 160 ancient haplotype blocks in Cluster 5 included 70 genes (S2 Table).

Fourteen genes were positive selection targets (S4 Table).

Thirty genes were mapped to 109 pathway maps, which included 12 “Metabolism,” two

“Genetic Information Processing,” 17 “Environmental Information Processing,” nine “Cellular

Processes,” 28 “Organismal Systems,” and 41 “Human Diseases” pathways. JAK1 was mapped

to some immune system-related pathways such as “Jak-STAT signaling pathway” and immune

system-related disease pathways such as “Epstein–Barr virus infection” and “Hepatitis C.”

In the NHGRI GWAS catalog, 12 SNPs in 160 haplotype blocks were previously reported

[62–72]. Among them, we found that SNP rs10056340 in Cluster 5 was associated with “Aller-

gic sensitization” in the European population (S5 Table).

SNP rs10056340 is in low LD with six nearby variants (rs17513503, rs1837253, rs3806932,

rs1898671, rs2416257, and rs2416257) in people of European ancestry [69]. These variants

were reported to be associated with eosinophil counts and atopic asthma (rs2416257), pediatric

eosinophilic esophagitis (rs3806932), asthma (rs1837253, rs1438673), and allergic rhinitis

(rs17513503 and rs1898671). SNP rs10056340 is considered to represent a new causal variant

for allergic disease in this region [69]. Four genes (SLC25A46, TSLP, WDR36, and CAMK4)

are near or in the LD region that contains rs10056340. SNP rs10056340 is associated with

CAMK4 expression in lymphoblastoid cell lines. CAMK4 was also previously reported to be a

target of positive selection in the European population [23].

Among these four genes, TSLP, WDR36, and CAMK4 were mapped to 12 pathways,

including immune system-related pathways such as “Jak-STAT signaling pathway” and “Cyto-

kine–cytokine receptor interaction.” The other genes mapped to these pathways are IL10

(Cluster 3) and JAK1 (Cluster 5). Both IL10 and JAK1 are mapped near the receptors in the

“Jak-STAT signaling pathway.” These genes were also mapped to “Epstein–Barr virus infec-

tion” pathway as members of the “Jak-STAT signaling pathway.”

Discussion

In this work, we proposed a novel LD-based pipeline to identify ancient positive selection

events from SNP data by hypothesizing that regions positively selected in ancient times con-

tain important functions in the immune system and create variations in common diseases

among populations. Based on this framework, we first identified ancient haplotype blocks, and

then scanned the identified ancient haplotype blocks to check for haplotype frequency varia-

tion among populations. For the scans of ancient haplotype blocks, we used a measure, HHD,

that employs differences in haplotype frequencies among populations.

Ancient haplotype block features

By applying our pipeline to HapMap2 genotypes, we found that a large portion of the ancient

haplotype blocks showed no large differences in LD patterns among the three populations, and

75.32% of the ancient haplotype blocks were in Groups I and III (Figs 5 and 7). Our scan
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revealed that many of the ancient haplotype blocks that showed large differences among the

three populations were regions that have YRI-specific haplotypes (Cluster 5). This is consistent

with the fact that YRI populations are the most distant from the other populations based on

phylogenetic tree analyses [46, 73]. However, we also detected ancient haplotype blocks that

showed larger differences between YRI and CEU populations than between YRI and ASN pop-

ulations (higher scoring blocks in Cluster 2 than Cluster 4).

Previously inferred phylogenetic trees of human populations have shown that YRI and

CEU populations are more closely related than YRI and ASN populations [46, 73]. The result

of YRI and CEU showing large differences may be specific to ancient haplotype blocks. We

need to further examine these results. We also performed functional analyses of extracted hap-

lotype blocks and clusters, and we discuss the results in detail in the following subsections.

Relationship between the top 1% of blocks and Fst

We used Fst to check whether our pipeline detected positive selections, because positive selec-

tions create large allele frequency differences, and Fst measures allele frequency differences

between populations. SNPs affected by positive selection tend to accumulate in the top tail of

Fst distribution [2].

Our result showed that the average value of Fst for the SNPs in the top 1% of blocks was sig-

nificantly larger than that of the top 5% of blocks (p-value< 0.05), which indicates that the top

1% of blocks included more positive selection candidate SNPs. However, in the top 0.5% of

blocks, 54% of the SNPs had Fst values greater than 0.2. We considered there to be little differ-

ence between the top 0.5% and top 1% of blocks based on Fst values greater than 0.2. There-

fore, we chose the top 1% of blocks for the present study.

Although Fst measures population differentiations based on allele frequencies, our score

measures population differentiation based on haplotype frequencies. By focusing on the

ancient haplotype blocks, we tailored our pipeline to detect SNPs in functionally important

haplotype blocks among SNPs with large Fst values. Functions of SNPs and genes detected

through our pipeline are discussed in the following sections.

Genes in the top 1% of blocks enriched in immune system-related
pathways

In the top 1% of the sorted ancient haplotype blocks, we found genes enriched in immune sys-

tem-related pathways and immune system-related disease pathways. We found genes enriched

in immune system pathways such as “T cell receptor signaling pathway,” infectious disease

pathways such as “Hepatitis C,” and endocrine and metabolic disease pathways such as “Non-

alcoholic fatty liver disease (NAFLD).” It is possible that the genes mapped to these pathways

may be associated with the differences between these diseases.

The genes mapped to “Hepatitis C” pathway were identified as having been affected by

ancient selection and associated with differences in incidence rate and treatment response

between the African population and other populations. GSK3B in particular is suggested to be

associated with differences between African and European populations. It may be interesting

to examine the association between the genes mapped to this pathway, such as IL10, and hepa-

titis C in future analyses.

Additionally, IL10, an anti-inflammatory cytokine, maps to “T cell receptor signaling path-

way” and the infectious diseases “Toxoplasmosis,” “Pertussis,” and “Leishmania.” IL10 is a

malaria-related gene [74–77]. IL10 may be affected by ancient positive selection in Africa and

may now affect differences in these infectious diseases through the T cell receptor signaling

pathway.
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Among the genes mapped to “Non-alcoholic fatty liver disease (NAFLD)”, the two genes in

Cluster 2 may be associated with differences in metabolic response between African and Euro-

pean populations. Ancient selection in NDUFA8 may be associated with the low prevalence of

hepatic steatosis in African Americans [50].

Regarding cancers, the mapped genes in Cluster 5 may be affected by ancient positive selec-

tion associated with differences in cancer incidence rates between people of African ancestry

and other populations. GSK3B in Cluster 2 may be affected by ancient positive selection and

positive selection in the European population, which may be especially associated with inci-

dence rate differences of endometrial cancer and basal cell carcinoma between African and

European populations [52–54].

Historical context of genes and SNPs mapped to the pathways related to
known phenotypic variations

The genes and SNPs in the top 1% of regions were also shown to map to immune system path-

ways such as “Jak-STAT signaling pathway” and “Cytokine–cytokine receptor interaction;”

common diseases such as “Prostate cancer,” “Endometrial cancer,” “Renal cell carcinoma,”

and “Basal cell carcinoma;” immune-system-related diseases such as “Asthma” and “Inflam-

matory bowel disease;” and infectious diseases such as “Epstein–Barr virus infection.” These

diseases vary in incidence rates among populations. The functions of the genes and SNPs

mapped to these pathways may be associated with disease incidence variation.

For these genes and SNPs in the top 1% of blocks that were mapped to the pathways, we dis-

cussed the possibilities of positive selections for each cluster based on its each historical sce-

nario summarized in Fig 8. Because the average score between YRI and CEU is higher than the

other two pairs in Cluster 2 (Fig 6), high-scoring regions may show positive selection signa-

tures in CEU in addition to YRI. Similarly, that of Cluster 3 may show signatures of positive

selection in both the CEU and ASN populations in addition to YRI. Cluster 4 may show selec-

tion in the YRI and ASN populations. Cluster 5 shows more differences between YRI and the

other two populations than between CEU and ASN in the ancient haplotype blocks.

The genes in Cluster 2 are assumed to be affected by selection events in Africa and Europe

(Fig 8). The immune system-related pathways where the genes in Cluster 2 were mapped may

have been affected by ancient selection, and associated with differences in incidence rates of

the diseases between YRI and CEU populations. The SNP mapped to the pathways through

ESR1 may also be associated with variations in breast cancer between YRI and CEU popula-

tions. The genes in Cluster 3 are assumed to be affected by selection in Europe and Asia (Fig

8). Our results indicate that IL10 was affected by positive selection in ancient times and has dif-

ferent haplotype frequencies between CEU and ASN populations. In Cluster 4, there was a

gene related to metabolism pathways. Our network model also explains the genes and SNPs in

Cluster 4 as being affected by ancient selection and selection in Asia (Fig 8). For the network

of Cluster 5, we consider two patterns, (a) and (b), based on when the mutations were intro-

duced (Fig 8). The functions of the genes mapped to the immune system-related pathways

through the GWAS catalog may be associated with differences in allergic sensitization between

populations.

Future work

In future analyses, we need to use more varied genome annotation information. In this analy-

sis, we only used genes where SNPs existed for functional annotation. For example, we should

check SNPs within 1 Mb of genes. We should also check coding regions, noncoding RNA

genes, tRNAs, rRNAs, and microRNAs in future analyses.
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Furthermore, we should improve our pipeline, especially the step for identifying ancient

haplotype blocks, to produce more accurate identification and so that much larger data sets

can be used. The scoring step should also be discussed so other statistical models can be intro-

duced. Additionally, we will apply our pipeline to the genomes of species used as food, which

will advance our understanding of human history.
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