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Abstract

Long non-coding RNAs (lncRNAs) are associated to a plethora of cellular functions, most of which require the interaction
with one or more RNA-binding proteins (RBPs); similarly, RBPs are often able to bind a large number of different RNAs. The
currently available knowledge is already drawing an intricate network of interactions, whose deregulation is frequently
associated to pathological states. Several different techniques were developed in the past years to obtain protein–RNA bind-
ing data in a high-throughput fashion. In parallel, in silico inference methods were developed for the accurate computational
prediction of the interaction of RBP–lncRNA pairs. The field is growing rapidly, and it is foreseeable that in the near future,
the protein–lncRNA interaction network will rise, offering essential clues for a better understanding of lncRNA cellular
mechanisms and their disease-associated perturbations.
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Introduction

Protein–RNA interactions are key aspects of many cellular proc-
esses that go beyond the already established steps of the mRNA
production and usage as information carriers, e.g. splicing, poly-
adenylation, transport, stability and translation [1–4]. A growing
knowledge of RNA-binding proteins (RBPs) targets is shifting the
attention towards non-coding RNAs, from RNAs involved in the
translation machinery and its regulation (rRNAs, tRNAs, small
interfering RNAs and miRNAs) to the large and heterogeneous
class of long non-coding RNAs (lncRNAs).

Only a small number of lncRNAs have been functionally
well-characterized. However, they are involved in a wide range
of biological functions through diverse molecular mechanisms
often including the interaction with one or more protein part-
ners [5]. Some of them remain linked to their transcription site,
and interact with proteins to regulate the expression of genes in
cis [6]. Others function as molecular decoys, binding to specific
transcription factors to prevent their association with DNA [7].

LncRNAs can also interact with chromatin-modifying com-
plexes and lead them to their genomic target in trans [8]. They
can function as sponges for miRNA [9] or bind to enhancers and
help them in their activity, for example by promoting the for-
mation of chromatin loops and the recruitment of remodelling
complexes [10]. Moreover, they can bind antisense mRNAs and
regulate them post-transcriptionally [11], or function as scaffold
for the assembly of macromolecular complexes [12].

According to the pervasiveness of protein–RNA interactions,
many reports underline how their perturbation is linked to
pathologies, including autoimmune and metabolic diseases,
neurological and muscular disorders and cancer [2, 13]. Many
proteins implicated in different cancer stages, such as DNA
methyltransferases (DNMTs), heterochromatin protein 1, MOF,
MSL, DDP1, Polycomb-group and Trithorax-group proteins, are
RBPs that are able to bind lncRNAs [14–16]. Expression levels of
RBPs are significantly fluctuating in tumour samples, and they
might provide clues for prognosis [17]. HOTAIR, one of the first
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known lncRNAs and the first one for which a relation with can-
cer was demonstrated, is deregulated in a number of tumours
including breast cancer and hepatocellular carcinoma, and par-
ticipates in chromatin modification complexes by the inter-
action with the polycomb group protein PRC2, which is a
histone methyltransferase, and with LSD1, which is a histone
demethylase [18, 19]. MALAT1 (metastasis-associated lung
adenocarcinoma transcript 1) is an lncRNA that is up-regulated
in breast, prostate, colon, liver and uterus cancers, and has been
shown to interact with members of the SR protein family of
splicing regulators [20]. CCND1/Cyclin D1 is an lncRNA which is
transcribed from the promoter region of the Cyclin D1 gene; it is
a cell cycle regulator involved in many cancer types, that can
interact with the TLS protein, which is a sensor of DNA damage
[21]. ANRIL is an antisense lncRNA transcribed from the INK4
locus that is up-regulated in prostate cancer. ANRIL can interact
with the chromobox 7 (CBX7) protein, which is part of the poly-
comb group PRC1 protein complex [22]. Several other examples
can be found in recent reviews [23–27].

The paucity of information that we have about the functions
of lncRNAs, and even more, about the specific sequences
involved in carrying out these functions, prevents us to better
rationalize their involvement in cellular processes and in dis-
ease. On the other hand, experimental and computational tech-
niques are available to analyse, in high-throughput settings and
at high resolution, protein–RNA interactions, allowing the iden-
tification of binding partners, binding sites and interaction de-
terminants. While these methods were mostly applied for
protein-coding RNAs (i.e. mRNA) analysis, they can all in prin-
ciple be used for lncRNAs as well, and a growing amount of
data depicting protein–lncRNA interactions is becoming avail-
able, shedding light to this heterogeneous class of cellular
regulators.

Detection of protein–lncRNA interactions

A number of methods to uncover the interaction between pro-
teins and RNAs were developed in the past decades. The first
proposed methods were low-throughput procedures able to
identify only one or few RNAs linked to a protein: these include
the RNA electrophoretic mobility shift assay [28], RNA pull-
down assay [29], oligonucleotide-targeted RNase H protection
assay [30] and FISH co-localization [31].

More recent methods provide high-throughput transcrip-
tome- or proteome-wide overviews of protein–RNA binding (the
general classification of these methods followed in this review
is shown schematically in Table 1). This is of particular import-
ance, as it appears that relationships between proteins and
RNAs are many-to-many, meaning that each RBP is able to bind
several RNAs, and a given RNA often interacts with more than
one RBP [32]. These methods can be divided in protein-focused
and RNA-focused [33, 34]. The goal of protein-focused
approaches is the identification of RNAs bound by a protein of
interest. These methods can be further classified in in vitro and
in vivo [35]. In in vitro technologies, RNA libraries are tested
against a protein, and high-affinity RNAs are isolated after
rounds of stringent selection. In in vivo methods, RNAs bound to
the protein of interest in a sample are pulled down using vari-
ants of immunoprecipitation techniques. In RNA-focused
approaches, the goal is the opposite: to identify all proteins
bound to an RNA of interest. Finally, in silico inference can be
used to predict interactions, usually starting from experimental
evidence used to train interaction models.

Protein-focused in vitro approaches

In vitro approaches provide insights on binding preferences of
target proteins by the isolation of RNAs, generally called
aptamers, from synthetic libraries showing affinity for the RBP
of interest (Figure 1). In the SELEX (Systematic Evolution of
Ligands by EXponential enrichment) technology [36, 37], RNAs
having high affinity for a purified protein are selected from a
random RNA oligonucleotide library in a number of cycles of se-
lection and PCR amplification, and then cloned and sequenced
by the Sanger method. Extensions of SELEX to high-throughput
sequencing, e.g. HT-SELEX [38], SEQRS [39] and RAPID-SELEX
[40], require less (sometimes only one) selection rounds and as
such are able to identify a larger number of bound RNAs having
a wider affinity spectrum. Another in vitro method is
RNAcompete [41] that uses smaller RNA libraries whose design
is aimed at creating short (often seven nucleotides long) se-
quences embedded in a single-stranded or weakly paired con-
text. Using a microarray, the enrichment of each
oligonucleotide in the library after selection can be quantita-
tively measured. An additional recent variant is RNA Bind-n-
Seq (RBNS) [42], in which RNAs from a random library bound to
an RBP of interest are retro-transcribed and deep-sequenced.
The major novelties of the method consist of the usage of differ-
ent RBP concentrations in the selection step (allowing the statis-
tical modelling and estimation of the dissociation constants
between RBP and bound RNA), and on using libraries composed
of longer RNAs (40 bp) than in other similar methods (that
allows a more reliable RNA fold prediction and a better identifi-
cation of the binding structural determinants). Motifs identified
by RBNS for a number of RBPs recapitulate well those identified
by in vivo methods such as iCLIP (described in the next section)

Table 1. Classification of methods for the depiction of protein–
lncRNA interactions followed in this review

Class Sub-class Method

Protein-focused In vitro SELEX-based (HT-SELEX,
SEQRS, RAPID-SELEX)

RNAcompete
RNA Bin-n-Seq
RNA-MaP

In vivo RIP-Chip
RIP-Seq
CLIP (HITS-CLIP,

PAR-CLIP, iCLIP)
CRAC

RNA-focused RNA-based cap-
ture and MS

MS2 trapping
SILAC-based

Selection on pro-
tein libraries

Phage display
Protein arrays

In silico RPISeq
catRAPID
Wang’s method
lncPro
Oli suite
RPI-Pred
PRIPU

Other RNA interaction
with
chromatin

ChIRP
CHART
RAP

RNA–RNA
interaction

CLASH
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[42]. A technique (RNA-MaP) using an Illumina sequencer was
used to accurately measure the binding affinity between a pro-
tein (the bacteriophage MS2 coat protein) and a large library of
variants of the hairpin that this protein naturally binds [43], by
converting the sequencer flow cell into a high-density RNA
array. This method holds promises for the detailed analysis of
the kinetics of RNA binding, and the parallel analysis of vari-
ations of a given RNA motif allows the identification of the se-
quence and structural contribution to the binding affinity.
Finally, recent developments of the SELEX technology allow the
usage of genomic or transcriptomic fragments instead of syn-
thetic RNA libraries, and they have been applied for the analysis
of protein–RNA binding [44–46].

The RNA sequences collected by these in vitro methods do
not necessarily correspond to known RNAs; consequently, motif
finding procedures should be used to determine recognition

determinants and to extend them to known RNAs. Motif finding
algorithms such as MEME [47] or GLAM2 [48] are often used to
identify primary sequence preferences of binding. Other meth-
ods take advantage of structural properties of the identified
RNAs. MEMERIS [49] is an extension of the MEME algorithm that
incorporates RNA structure predictions to identify single-
stranded motifs, and it has been successfully applied to SELEX
data. Similarly, Aptamotif [50] uses an ensemble of suboptimal
RNA folds to identify recurrent single-stranded regions in a col-
lection of aptamers.

The inherent limit of all techniques based on random libra-
ries is that the detection of in vitro RNA binding ability for a
given target protein does not necessarily prove that the protein
is an RBP. Even if selection cycles are performed using stringent
conditions, a non-RBP might show affinity for some RNAs, for
example because these RNAs are mimicking its natural ligands.
Detection of biologically non-relevant interactions can be
avoided only by using RNA libraries derived from cellular tran-
scriptomes, or by using genomic fragments. Besides, even if the
target protein is a bona fide RBP, the in vitro efficient binding of
some RNAs in the library does not necessarily reflect the in vivo
possibility of interaction, where the specific cellular context
might affect site availability; the secondary and tertiary struc-
ture of the RNA binding partner might dictate which sites are
available and which are not; moreover, binding of sites with
lower affinities might be preferred in vivo to increase the ability
of modulation. Nevertheless, motifs identified in vitro for some
RBPs closely resemble those retrieved in in vivo studies, validat-
ing the usefulness of these methods [20].

As of today, in vitro methods have not been extensively used
for investigation of ncRNA binding by proteins, for which in vivo
methods, described later, are becoming prevalent, yet a number
of examples can be found; for example, Wu and coworkers [51]
screened a nuclear RNA repertoire of a melanoma cell line for
the ability of binding to the polypyrimidine tract-binding pro-
tein-associated splicing factor, identifying a previously unre-
ported lncRNA (Llme23), and discussed its role in maintaining
the malignant properties of the melanoma cells. In [52], binding
partners of the Escherichia coli global regulator protein Hfq were
screened through genomic SELEX coupled with high-through-
put sequencing, identifying a large number of antisense
ncRNAs regulating gene expression via binding in cis. Public
data sets are also available from which RBP–lncRNA inter-
actions detected in vitro can be retrieved. RBPDB [53] is a data-
base of binding determinants for a collection of RBPs, some of
which can bind lncRNAs. Most data derive from SELEX
approaches, but also a number of in vivo experiments are
included. In a comprehensive analysis of the human RNA-bind-
ing proteome, RNAcompete was used to elucidate binding pref-
erences for a large collection of RBPs, including some proteins
known to bind also lncRNAs [54].

Protein-focused in vivo approaches

The possibility of pulling down an RBP with a specific antibody
is the basis of the in vivo approaches (Figure 2). RIP-Chip [55] and
RIP-Seq [56] are high-throughput antibody-based techniques in
which bound RNA is obtained through immunoprecipitation of
its protein partner; then, the identification of the bound tran-
scripts is performed via microarray (RIP-chip) or RNA-Seq (RIP-
Seq). Such methods allow the identification of bound tran-
scripts, but do not provide direct information about the localiza-
tion of the binding site. While most RIP-Chip experiments were
performed not specifically for the analysis of lncRNA binding,

Figure 1. Schematic description of the in vitro protein-focused approaches. (A)

Protein baits (coloured in red) are immobilized to a support (shown here as a

grey bar), and exposed to RNAs from a library or from transcriptomic fragments;

(B) after cycles of selection and amplification, RNAs showing affinity towards

the immobilized protein can be isolated and sequenced. A colour version of this

figure is available at BIB online: http://bib.oxfordjournals.org.
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some panels can nevertheless provide this kind of information,
depending on the array design. For example, the platform used
to detect ELAVL1 RNA interactors [57] is especially rich in
lncRNAs, as shown by Cao and coworkers [58].

The Cross-Linking ImmunoPrecipitation (CLIP) [59] proced-
ure takes advantage of the ability of 254 nm ultraviolet (UV)
light to induce the in vivo formation of covalent bonds between
RNA nucleotides and proximal RBP amino acids at the binding
site; then, immunoprecipitation allows for the isolation of the
protein–RNA complex of interest. By combining CLIP with high-
throughput sequencing (HITS-CLIP), it is possible to identify
transcriptome-wide the protein-bound RNAs [60]. The UV-
induced covalent bond being irreversible, the cross-linked RBP
is digested with proteinase, which might not completely detach
the cross-linked amino acids from the RNA. It has been
observed that, during the conversion to cDNA, these amino
acids can create an obstacle for the reverse transcriptase,
leading to the introduction of a mutation (often a deletion, but it
depends on the protein) at the cross-linking site (cross-linking
induced mutations, or CIMS) [61]. These diagnostic mutations
can be used to map protein–RNA interactions at single-
nucleotide resolution. PAR-CLIP is a variant of HITS-CLIP, in
which living cells are provided with photoreactive

ribonucleoside analogues, such as 4-thiouridine (4-SU) and 6-
thioguanosine (6-SG), that are incorporated into nascent tran-
scripts [62]. This allows the use of UV light of 365 nm for a more
efficient cross-linking; in addition, the cross-linking induces T-
>C (4-SU) or G->A (6-SG) transitions, which can be used to iden-
tify the precise position of cross-linking and to better discrimin-
ate between cross-linked RNAs and abundant cellular RNAs.
This notwithstanding, PAR-CLIP technology has a number of
drawbacks, for example it is limited to cultured cells, and the
nucleoside analogue uptake can be in some cases not efficient.
Another variant of the CLIP strategy is the individual-nucleotide
resolution CLIP (iCLIP), which is based on the observation that
the reverse transcriptase often truncates prematurely cDNAs at
the cross-linking nucleotide, and hence allows mapping the
binding sites with great accuracy [63]. A protein-focused
method not based on antibodies directed towards the RBPs is
the cross-linking and cDNA analysis (CRAC) [64], in which RBPs
are tagged to allow tandem affinity purification. Complexes are
stabilized in vivo by UV irradiation, and, after immobilized metal
ion affinity chromatography and proteinase treatment, isolated
RNAs are amplified and sequenced.

Analysis of protein–RNA interaction raw data produced in
high-throughput settings requires complex bioinformatics
procedures that borrow approaches and tools from the investi-
gation of NGS data and particularly from other immunoprecipi-
tation procedures aimed at protein-bound genomic DNA
exploration, such as ChIP-Seq [65]. The required pipelines can
be summarized in three major steps: (i) mapping the reads on
the reference genome/transcriptome, (ii) identification of clus-
ters of reads indicating putative RNA targets and binding sites
and (iii) inference of the interaction determinants. As with all
NGS data, particular care must be dedicated to read mapping to
the reference genome, using an algorithm able to handle reads
spanning exon-exon junctions that will align to the genome in
two separate fragments. Alternatively, reads can be mapped to
the transcriptome. A beneficial procedure for HITS-CLIP and
PAR-CLIP experiments is the identification and collapse of du-
plicate reads, i.e. reads that have the same mapping coordinates
(including strand) and are likely to represent artifacts intro-
duced by preferential PCR amplification of particular sequences
[66]. Read mapping must also take into account the presence of
cross-linking induced mutations and distinguish them from
sequencing errors or genomic variations between the sample
donor genome and the reference.

The critical step is the identification of genomic regions
encoding for the RBP interaction sites, which can be achieved at
different degrees of resolution, from a coarse-grained target
RNA inference to a single-nucleotide level binding site defin-
ition. A number of caveats intrinsic for the applied technologies
can have a profound effect on the data analysis outcome.
Background noise can arise in several ways and must be taken
into account. Antibody cross-reactivity with a protein different
from the intended RBP, or RNAs unspecifically pulled down can
contaminate the sample. The usage of control data can be
highly beneficial. Performing a CLIP-Seq or RIP-Seq run using an
antibody targeting a protein known to be unable to bind RNA
can provide an overview of the unspecific RNA pull-down, while
an RNA-Seq run can give estimates of the transcripts abun-
dance. Nevertheless, not all the currently available analysis pro-
cedures are able to take advantage of such supplementary data.

The identification of the bound RNAs and of the RNA region
interacting with the examined RBP was performed initially sim-
ply seeking read clusters by setting ad hoc cutoffs defining the
extension of the minimum read overlap and the cluster

Figure 2. Schematic description of the in vivo protein-focused approaches.

Protein-RNA complexes in the cells of a sample (A), either stabilized by cross-

linking or not, are isolated after cell lysis by immunoprecipitation using an anti-

body specific for an RBP, here shown in blue; the light blue dot indicates the

solid-phase support for the immunoprecipitation, often beads of various mater-

ials (not shown in scale); (B) the isolated RNAs are then sequenced. A colour ver-

sion of this figure is available at BIB online: http://bib.oxfordjournals.org.
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amplitude. Verifying the presence of a sufficient number of
CIMS or PAR-CLIP transitions in each cluster reduced the num-
ber of false hits. A number of sophisticated algorithms have
been developed, e.g. PARalyzer [67], Piranha [68], wavClusteR
[69], RIPSeeker [70], MiClip [71], PIPE-CLIP [72] and the Pyicoclip
module of the Pyicoteo toolkit (previously called Pyicos) [73].
While different in implementation, all these procedures can be
summarized in the same two steps: (i) clusters identification
from the reads genomic alignment; and (ii) identification and
ranking of binding sites within enriched clusters using, when-
ever possible, diagnostic mutations to prioritize more reliable
sites. Table 2 reports a list of methods for read cluster identifica-
tion, specifying the experimental protocols the method is de-
signed for, the input data format and the availability (as stand-
alone software or through a Web-based interface).

Genomic coordinates of genes, transcripts and exons allow
linking the identified clusters to the bound transcript identity.
Normally used gene-sets from common public repositories
might not contain the most updated annotations of lncRNAs,
and specialized data sets can provide more recent and exhaust-
ive collections, for example the GENCODE lncRNA catalogue
[74], NONCODE [75] or LNCipedia [76]. Other useful resources are
the lncRNAdb of functionally annotated lncRNAs [77] and the
NRED database of lncRNA expression [78].

The extraction of the binding determinants from the list of
identified binding sites is a challenging step for which no tool is
currently able to model accurately all possible cases. The reason
is that RBP–RNA binding is heterogeneous in nature and differ-
ent RBP domains are governed by different rules. Generally, se-
quence-level preferences are often found, allowing the
definition of sequence motifs. Tools such as MEME [47] or
cERMIT [79] have been successfully applied to the analysis of
CLIP-Seq data. Yet, these sequence motifs often must be
embedded in a specific secondary structure context [49, 80, 81].
In other cases, RNA secondary structure dictates the inter-
action: proteins tend to recognize complex secondary structure
elements such as stem-loops and bulges [82]. A more extensive
review of the influence of RNA structural constraints in the con-
text of motif discovery at RBP binding sites can be found in [83].
The already mentioned MEMERIS [49], CMfinder [84], RNApromo
[85], StructRED [86], the algorithm by Li and collaborators [87],
RNAcontext and RBPmotif [88, 89], GraphProt [90] and Zagros
[91] are all tools that use, with different strategies and to differ-
ent extent, secondary structure information to determine more
specific binding motifs.

The application of these technologies revealed the some-
times unexpected lncRNA-binding ability of several RBPs. A
HITS-Clip study [92] revealed novel roles for the Microprocessor
complex in the maturation and expression control of lncRNAs.
Several lncRNAs were identified in PAR-CLIP analysis of binding
ability of AUF1 [93], a protein linked to ageing and cancer. TDP-
43 is a nuclear RBP involved in amyotrophic lateral sclerosis;
iCLIP analysis [94] revealed the TDP-43 binding with the
MALAT1 and NEAT1 lncRNAs. A CRAC-based approach was
used to depict the binding ability of a panel of 13 Saccharomyces
cerevisiae proteins involved in different steps of RNA maturation
[95], highlighting differences and similarities between the mat-
uration pathways of lncRNAs and mRNAs in yeast. JARID2 is a
DNA-binding protein that acts as a transcriptional repressor by
interacting with the PRC2 complex; PAR-Clip analysis [96] re-
vealed the ability of JARID2 in binding lncRNAs, and that these
interactions are essential for the recruitment of PRC2 to the
chromatin. RIP-Seq was used in [97] to identify a ncRNA binding
to DNA (cytosine-5)-methyltransferase 1 (DNMT1), which is a
regulator of patterns of cytosine methylation. Interaction with
this ncRNA prevents the methylation of the locus from which
the ncRNA is transcribed. The authors identified several other
possible mechanisms of this nature, and proposed this as a
widespread methylation regulation managed by ncRNAs.

RNA-focused approaches

In this class of methods, an RNA of interest is purified and used
as bait to isolate RBPs bound to it, and then identified using
mass spectrometry (MS), protein arrays or other techniques
(Figure 3). In RNA-focused in vitro methods, the RNA of interest
is immobilized to a solid support, and then it is exposed to pro-
teins from a cellular lysate or from protein libraries generated
with various means and purposes. After washing and elution,
proteins bound to the immobilized RNA are identified by MS. In
in vivo methods, cross-linking between proteins and RNAs is
induced by UV or formaldehyde to stabilize physiological inter-
actions, then cells are lysed and the RNA of interest is captured
and its bound proteins detected. The various experimental
strategies and their technical aspects for both general
approaches have been recently reviewed [33].

A number of applications of RNA-focused strategies for the
analysis of the lncRNA-bound proteome can be found in the lit-
erature. In 2012, Gong et al. described the usage of a stem-loop
structure of viral origin, inserted at the 30 end of the lncRNA of
interest, which can be bound by the MS2 bacteriophage coat
protein [98]. A vector carrying the lncRNA with the inserted
stem-loops in multiple copies, and a second one carrying the
coat protein were transfected into cultured cells, which were
then treated with formaldehyde. An antibody was used to
immunoprecipitate the coat protein, pulling down the lncRNA
and its bound RBPs. This strategy was used in [99] to identify a
ribonucleoproteic complex involving the translational regula-
tory lncRNA and to elucidate its role in metastasis progression.
SILAC (stable isotope labelling with amino acids in cell culture)
quantitative MS was used to identify interactors of the telo-
meric repeat-containing ncRNA TERRA [100]. Oligonucleotides
containing TERRA repeats, and shuffled control repeats were
synthesized and tagged with biotin at the 30 end, and incubated
with cellular extracts. SILAC allowed the identification of 115
enriched proteins in TERRA repeats versus the control, includ-
ing proteins involved in chromatin remodelling, DNA replica-
tion, RNA degradation, transcription and translation. Other
recent findings include the binding of the SPRY4-IT1 lncRNA

Table 2. Methods for read cluster identification in CLIP or RIP-Seq
experiments

Method Data Input format Implementation

PARalyzer PAR-CLIP SAM or BAM Stand-alone
Pyicoclip HITS-CLIP,

PAR-CLIP, iCLIP
SAM, BAM or

BED
Stand-alone

Piranha HITS-CLIP, PAR-
CLIP, iCLIP,
RIP-Seq

BAM or BED Stand-alone

wavClusteR PAR-CLIP BAM Stand-alone
RIPSeeker RIP-Seq SAM, BAM or

BED
Stand-alone

PIPE-CLIP HITS-CLIP, PAR-
CLIP, iCLIP

SAM or BAM Web-based

MiClip HITS-CLIP, PAR-
CLIP

SAM or BAM Stand-alone,
Web-based
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and lipin-2 in melanoma cells, and its role in apoptosis regula-
tion [101], and the interaction of the HULC lncRNA with the
IGF2BP protein family and its relationship with translational
control in hepatocellular carcinoma [102].

The RNA bait is not necessarily limited to one specific RNA,
but can also represent an entire class of RNAs. In [103] UV
cross-linking and oligo(dT) affinity, purification followed by
quantitative MS was used to identify the entire polyadenylated
RNA-bound proteome in HeLa cells revealing around 860 pro-
teins, a large number of which do not seem to contain a recog-
nizable RNA-binding domain. Similarly, Baltz and collaborators
[104] analysed the repertoire of RBPs bound to polyadenylated
RNAs in an embryonic kidney cell line, while Kwon and cow-
orkers [105] delineated the RNA-bound proteome in mouse em-
bryonic stem cells. In all these cases, several proteins with no

known RNA binding ability were retrieved, suggesting that pro-
tein–RNA interactions can go well beyond those mediated by
known RNA-binding domains, and revealing the intricacies of
the protein–RNA network. As many lncRNAs are polyadeny-
lated, these studies are not limited to mRNAs.

While powerful, these techniques are still technically chal-
lenging [33, 34]. For in vivo procedures especially, the amount of
purified proteins might not be sufficient for MS analysis.
For this reason, most examples found in the literature used
RNAs having high expression levels, which hinders their appli-
cation to lncRNAs; cross-linking-based strategies can neverthe-
less extend the identification to less abundant and/or more
transient interactions.

In silico methods

The growing wealth of public data describing protein–RNA bind-
ing allows the training of computational models that can be
used for inference of novel interactions. Most of these methods
were developed primarily for the prediction of interaction be-
tween proteins and lncRNAs, the assumption being that the
binding determinants might be similar regardless of the RNA
type. Hence, in silico methods can be of primary importance for
the characterization of lncRNAs, for which experimental data
are less abundant and often technically challenging.

Most algorithms use as training examples, the three-dimen-
sional structures of proteins bound with an RNA or RNA frag-
ment mined from the PDB [106] from which a number of
physicochemical features (e.g. propensities for hydrogen bond-
ing, van der Waals interaction and secondary structure) can be
extracted to describe each protein–RNA pair. Feature vectors of
known interactions are compared to those computed on control
sets of non-interacting pairs, and statistical methods, machine
learning algorithms or ad hoc scoring systems are used for eval-
uating the binding potential of a novel pair. RPISeq [107],
catRAPID [108], the method described in Wang et al. [109], lncPro
[110] and RPI-Pred [111] all follows these lines. The recent PRIPU
method [112] differs from the others by using statistical learning
methods trained on only positive examples. The Oli suite [113]
trains on high-throughput evidence including PAR-CLIP experi-
ments, and used features include sequence composition, pre-
dicted secondary structure and presence of motifs.

The main concern of computational methods is the usage of
descriptors that can be easily applied to cases that are not pre-
sent in the training set. For example, one of the first methods
for computational prediction of RNA–protein interactions [114]
used features, such as gene ontology terms, protein localization
and genetic interactions, that might not be available or be diffi-
cult to compute for some RNAs or proteins. In fact, the perform-
ance of the method on RBPs not included in the training set was
reported as very variable.

Many methods were tested on protein–lncRNA interactions.
catRAPID reached 89% prediction accuracy on the NPInter [115]
data set. The RPISeq-predicted interaction between linc-UBC1
RNA and PRC2 was experimentally validated [116]. Testing
lncPro on NPInter provided good inference accuracy, and the ap-
plication of lncPro on the entire human proteome against a col-
lection of lncRNAs retrieved a significant enrichment in nuclear
proteins, coherently with the observation that many lncRNAs
reside in the nucleus [117]. The method of Wang and coworkers
was used on a data set of Caenorhabditis elegans ncRNAs and pro-
teins, confirming some of their predictions in pull-down experi-
ments [109].

Figure 3. Schematic description of the in vitro RNA-focused approaches. (A) RNA

baits are immobilized to a support (shown here as a grey bar), and exposed to pro-

teins (coloured in red) contained in a cellular lysate or from a protein library; (B)

after washing and elution, proteins showing affinity towards the immobilized

RNAs can be isolated, and then identified (e.g. by mass spectrometry). A colour

version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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Remarks and perspectives

The growing interest in the cellular role of protein–lncRNA
interactions is reflected by the rising availability of data. As
described in this review, a large and growing number of meth-
ods are available, each providing unique features but also some
drawbacks (as summarized in Table 3). A growing wealth of
CLIP-Seq and RIP-Seq data sets is hosted in databases such as
Gene Expression Omnibus (GEO) [118] or ArrayExpress [119]. The
number of CLIP-Seq data sets in GEO alone is reported at more
than 400 [120]. Often the original purpose of the experiment was
not focused on the detection of lncRNAs; however, these tran-
scriptome-wide techniques can capture this class of RNAs as
well; nevertheless, a re-analysis might be needed to fully exploit
public data sets to this purpose, for example providing to the
analysis algorithms the quickly changing lncRNA collections. A
number of databases such as CLIPZ [121], starBase [122], doRiNA
[120] and NPInter [115] offer protein–RNA interactions retrieved
from the literature or by the analysis of public data. CLIPZ, in
addition to providing access to some CLIP-Seq experiments,
also offers an analysis environment for user-uploaded data
sets. NPInter is a manually curated database that stores more
than 200,000 functional interactions (i.e. not necessarily phys-
ical interactions) extracted from the literature. StarBase focuses
on CLIP-Seq data, reporting in the v2.0 interaction results from
108 experiments; it also provides data for miRNA binding to
mRNAs and lncRNAs, and has an ample section dedicated to
cancer samples. DoRiNA includes 136 CLIP-Seq data sets, and
also known and predicted interactions with miRNAs. Another
resource, RBPmap [123], contains more than 100 RBP-binding
motifs extracted from the literature and represented as a consen-
sus sequence or a position-specific scoring matrix. Given as in-
put one or more RNA sequences, the server estimates binding
by an RBP against a background model.

Taken together, these data are paving the road for a compre-
hensive reconstruction of the protein–lncRNA interaction net-
work, and the first integrative studies where protein–RNA
binding data are augmented with genome-wide information of
different kinds are appearing [124, 125]. The ChIPBase database
[126] is one example of integrative resource in which regulatory
mechanisms formed between lncRNAs, microRNAs and tran-
scription factors are reconstructed by a large-scale analysis of
ChIP-Seq data sets. In a recent work [127], the StarBase authors
integrated protein–lncRNA interactions with expression data in
several cancer types and single-nucleotide polymorphisms, re-
constructing regulatory circuits and how they might be affected
by mutations in pathological conditions.

As illustrated in this review, many experimental strategies
are available, all having advantages and drawbacks with respect
to the others. Being based on oftentimes radically different
features, different techniques can allow looking at the same
problem from different angles. A comparative PAR-CLIP and
SILAC-based RNA pull-down study on four different RBPs [128]
highlighted how the findings that are common to the two
approaches were in very good agreement, while each method
provided unique evidence, and they can, therefore, complement
each other. Nevertheless, it is still unclear how many unspecific
interactions are detected by all the presented techniques, as
well as how to better define the biological meaning of the de-
tected interactions; post-processing procedures and comple-
mentation with evidence of different nature can reduce the
number of false-positive hits and help in the delineation of
regulatory mechanisms. CLIP-Seq and RIP-Seq experiments are
often accompanied by a standard RNA-Seq analysis of gene ex-
pression levels to filter by those genes actually expressed in the
considered sample. Methods that depict chromatin states and
epigenetic regulations might also help in drawing a more com-
plete and accurate picture of the regulatory circuits created by
the interactions between RBPs and lncRNAs. Finally, the role of
RNA editing and RNA methylation in promoting and/or inhibit-
ing the interaction with proteins is still unclear, and could be
explored by integrative analyses.

Other techniques have been developed to provide high-
throughput functional characterization of lncRNAs not directly
focused on the interaction with RBPs. A growing interest on the
lncRNA ability of interacting with chromatin has led to the de-
velopment of methods for depicting the genomic regions to
which a given ncRNA is bound, either binding the genomic DNA
or through interaction with chromatin proteic components.
Chromatin Isolation by RNA Purification (ChIRP) [129], Capture
hybridization analysis of RNA targets (CHART) [130] and RNA
antisense purification (RAP) [131] provide high-throughput
ways to identify genomic binding sites of a given lncRNA, and
can offer detailed perspective on how lncRNA can form ribonu-
cleoproteic complexes at specific loci to exert regulative roles. In
the ChIRP technique, after cross-linking and sonication, a num-
ber of biotinylated DNA oligonucleotides antisense to a target
RNA are hybridized to chromatin fragments carrying that RNA,
and then recovered using beads coated with streptavidin.
Genomic regions bound to the target RNA can be identified by
high-throughput DNA sequencing, as well as the proteins
bound to either the RNA or the genomic DNA by MS. The RAP
and CHART methods are similar to ChIRP, differing mostly in

Table 3. Features and drawbacks of protein-focused and RNA-focused approaches

Class of methods Features Drawbacks

Protein-focused
in vitro
methods

Not dependent on which RNAs are expressed in a sam-
ple; can be applied to organisms for which no genome
assembly is available; some variants allow the esti-
mation of the binding affinity.

The identified binding sequences might not correspond
to any known RNAs; favour RNAs binding with high
affinity.

Protein-focused
in vivo
methods

Permit the analysis of entire transcriptomes; permit to
study interactions in physiological conditions; can
retrieve low-affinity binding; some variants allow the
identification of the binding sites at single-nucleotide
resolution.

Depend on a good reference genome assembly; can only
detect binding to RNAs expressed in the analysed
sample; can suffer from some biases introduced by
the cross-linking and sequencing strategies; the bio-
informatics analysis is relatively complex; it is diffi-
cult to estimate binding affinities.

RNA-focused
methods

Permit the analysis of entire proteomes; can be applied
to entire RNA classes (e.g. all the polyadenylated
RNAs).

Technically more challenging; the throughput is lower
than protein-focused methods; favour relatively
abundant proteins.
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the design strategy of the antisense oligonucleotides and in the
cross-linking protocols. While these methods are offering im-
portant evidence for the involvement of lncRNAs in gene ex-
pression regulation and chromatin remodelling [132], it should
be noted that they cannot prove direct lncRNA–protein binding.
Finally, the cross-linking, ligation and sequencing of hybrids
technique [133] (CLASH) was developed for the detection of RNA–
RNA interactions. It was applied up to now for the high-through-
put depiction of the miRNA–target RNA interaction mediated by
the AGO protein, but it can in principle be extended to other
RNA–RNA interactions involving other proteins [134].

A number of technical issues can limit current technolo-
gies, and overcoming them will afford more detailed and ac-
curate views. For example, CLIP-based technologies currently
provide only a qualitative view of protein–RNA interactions.
To move towards quantitative estimates, specifically de-
veloped normalization procedures need to be introduced that
should take into account transcript expression levels, cross-
linking efficiency and all potential biases introduced in the
various steps of these procedures. Another overlooked issue
concerns the RNA structural features involved in the RBP
interaction. While the structural constraints for RNA binding
by an RBP can vary or be unessential, in many cases it is
known that the recognized binding motif must have specific
structural characteristics. Current methods for binding site
identification in CLIP-Seq usually do not take advantage of
these potential features, which can reduce the number of
false hits. Structural constraints are currently introduced
only in the successive motif identification steps, while they
could be beneficial also throughout the whole pipelines. This
is not a trivial task given the inherent complexity of handling
efficiently the RNA structure representations. Novel RNA sec-
ondary structure encodings could be beneficial for the inte-
gration of structural information in the current pipelines
[135]. In addition, multiple proteins can bind the same RNAs
in cooperative or competitive ways, and taking into account
these aspects can give a more realistic view of RBP binding in
the crowded cellular environment.

Finally, it is not clear whether well-known RBP families com-
pose the lncRNA-bound proteome, or if still uncharacterized
protein domains and architectures are involved. As discussed
previously, detection of proteins bound to the whole set of poly-
adenylated RNAs revealed many proteins escaping the usual
definitions of RBPs. RNA-focused strategies can offer an un-
biased way to explore these interactions. Unfortunately, as of
today, these approaches are still challenging, especially for
lncRNAs that have low expression levels.

Key Points

• Protein–RNA interactions are keys to a host of cellular
processes, and their deregulation is implicated in
pathologies.

• Long non-coding RNAs often exert their functions by
binding one or more proteins; conversely, RNA-binding
proteins are often able to bind several lncRNAs.

• A large number of different experimental techniques
have been developed for the high-throughput deter-
mination of protein–lncRNA interactions, each having
advantages and caveats.

• Accurate computational inference, for which a number
of tools are currently available, can provide additional
interaction evidence.

• A quickly growing body of knowledge depicting pro-
tein–lncRNA binding will allow in the near future an
ensemble outlook of the protein–lncRNA interaction
network, leading to a systems view of lncRNA
functions.
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