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ABSTRACT The term blockchain has its roots in cryptocurrencies. However, its applications are now more

widespread, and in many areas, this technology has become the foundation of the distributed ledger. The

blockchain protocol assumes that all the participants of the system are both contributors and safeguards of

this ledger, since the lack of a trusted third party requires other security precautions in order to maintain the

consistency of transactions. In this work, we investigate whether for the participants of a blockchain-based

system that does not require revealing the character explicitly, it can be discovered by other means. In order

to verify this, we built and publicly released a dataset of nearly 9,000 addresses of nodes in the most popular

cryptocurrency - Bitcoin, and then labelled them. These labels represent the character the nodes have in

the network, e.g. miners or exchanges. We then developed a set of features that quantify the behaviour of

nodes in the network and used supervised machine learning algorithms to find out whether the character of

nodes can be revealed based on these features. Our results demonstrate, due to the F-score reaching over

95% in the best-performing algorithms, that it is hard to hide the role the node has in a blockchain-based

network. These results indicate that to build trustworthy blockchain-based systems that fully comply with

original blockchain assumptions, specific countermeasures are needed in order to preserve the desired level

of anonymity.

INDEX TERMS Blockchain, supervised learning, machine learning, Bitcoin, cryptocurrencies, node2vec.

I. INTRODUCTION

Nowadays, blockchain, as a trusted transaction register,

supports multiple application areas. In many of these appli-

cations, the entities are easily identifiable and, since they

perform a series of connected activities in the business pro-

cess, have specific roles assigned. For instance, this is the

case for supply chain solutions. On the other hand, in certain

areas, such as most popular cryptocurrencies, despite full

transparency of the transaction register itself, many entities

try to keep their pseudonymity regarding both identity and

the role they play in the process. As the blockchain of Bitcoin

and many other cryptocurrencies follows this protocol, its

users are not required to reveal any details. It is only in the

case of linkage to fiat currencies that some exchanges require

the know your customer (KYC) procedure to be carried out.

Otherwise, a legitimate Bitcoin blockchain node can stay at

The associate editor coordinating the review of this manuscript and

approving it for publication was Hong-Ning Dai .

the level of only exposing publicly its alphanumeric address.

Even if forced to reveal the details due to KYC, these are only

shared with a single entity.

However, this does not necessarily mean that it is not

possible at least to reveal the role of a particular node in

the blockchain ecosystem of cryptocurrencies if this node

performs some activities. It is linked to the fact that these

activities are usually associated with the role of a node.

Independently, whether we are considering exchanges, min-

ing pools, miners, businesses or individuals, when analysing

the blockchain as a complex network linking entities with

transactions, we demonstrate that it can be possible to reveal

to which role a particular node belongs.

In this work, we propose and evaluate supervised machine

learning approaches for classifying nodes to the roles in a

Bitcoin blockchain. In order to demonstrate the capabilities

of this approach, we built a dataset of nearly 9,000 Bitcoin

addresses and labelled them with their most plausible

role. Afterwards, we developed a set of features used for
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classification and evaluated these using different supervised

learning algorithms, including decision trees, KNN, kernel-

based SVM or random forest. We also evaluated the perfor-

mance of these methods when using node2vec encoding of

node features.

The results indicate that nodes that perform transactions

reveal details that can be used for classifying them into spe-

cific roles. It means that the nodes that would like to achieve

a certain level of anonymity in a blockchain-based system

should introduce countermeasures that decrease the risk of

revealing their character in the ecosystem. The results of

this study can lead either to individual actions of blockchain

nodes or the incorporating of risk mitigation mechanisms

into systems that are based on the blockchain increasing their

trustworthiness.

The next section presents the related research in this

area, and Section III presents the experimental setting.

In Section IV, we share the results of this study and Section V

contains a discussion on these results. In the last section, we

summarise the work and indicate potential future research

directions. We also made the dataset used in this study

publicly available.

II. RELATED RESEARCH

As it is hard to claim that solutions based on blockchain have

entered amature stage, the research in this area is takingmany

different directions, as described in [31]. On the one hand,

a significant amount of research is devoted to the security of

blockchain-based systems. This is mainly due to the fact that

inmany cases, the well-known 51%majority attack still poses

a risk to the integrity of the whole ecosystem [10], [11], [23].

Another important research direction in terms of security

is the fork problem, which is leading to the emergence of

a rivalling sibling of a given blockchain [25]. These two

risks are mainly for cases of systems with open participation.

However, for some industrial applications, the risk is still not

negligible.

The problem tackled in this work can be considered as

another related to the security of blockchain-based systems

where transactions are seen as transparent to all the nodes.

Here, we are interested in revealing the character a node has

based on a set of features that can be derived from the ledger

itself. Obviously, in some applications, the character of a node

can be made public and become a part of the framework, but

for others, it might not be required to reveal it. Hence, in this

work, we investigate how well certain features and machine

learning algorithms perform in this task. In general, this

research direction, when applied to other domains, is not a

novel one, and machine learning is often used in combination

with other networks. More formally, one can consider this

problem as a multiclass classification problem, which has

been applied to networks in a number of areas presented

below.

For instance, based on the ideas presented in [8], the

researchers used features of a social network of co-arrestees

for predicting the possibility of future violent crimes [27].

A similar concept was also used in [29] for analyzing co-

offending networks. In this work, a co-offence prediction

algorithm using supervised learning has been developed -

by using features derived from the network, it was possible

to nominate co-offenders. Nevertheless, the classification in

networks based on communication or behaviour in social

media can relate to completely different areas, such as poverty

detection [28], personality traits discovery [22] or occupa-

tion [17]. Similarly, machine learning is used to reveal the

position in an organizational structure based on activity in a

corporate e-mail exchange [26]. All this is possible because

our digital traces differ depending on our role or status.

It should also be noted that the approaches used for classi-

fying nodes can either treat the instances independently based

on the assumption of independence and identical distribution

of instances, as studied in [29] or consider the problem as

a relational classification by proposing collective classifica-

tion methods [20], [26]. In this work, we follow the former

approach, but collective classification can be considered as

an interesting future work direction.

This study can be perceived as belonging to the family of

studies that investigate the possibilities of the deanonymiza-

tion of nodes in cryptocurrency networks. This family tackles

the problem at different levels, e.g., by identifying the IP

addresses of nodes [19], or by studying transaction motifs

analysis [18] or transaction history summarization [24]. This

direction was summarized in [1]. Some other works also tack-

led the problem of identifying the nodes based on selected

features. For instance, authors of [6] looked at how the impor-

tance of nodes calculated by the PageRank measure corre-

lated with the type of a node in the Ethereum blockchain.

Apart from this aspect, authors investigated the distributions

of other measures in the network built upon transactions

showing that they follow the power law. This direction what

was also followed up in [12]. The capabilities of machine

learning in the area of blockchain have been evaluated to dis-

cover Ponzi schemes either for Ethereum [7] or Bitcoin [4] -

this could be considered as a one-class classification problem.

Our work extends the area by demonstrating how multiple

supervised machine learning algorithms perform in the area

of deanonymizing node types when using a large dataset that

has been collected for evaluation and made public. Moreover,

we look at whether and how node2vec embedding contributes

to classification accuracy. The outcome of research works in

this area can be used for improving the design of blockchain-

based trustworthy systems.

III. EXPERIMENTAL SETTING

This section contains information on the experimental set-

ting, including the dataset description, features, classification

methods and evaluation metrics.

A. DATASET

The Bitcoin ecosystem provides a generic way of exchanging

cryptocurrency. This imposes that the entities making trans-

actions can be of any type. However, due to the nature of
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the blockchain protocol and the way it interacts with external

entities, some typical roles can be distinguished. These roles,

however, are not announced as a part of the protocol, so

they can only be discovered by other means. In this research,

we focused on the following roles: mining pools, miners,

coinjoin services, gambling, exchanges and services. These

roles are described below.

• Mining pools — these gather miners in order to maxi-

mize their chances for mining new block by combining

computational power. If the block will be mined by this

particular mining pool, users contributing to it gain their

qdequate share to the computational resources provided.

• Miners — each node in the protocol has the option

either to not mine new blocks or to do so. In the latter

case, it can join the mining pool described above or

do it independently. In this research, we focused on the

miners joining mining pools, and have been identifying

them based on the transactions that follow the mining of

new blocks by mining pools. The criteria to identify par-

ticular addresses as miners were the following: in order

to the source address of a transaction to be identified as

a mining pool, the destination addresses had to be more

than ten and each address had to gain less than 1 BTC.

• Coinjoin–like, gambling, exchanges, services —

addresses assigned to these categories were obtained

with the help of the service walletexplorer.com. This

website collects sets with addresses for different ser-

vices, websites, wallets, exchanges, etc. The content

of this website is searched by each of the addresses

and if the name of any service is found in the wallet

explorer database, a proper category is assigned based

on the owner found. Labels for some addresses found on

this site, categorized as ‘‘services/other’’, were divided

between services and coinjoin-like. In the category ser-

vices, the most frequently found labels were wallets.

The list of the classes contains the most typical ones to be

found in Bitcoin blockchain, but if one will be able to identify

new types of entities, the list could be extended or modified.

Our initial set of addresses to evaluate and assign labels

based on the Bitcoin blockchain blocks from 520,890 to

520,910. These blocks have been downloaded and parsed

by our tools, but researchers interested in the datasets that

would like to use already published datasets for different

cryptocurrencies are able to find such data for selected ones,

such as Ethereum [32] or Bitcoin [21]. This data can then

undergo labelling that we performed in our work, as described

below.

We performed the identification of about 8,800 addresses,

and information on the on the number of addresses belonging

to each class we considered is presented in Table 1. In order

to extend the number of cases from underrepresented classes,

our analysis had to consider also other blocks than the ones

listed above, since we did not find many instances of these.

In this case, we looked for the addresses that have been

previously identified as belonging to these classes or have

been publicly announced by their owners as a part of their

TABLE 1. Numbers of instances for identified addresses.

operations. The labelling of addresses has been done by

crawling and scrapping information published on the web-

sites of services, posts on variety of forums and other sources.

It is worth underlining that there is no guarantee that the

tagging of these addresses is error-prone, but this is unavoid-

able, since the Bitcoin protocol does not consider linking

the addresses to types of entities. The dataset containing the

labels of addresses has been made public and is available at

Harvard Dataverse.1

B. FEATURES

By having a list of Bitcoin addresses with corresponding

labels, we retrieved a list of all transactions for all addresses

from the blockchain. We chose two different approaches,

based on transactions, to calculate the features for an address:
1) based on the address’s statistics, and solely based on

transactions that the investigated address was part of.

This approach offers a lot flexibility, as all the address’s

transactions are used to calculate features. The full list

of 149 features can be found in Table 7. Features can

be grouped into the following families:
• numbers of addresses in transaction inputs and

outputs

• amounts of bitcoins sent in transactions

• numbers of coinbase transactions

• numbers of transactions

• lifetime (in blocks)

• address type (Pay to Script Hash, Pay To Public

Key Hash etc.)

2) address embeddings calculated using the node2vec [14]

algorithm. In order to be able to calculate address

embeddings, we treat addresses as nodes in a graph,

and transactions between them as edges, as presented in

Figure 1. This approach requires a transaction graph to

be created that is based on all transactions in a selected

range of blocks, and not only for the investigated

addresses. Therefore, it is computationally hard to

include all transactions which the investigated address

was part of. Most addresses have transactions in a large

range of blocks, depending on how long the address

was in use, which implies the need to compute a large

transaction network. The algorithm calculates embed-

dings for all addresses in a selected range of blocks,

and we only select embeddings for addresses that are

part of our dataset. Because of memory constraints, we

1https://doi.org/10.7910/DVN/KEWU0N
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FIGURE 1. An example of creating a graph from a single transaction.

selected 100 blocks with numbers 〈520850; 520950〉

from the Bitcoin blockchain and calculated address

embeddings based on the transaction graph found in

those blocks. The selected blocks contain the majority,

although not all, of the addresses in the dataset.

We selected the following parameter values for the

node2vec algorithm:
• embedding vector dimension: 128

• number of iterations: 1,000

• walk length: 80

• number of walks per source: 10

C. EVALUATED SUPERVISED LEARNING ALGORITHMS

Machine learning is an art of programming where comput-

ers can learn from given data without being precisely pro-

grammed. The two most essential types of machine learning

methods are supervised learning and unsupervised learning.

In this work, we focused on the first one, in which an

algorithm is learning from data and is provided with the

correct solution (labels). The following supervised learning

methods were evaluated: Decision Trees, Random Forests,

Extra Trees, Neural Network, SVM, Logistic Regression,

and k-nearest Neighbours. Apart from the typical approach

based on features, we looked at how the node2vec embed-

ding technique contributes to the results when used with the

aforementioned classification approaches.

The Decision Tree algorithm is a process of sequential

decisions, which starts from a root, and after making a deci-

sion based on the given rule it spreads out, creating a new

branch and lead down to the left or right node [30]. At the

bottom of this structure there are leafs, which contain pre-

dicted classes for decision paths that lead from the root to the

corresponding leaf. The Decision Tree algorithm looks for a

rule that can decrease the impurity measure the most.

Random Forests algorithms use a technique called Ensem-

ble Learning [5]. It is based on the assumption that aggregat-

ing predictions of a group of classifiers often provides better

predictions. In Random Forests, the classification algorithms

used for this purpose are Decision Trees. Many of them are

trained on randomly chosen subsets of all data features. New

instances are classified by the majority of votes. Random

Forests, opposed to Decision Trees, do not provide clear

information on why some predictions were made in precisely

this way, and what specifically contributed to this choice. One

advantage of the Random Forests algorithm, which will be

used later in this paper, is the possibility to determine the

importance of each feature in a given dataset.

The Extra Trees method is a variation of Random Forests,

with the difference being that each tree is trained on the

whole set of training data instead of on its subsets [13]. This

leads to the minimizing of bias. Additionally, the cut-point

is chosen randomly, which along with the first difference,

should be able to reduce variance. Moreover, the Extreme

Trees algorithm has better computational performance than

the standard RF model.

The neural network is an attempt to imitate how the brain

works [3]. The Neural Network model consists of layers

that are built with artificial neurons connected to each other.

A neuron can have multiple input values passed from the

previous layer (or input values in the case of the input layer).

Received signals are multiplied by weights, which can be

adjusted during the training process, and used as an input of

the neuron’s activation function. An output layer usually has

a number of neurons that is equal to the number of classes.

For net training, back-propagation is used, which tries to

minimize the cost function. Due to its non-linearity, learning

is done in the iterative process, which can result in high time

complexity of an algorithm. The Neural Networks model, due

to its architecture, is more difficult to interpret, and it cannot

provide any more insights on the dataset.

Logistic Regression is a classifier that works in a similar

way to linear regression. It was first designed for binary cases.

However, it can be easily extended to multiclass problems.

For each class, a separate binary classifier is created, and

therefore for N-classes, there will be N binary classifiers -

one for each class [16]. Logistic Regression is a probabilistic

model that evaluates the probability of being a member of a

given class. It uses the maximum likelihood method. Logistic

Regression can overfit in high dimensional datasets, and to

avoid this L1 and L2 techniques should be used. The algo-

rithm is simple to implement and easy to understand.

SVM, similar to Logistic Regression, solves the binary

classification problem, which can be extended for multiclass

classification [9]. However, it is not a probabilistic model. For

N number of features, it divides N-dimensional space with

hyperplanes that look for the maximum distance between

datapoints from the training set. New objects are classified

based on which side of the hyperplanes they are placed.

As opposed to Linear Regression, this method is effective for

high dimensional data.

K-nearest neighbours is a non-parametric model without

any built-in statistical model or function describing data dis-

tribution [2]. In KNN a new object becomes a part of the most

common class among its k neighbours. If k = 1, then objects

are assigned to the class of its only one neighbour. KNN is one

of the simplest classification methods that does not require a

training process.

Classification algorithms were tuned by selecting the best

hyper-parameter values, which are listed in Table 2.

D. EVALUATION

To evaluate the classification results and to measure quality

we used the Macro-F1 score and confusion matrix. We also
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TABLE 2. Parameters tested for each type of model for the proposed set
of features based on the transaction list. The chosen values that yielded
the best results are in bold.

evaluated the classification results using subsets of the most

important features. We used a built-in feature of the Random

Forest algorithm to calculate feature importance.

We also evaluated how the number of transactions used

to calculate an address’s features affects the classification

results. This experiment allows us to estimate how many

transactions an address has to be part of in order for it to be

able to be classified with enough confidence.

All the experiments were performed using repeated strati-

fied K-fold with 10 folds, and repeated five times.

The classification algorithms were tuned by evaluating

different configurations of hyper-parameter values in order

to find the configuration which gives the best results.

Categorical variables are encoded using one-hot vectors,

and different preprocessing techniques were used for numeric

variable preprocessing [15]:
• no preprocessing, use values as-is

• unit-length normalization, performed separately for

each sample. Each vector is transformed so that it is a

unit vector of length 1.

• feature standardization (Z-score normalization), per-

formed separately for each feature. Standardization

makes the values have zero-mean and unit variance.

• min-max normalization, re-scales feature values to

range 〈0; 1〉.

IV. RESULTS

This section presents the experimental results from a number

of perspectives. Firstly, we look at the overall performance of

the evaluated algorithms and the influence of preprocessing

methods on the results - this is described in Section IV-A.

Next, in Section IV-B, we evaluate how the number of

features used for classification impacts the quality of clas-

sification. Another perspective on the subject is presented

in Section IV-C, which was the answering of the question

of how much historical data about the nodes’ transaction

is required to assign labels accurately. Lastly, we inves-

tigate how a relatively new technique of using node2vec

vector embeddings performs when being an input for

classifiers (Section IV-D).

A. THE OVERALL PERFORMANCE OF SUPERVISED

LEARNING TECHNIQUES

In this section, we present the overall performance of super-

vised learning techniques. These results are summarized in

Table 3. The results are also decomposed by the initial data

preprocessing techniques - the best-performing preprocess-

ing technique for a given supervised method is presented in

bold.

One can clearly see that the overall performance for the

evaluated methods varies, but, on average theMacro-F1 score

is about 0.8, with notable exceptions of Random Forest -

0.96, and Decision Trees - 0.91. Logistic regression, even if

not the best performing approach, was least sensitive to the

preprocessing methods used.

B. FEATURES SELECTION

The performance of Decision Trees is not affected by a high

number of features, as they have the ability to measure their

importance. However, it can cause problems with the general-

ization of a model that is created during the training process,

which can in turn lead to worse results. The performance of

algorithms which are not built upon Decision Trees: MLP,

SVM, Logistic Regression, and KNN were tested with a lower

number of features included. Features were chosen based

on their importance, which was evaluated with the Decision

Tree CART algorithm. Table 4 and Figure 2 present the

classification results of the selected methods with a varuable

number of the most important features. These show that the

number of features used in the experiment did not have any

impact on the achieved scores in any way. The decline can

only be observed in the case of a small number of features

n = 10 bein taken under consideration. For greater n, the

differences are small. Classification with all the features used

gave the best results for the neural network (MLP) and SVM.

Nevertheless, after removing some less important features,

logistic regression and KNN achieved the best F-scores. The

described results were conducted with using the models’

hyper-parameters described in the previous section.

Ten out of 149 features with the highest importance for the

Random Forest algorithm are presented in Figure 3.

C. INFLUENCE OF THE NUMBER OF TRANSACTIONS ON

CLASSIFICATION RESULTS

The number of transactions which the given address was a

part of has a significant impact on describing its features.
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TABLE 3. The classification performance of the evaluated supervised learning techniques in the nodes’ types classification task. The evaluation measure
was the F-score and the best results for particular methods for different types of data preprocessing are in bold.

TABLE 4. F-score results for the tested classifiers with a different number
of features included based on their importance.

FIGURE 2. F-score results for the tested classifiers with a different
number of features included based on its importance.

FIGURE 3. Top ten of the most important features.

That is why the addresses with a small or relatively high

number of transactions can cause issues for classification

algorithms. In this experiment, the number of N first trans-

actions of a given address was used for the evaluation of

feature values. The following N values were chosen: N ∈

{1, 3, 5, 7, 10, 20, 50, 100, 200, 500, 1000, 5000, 10000}.

We split the addresses into ten folds according to stratified

cross-validation rules. Nine of them were used as training

examples and their attributes were evaluated based on the

whole transaction history. The next step was to evaluate the

FIGURE 4. F-score results for the chosen classifiers evaluated with N-first
transactions for each address in the test dataset.

features for test addresses for each N of transactions taken

under consideration.

With this approach, we were able to study the dependency

between classification results and the number of transactions

used to calculate the measures of addresses from the test set.

Results for classification for different models and N values

are presented in Figure 4.

There is no visible connection between the number of

transactions used and the score achieved by the KNN algo-

rithm, which is most probably due to its unpredictability

and dependence on how the data was divided. Other algo-

rithms provide better results with an increase of N . Based on

Figure 4, we can assume that only 500 transactions need to

be used for feature evaluation in order to achieve the high-

est possible score. Even the classification quality with only

100-200 transactions is not much lower than the best scores.

Figure 5 shows a confusion matrix for the Random Forest

algorithm with N = 100. It can be observed that most of the

classes were correctly assigned. Again, the classification of

services poses a challenging task, since objects of this class

are incorrectly labelled as miners.

D. RESULTS FOR node2vec VECTOR EMBEDDINGS

We evaluated the supervised learning algorithms listed in

Section III-C with vector embeddings used as address fea-

tures. Embedding vectors are calculated using the node2vec

algorithm and have a fixed length, so it was not possible to

examine feature importance or the impact of a number of

address transactions. Classification algorithms were tuned by

selecting the best hyper-parameter values, which are listed in

Table 5.

The best results were achieved using algorithms that did

not yield the best results when using custom features based on

transaction history. Moreover, the decision-tree based algo-
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FIGURE 5. Confusion matrix for the random forest algorithm on a test
dataset created with the first 100 transactions for each address in the test
dataset.

TABLE 5. Parameters tested for each type of model for node2vec
embedding vectors. Chosen values which yielded best results are in bold.

rithms yielded lower scores than for custom features, which

may be a consequence of how decision trees work. The SVM

algorithm gave the best F-score value of 91%, followed by

Multi-Layer Perceptron, which yielded an F-score result of

90%. All the results are presented in Table 6.

Figure 6 presents a̧ normalized confusion matrix for the

results of the SVM algorithm. In this figure, it is clearly visi-

ble that addresses from majority classes are best predicted,

and other classes with fewer samples are often wrongly

assigned to one of the majority classes, usually the ‘miner‘

class. This is most likely a result of an unbalanced dataset

- the majority class samples dominate most of the vector

space, which makes it difficult for classification algorithms

to generalize minority classes sufficiently.

TABLE 6. Table presenting F-score results for address classification based
on node2Vec embedding vectors.

FIGURE 6. Normalized confusion matrix for results of the SVM algorithm
using node2Vec embeddings.

V. DISCUSSION

The results indicate that the set of features built and later

used by supervised learning algorithms demonstrates that it is

possible to discover the character of a node in a blockchain-

based cryptocurrency system. The algorithms based on Deci-

sion Trees generally result in a high F-score. The best per-

forming ensemble algorithm was Random Forest, reaching

an F-score of 95%. This means that the proposed features

are able to map the behaviour of nodes belonging to dif-

ferent classes. Another experiment showed that the embed-

dings of nodes used as an input for classifiers also provide

good results, but at the same time it is worth noting that

all the algorithms based on decision trees performed worse

with this approach. The best performance in terms of F-

score in this setting was achieved by SVM - 91%. How-

ever, when looking into the details, it was observed that

the classifier improperly assigned the majority class to the

instances of underrepresented classes. This behaviour is not

observed in the case of classification with the set features

proposed by us.

Another set of experiments also showed that depending on

the algorithm, the F-score varies when the least features are

being provided. Whilst SVM performed better when receiv-

ing more features, KNN and logistic regression reduced their

performance when they were based on too few or too many

features.

As the nodes perform the activity in the network, they

tend to reveal more details about their behaviour. However,

the F-score dependence on the number of transactions the

nodes participated in is surprisingly sublinear, and therefore

even for a limited number of transactions, one can derive a

fair amount of information about which classes the nodes

belong to. For instance, the best-performing algorithm, Ran-

dom Forest, only requires seven transactions to reach an

F-score of 80%.
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TABLE 7. Table presenting a summarized list of all the proposed features
based on an address’s transaction history.

VI. CONCLUSION

The primary purpose of this work was to investigate whether

it is possible to reveal the character of nodes in a blockchain-

based network based on a set of features built upon transac-

tions history and supervised learning algorithms. The reason

behind this study was to find out whether blockchain-based

systems are prone to deanonymization in certain aspects, and

the obtained results tend to confirm this claim. Not every

blockchain follows the same principles and protocol as the

one based on Bitcoin. However, by conducting this study,

we would like to underline that these results should be taken

into account in the case of designing trustworthy blockchain-

based systems, since any wrong design decisions can lead

to undesired consequences regarding the privacy of their

participants.

One of the most interesting future research directions

is related to verifying the proposed approach against a

non-cryptocurrency related blockchain. Another direction

can relate to applying collective classification techniques,

such as Loopy Belief Propagation or Iterative Classification.

One can also look for other classes of addresses, e.g. by iden-

tifying scamming behaviour. Moreover, the feature set can be

extended by the features related to networkmeasures from the

graph built upon transactions, as in selected works presented

in related research these measures appeared to be helpful in

manual identification of types of entities. However, due to

the size of many blockchains, it is anticipated that a method

limiting the number of blocks considered will be required,

as some measures are computationally complex. This could

be done either by selected methods of sampling, for instance

snowball sampling using transaction addresses or simply by

limiting the number of blocks from the blockchain. However,

the former method can result with higher connectivity in the

graph.

For researchers interested in further exploring this direc-

tion and willing to compare their approaches against ours, we

made the dataset with labels public.
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