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Abstract

BERT-based architectures currently give state-

of-the-art performance on many NLP tasks,

but little is known about the exact mechanisms

that contribute to its success. In the current

work, we focus on the interpretation of self-

attention, which is one of the fundamental un-

derlying components of BERT. Using a sub-

set of GLUE tasks and a set of handcrafted

features-of-interest, we propose the methodol-

ogy and carry out a qualitative and quantita-

tive analysis of the information encoded by the

individual BERT’s heads. Our findings sug-

gest that there is a limited set of attention pat-

terns that are repeated across different heads,

indicating the overall model overparametriza-

tion. While different heads consistently use

the same attention patterns, they have varying

impact on performance across different tasks.

We show that manually disabling attention in

certain heads leads to a performance improve-

ment over the regular fine-tuned BERT mod-

els.

1 Introduction

Over the past year, models based on the Trans-

former architecture (Vaswani et al., 2017) have

become the de-facto standard for state-of-the-art

performance on many natural language process-

ing (NLP) tasks (Radford et al., 2018; Devlin

et al., 2018). Their key feature is the self-attention

mechanism that provides an alternative to conven-

tionally used recurrent neural networks (RNN).

One of the most popular Transformer-based

models is BERT, which learns text representa-

tions using a bi-directional Transformer encoder

pre-trained on the language modeling task (De-

vlin et al., 2018). BERT-based architectures

have produced new state-of-the-art performance

on a range of NLP tasks of different nature, do-

main, and complexity, including question answer-

ing, sequence tagging, sentiment analysis, and

inference. State-of-the-art performance is usu-

ally obtained by fine-tuning the pre-trained model

on the specific task. In particular, BERT-based

models are currently dominating the leaderboards

for SQuAD1 (Rajpurkar et al., 2016) and GLUE

benchmarks2 (Wang et al., 2018).

However, the exact mechanisms that contribute

to the BERT’s outstanding performance still re-

main unclear. We address this problem through

selecting a set of linguistic features of interest and

conducting a series of experiments that aim to pro-

vide insights about how well these features are

captured by BERT. This paper makes the follow-

ing contributions:

• We propose a methodology and offer the first

detailed analysis of BERT’s capacity to cap-

ture different kinds of linguistic information

by encoding it in its self-attention weights.

• We present evidence of BERT’s over-

parametrization and suggest a counter-

intuitive yet frustratingly simple way of im-

proving its performance, showing absolute

gains of up to 3.2%.

2 Related work

There have been several recent attempts to as-

sess BERT’s ability to capture structural proper-

ties of language. Goldberg (2019) demonstrated

that BERT consistently assigns higher scores to

the correct verb forms as opposed to the incorrect

one in a masked language modeling task, suggest-

ing some ability to model subject-verb agreement.

Jawahar et al. (2019) extended this work to us-

ing multiple layers and tasks, supporting the claim

that BERT’s intermediate layers capture rich lin-

guistic information. On the other hand, Tran et al.

(2018) concluded that LSTMs generalize to longer

1https://rajpurkar.github.io/

SQuAD-explorer/
2https://gluebenchmark.com/leaderboard

https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://gluebenchmark.com/leaderboard
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sequences better, and are more robust with respect

to agreement distractors, compared to Transform-

ers.

Liu et al. (2019) investigated the transferability

of contextualized word representations to a num-

ber of probing tasks requiring linguistic knowl-

edge. Their findings suggest that (a) the middle

layers of Transformer-based architectures are the

most transferable to other tasks, and (b) higher

layers of Transformers are not as task specific as

the ones of RNNs. Tang et al. (2018) argued that

models using self-attention outperform CNN- and

RNN-based models on a word sense disambigua-

tion task due to their ability to extract semantic

features from text. Voita et al. (2019) analyzed the

original Transformer model on a translation task

and found out that only a small subset of heads is

important for the given task, but these heads have

interpretable linguistic functions.

Our work contributes to the above discus-

sion, but rather than examining representations ex-

tracted from different layers, we focus on the un-

derstanding of the self-attention mechanism itself,

since it is the key feature of Transformer-based

models.

Another research direction that is relevant to

our work is neural network pruning. Frankle

and Carbin (2018) showed that widely used com-

plex architectures suffer from overparameteriza-

tion, and can be significantly reduced in size with-

out a loss in performance. Goldberg (2019) ob-

served that the smaller version of BERT achieves

better scores on a number of syntax-testing ex-

periments than the larger one. Adhikari et al.

(2019) questioned the necessity of computation-

heavy neural networks, proving that a simple

yet carefully tuned BiLSTM without attention

achieves the best or at least competitive results

compared to more complex architectures on the

document classification task. Wu et al. (2019)

presented more evidence of unnecessary com-

plexity of the self-attention mechanism, and pro-

posed a more lightweight and scalable dynamic

convolution-based architecture that outperforms

the self-attention baseline. Michel et al. (2019)

demonstrated that some layers in Transformer can

be reduced down to a single head without signif-

icant degradation of model performance. These

studies suggest a potential direction for future re-

search, and are in good accordance with our ob-

servations.

3 Methodology

We pose the following research questions:

1. What are the common attention patterns, how

do they change during fine-tuning, and how

does that impact the performance on a given

task? (Sec. 4.1, 4.3)

2. What linguistic knowledge is encoded in self-

attention weights of the fine-tuned models

and what portion of it comes from the pre-

trained BERT? (Sec. 4.2, 4.4, 4.5)

3. How different are the self-attention patterns

of different heads, and how important are

they for a given task? (Sec. 4.6)

The answers to these questions come from a

series of experiments with the basic pre-trained

or the fine-tuned BERT models, as will be dis-

cussed below. All the experiments with the pre-

trained BERT were conducted using the model

provided with the PyTorch implementation of

BERT (bert-base-uncased, 12-layer, 768-hidden,

12-heads, 110M parameters)3. We chose this

smaller version of BERT because it shows com-

petitive, if not better, performance while having

fewer layers and heads, which makes it more in-

terpretable.

We use the following subset of GLUE tasks

(Wang et al., 2018) for fine-tuning:

• MRPC: the Microsoft Research Paraphrase

Corpus (Dolan and Brockett, 2005)

• STS-B: the Semantic Textual Similarity

Benchmark (Cer et al., 2017)

• SST-2: the Stanford Sentiment Treebank,

two-way classification (Socher et al., 2013)

• QQP: the Quora Question Pairs dataset

• RTE: the Recognizing Textual Entailment

datasets

• QNLI: Question-answering NLI based on the

Stanford Question Answering Dataset (Ra-

jpurkar et al., 2016)

• MNLI: the Multi-Genre Natural Language In-

ference Corpus, matched section (Williams

et al., 2018)

Please refer to the original GLUE paper for de-

tails on the QQP and RTE datasets (Wang et al.,

2018). We excluded two tasks: CoLa and the

Winograd Schema Challenge. The latter is ex-

cluded due to the small size of the dataset. As for

CoLa (the task of predicting linguistic acceptabil-

ity judgments), GLUE authors report that the hu-

3https://github.com/huggingface/

pytorch-pretrained-BERT

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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man performance is only 66.4, which is explained

by the problems with the underlying methodology

(Schutze, 1996). Note also that CoLa is not in-

cluded in the upcoming version of GLUE (Wang

et al., 2019). All fine-tuning experiments follow

the parameters reported in the original study (a

batch size of 32 and 3 epochs, see Devlin et al.

(2018)).

In all these experiments, for a given input, we

extract self-attention weights for each head in ev-

ery layer. This results in a 2D float array of shape

L×L, where L is the length of an input sequence.

We will refer to such arrays as self-attention maps.

Analysis of individual self-attention maps allows

us to determine which target tokens are attended

to the most as the input is processed token by to-

ken. We use these experiments to analyze how

BERT processes different kinds of linguistic infor-

mation, including the processing of different parts

of speech (nouns, pronouns, and verbs), syntactic

roles (objects, subjects), semantic relations, and

negation tokens.

4 Experiments

In this section, we present the experiments con-

ducted to address the above research questions.

4.1 BERT’s self-attention patterns

Manual inspection of self-attention maps for both

basic pre-trained and fine-tuned BERT models

suggested that there is a limited set of self-

attention map types that are repeatedly encoded

across different heads. Consistently with previous

observations4, we identified five frequently occur-

ring patterns, examples of which are shown in Fig-

ure 1:

• Vertical: mainly corresponds to attention

to special BERT tokens [CLS] and [SEP]

which serve as delimiters between individual

chunks of BERT’s inputs;

• Diagonal: formed by the attention to the pre-

vious/following tokens;

• Vertical+Diagonal: a mix of the previous

two types,

• Block: intra-sentence attention for the tasks

with two distinct sentences (such as, for ex-

ample, RTE or MRPC),

• Heterogeneous: highly variable depending

4https://towardsdatascience.com/

deconstructing-bert-distilling-6-patterns-\

from-100-million-parameters-b49113672f77

on the specific input and cannot be charac-

terized by a distinct structure.

Note that, because the Heterogeneous category

contains patterns not included in the other four cat-

egories, our constructed list of classes is exhaus-

tive.

Whereas the attention to the special tokens is

important for cross-sentence reasoning, and the

attention to the previous/following token comes

from language model pre-training, we hypothesize

that the last of the listed types is more likely to

capture interpretable linguistic features, necessary

for language understanding.

To get a rough estimate of the percentage of at-

tention heads that may capture linguistically in-

terpretable information, we manually annotated

around 400 sample self-attention maps as belong-

ing to one of the five classes. The self-attention

maps were obtained by feeding random input ex-

amples from selected tasks into the corresponding

fine-tuned BERT model. This produced a some-

what unbalanced dataset, in which the “Vertical”

class accounted for 30% of all samples. We then

trained a convolutional neural network with 8 con-

volutional layers and ReLU activation functions to

classify input maps into one of these classes. This

model achieved the F1 score of 0.86 on the anno-

tated dataset. We used this classifier to estimate

the proportion of different self-attention patterns

for the target GLUE tasks using up to 1000 exam-

ples (where available) from each validation set.

Results Figure 2 shows that the self-attention

map types described above are consistently re-

peated across different heads and tasks. While a

large portion of encoded information corresponds

to attention to the previous/following token, to the

special tokens, or a mixture of the two (the first

three classes), the estimated upper bound on all

heads in the “Heterogeneous” category (i.e. the

ones that could be informative) varies from 32%

(MRPC) to 61% (QQP) depending on the task.

We would like to emphasize that this only gives

the upper bound on the percentage of attention

heads that could potentially capture meaningful

structural information beyond adjacency and sep-

arator tokens.

4.2 Relation-specific heads in BERT

In this experiment, our goal was to understand

whether different syntactic and semantic relations

are captured by self-attention patterns. While a

https://towardsdatascience.com/deconstructing-bert-distilling-6-patterns-\from-100-million-parameters-b49113672f77
https://towardsdatascience.com/deconstructing-bert-distilling-6-patterns-\from-100-million-parameters-b49113672f77
https://towardsdatascience.com/deconstructing-bert-distilling-6-patterns-\from-100-million-parameters-b49113672f77
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Figure 1: Typical self-attention classes used for training a neural network. Both axes on every image represent

BERT tokens of an input example, and colors denote absolute attention weights (darker colors stand for greater

weights). The first three types are most likely associated with language model pre-training, while the last two

potentially encode semantic and syntactic information.

Figure 2: Estimated percentages of the identified self-

attention classes for each of the selected GLUE tasks.

large number of such relations could be investi-

gated, we chose to examine semantic role rela-

tions defined in frame semantics, since they can

be viewed as being at the intersection of syn-

tax and semantics. Specifically, we focused on

whether BERT captures FrameNet’s relations be-

tween frame-evoking lexical units (predicates) and

core frame elements (Baker et al., 1998), and

whether the links between them produce higher at-

tention weights in certain specific heads. We used

pre-trained BERT in these experiments.

The data for this experiment comes from

FrameNet (Baker et al., 1998), a database that con-

tains frame annotations for example sentences for

different lexical units. Frame elements correspond

to semantic roles for a given frame, for exam-

ple, “buyer”, “seller”, and “goods” for the “Com-

mercial transaction” frame evoked by the words

“sell” and “spend” or “topic” and “text” for the

“Scrutiny” semantic frame evoked by the verb

“address”. Figure 4 shows an example of such an-

notation.

We extracted sample sentences for every lexical

unit in the database and identified the correspond-

ing core frame elements. Annotated elements in

FrameNet may be rather long, so we considered

only the sentences with frame elements of 3 tokens

or less. Since each sentence is annotated only for

one frame, semantic links from other frames can

exist between unmarked elements. We therefore

filter out all the sentences longer than 12 tokens,

since shorter sentences are less likely to evoke

multiple frames.

To establish whether BERT attention captures

semantic relations that do not simply correspond

to the previous/following token, we exclude sen-

tences where the linked objects are less than two

tokens apart. This leaves us with 473 annotated

sentences.

For each of these sentences, we obtain pre-

trained BERT’s attention weights for each of the

144 heads. For every head, we return the max-

imum absolute attention weight among those to-

ken pairs that correspond to the annotated seman-

tic link contained within a given sentence. We then

average the derived scores over all the collected

examples. This strategy allows us to identify the

heads that prioritize the features correlated with

frame-semantic relations within a sentence.

Results The heatmap of averaged attention

scores over all collected examples (Figure 3) sug-

gests that 2 out of 144 heads tend to attend to

the parts of the sentence that FrameNet annota-

tors identified as core elements of the same frame.

The maximum attention weights averaged over all

data examples for these identified heads account

for 0.201 and 0.209, which are greater than a 99-

th percentile of the distribution of values for all

heads. Figure 3 shows an example of this attention

pattern for these two heads. Both show high atten-

tion weight for “he” while processing “agitated”

in the sentence “He was becoming agitated” (the

frame “Emotion directed”).

We interpret these results as limited evidence

that certain types of linguistic relations may be
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He	was	becoming	agitated
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Figure 3: Detection of pre-trained BERT’s heads that encode information correlated to semantic links in the input

text. Two heads (middle) demonstrate their ability to capture semantic relations. Note that the heatmap in the mid-

dle is obtained through averaging of all the individual input example maps. For one random annotated FrameNet

example (bottom) full attention maps with a zoom in the target token attention distribution are shown (leftmost and

rightmost).

These are issues which future studies may seek to address.

Core,
type TEXT

Core,
type TOPIC

Figure 4: FrameNet annotation example for the “ad-

dress” lexical unit with two core frame elements of dif-

ferent types annotated.

captured by self-attention patterns in specialized

BERT heads. A wider range of relations remains

to be investigated.

4.3 Change in self-attention patterns after

fine-tuning

Fine-tuning has a huge effect on performance, and

this section attempts to find out why. To study how

attention per head changes on average for each of

the target GLUE tasks, we calculate cosine simi-

larity between pre-trained and fine-tuned BERT’s

flattened arrays of attention weights. We aver-

age the derived similarities over all the develop-

ment set examples5. To evaluate contribution of

pre-trained BERT to overall performance on the

tasks, we consider two configurations of weights

initialization, namely, pre-trained BERT weights

and weights randomly sampled from normal dis-

tribution.

5If the number of development data examples for a given
task exceeded 1000 (QQP, QNLI, MNLI, STS-B), we ran-
domly sampled 1000 examples.

Results Figure 5 shows that for all the tasks ex-

cept QQP, it is the last two layers that undergo the

largest changes compared to the pre-trained BERT

model. At the same time, Table 1 shows that fine-

tuned BERT outperforms pre-trained BERT by a

significant margin on all the tasks (with an aver-

age of 35.9 points of absolute difference). This

leads us to conclude that the last two layers encode

task-specific features that are attributed to the gain

of scores, while earlier layers capture more fun-

damental and low-level information used in fine-

tuned models. BERT with weights initialized from

normal distribution and further fine-tuned for a

given task consistently produces lower scores than

the ones achieved with pre-trained BERT. In fact,

for some tasks (STS-B and QNLI), initialization

with random weights yields worse performance

than pre-trained BERT without fine-tuning.

This suggests that pre-trained BERT does in-

deed contain linguistic knowledge that is help-

Dataset Pre-trained
Fine-tuned, initialized with

Metric Size
normal distr. pre-trained

MRPC 0/31.6 81.2/68.3 87.9/82.3 F1/Acc 5.8K
STS-B 33.1 2.9 82.7 Acc 8.6K
SST-2 49.1 80.5 92 Acc 70K
QQP 0/60.9 0/63.2 65.2/78.6 F1/Acc 400K
RTE 52.7 52.7 64.6 Acc 2.7K
QNLI 52.8 49.5 84.4 Acc 130K
MNLI-m 31.7 61.0 78.6 Acc 440K

Table 1: GLUE task performance of BERT models

with different initialization. We report the scores on the

validation, rather than test data, so these results differ

from the original BERT paper.
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Figure 5: Per-head cosine similarity between pre-trained BERT’s and fine-tuned BERT’s self-attention maps for

each of the selected GLUE tasks, averaged over validation dataset examples. Darker colors correspond to greater

differences.

Figure 6: Per-task attention weights to the [SEP] (top row) and the [CLS] (bottom row) tokens averaged over input

sequences’ lengths and over dataset examples. Darker colors correspond to greater absolute weights.

ful for solving these GLUE tasks. These results

are consistent with similar studies, e.g., Yosinski

et al. (2014)’s results on fine-tuning a convolu-

tional neural network pre-trained on ImageNet or

Romanov and Shivade (2018)’s results on transfer

learning for medical natural language inference.

4.4 Attention to linguistic features

In this experiment, we investigate whether fine-

tuning BERT for a given task creates self-attention

patterns which emphasize specific linguistic fea-

tures. In this case, certain kinds of tokens may get

high attention weights from all the other tokens in

the sentence, producing vertical stripes on the cor-

responding attention maps (Figure 1).

To test this hypothesis we checked whether

there are vertical stripe patterns corresponding to

certain linguistically interpretable features, and to

what extent such features are relevant for solving a

given task. In particular, we investigated attention

to nouns, verbs, pronouns, subjects, objects, and

negation words6, and special BERT tokens across

6Our manually constructed list of negation words con-
sisted of the following words neither, nor, not, never, none,
don’t, won’t, didn’t, hadn’t, haven’t, can’t, isn’t, wasn’t,
shouldn’t, couldn’t, nothing, nowhere.

the tasks.

For every head, we compute the sum of self-

attention weights assigned to the token of interest

from each input token. Since the weights depend

on the number of tokens in the input sequence, this

sum is normalized by sequence length. This al-

lows us to aggregate the weights for this feature

across different examples. If there are multiple to-

kens of the same type (e.g. several nouns or nega-

tions), we take the maximum value. We disregard

input sentences that do not contain a given feature.

For each investigated feature, we calculate this

aggregated attention score for each head in every

layer and build a map in order to detect the heads

potentially responsible for this feature. We then

compare the obtained maps to the ones derived us-

ing the pre-trained BERT model. This comparison

enables us to determine if a particular feature is

important for a specific task and whether it con-

tributes to some tasks more than to others.

Results Contrary to our initial hypothesis that

the vertical attention pattern may be motivated by

linguistically meaningful features, we found that

it is associated predominantly, if not exclusively,

with attention to [CLS] and [SEP] tokens (see
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Figure 7: Per-task attention weights corresponding to the [CLS] token averaged over input sequences’ lengths and

over dataset examples, and extracted from the final layer. Darker colors correspond to greater absolute weights.

Figure 6. Note that the absolute [SEP] weights

for the SST-2 sentiment analysis task are greater

than for other tasks, which is explained by the fact

that there is only one sentence in the model in-

puts, i.e. only one [SEP] token instead of two.

There is also a clear tendency for earlier layers

to pay attention to [CLS] and for later layers to

[SEP], and this trend is consistent across all the

tasks. We did detect heads that paid increased

(compared to the pre-trained BERT) attention to

nouns and direct objects of the main predicates (on

the MRPC, RTE and QQP tasks), and negation to-

kens (on the QNLI task), but the attention weights

of such tokens were negligible compared to [CLS]

and [SEP]. Therefore, we believe that the striped

attention maps generally come from BERT pre-

training tasks rather than from task-specific lin-

guistic reasoning.

4.5 Token-to-token attention

To complement the experiments in Sec. 4.4

and 4.2, in this section, we investigate the atten-

tion patterns between tokens in the same sentence,

i.e. whether any of the tokens are particularly im-

portant while a given token is being processed. We

were interested specifically in the verb-subject re-

lation and the noun-pronoun relation. Also, since

BERT uses the representation of the [CLS] token

in the last layer to make the prediction, we used

the features from the experiment in Sec. 4.4 in or-

der to check if they get higher attention weights

while the model is processing the [CLS] token.

Results Our token-to-token attention experi-

ments for detecting heads that prioritize noun-

pronoun and verb-subject links resulted in a set

of potential head candidates that coincided with

diagonally structured attention maps. We believe

that this happened due to the inherent property of

English syntax where the dependent elements fre-

quently appear close to each other, so it is dif-

ficult to distinguish such relations from the pre-

vious/following token attention coming from lan-

guage model pre-training.

Our investigation of attention distribution for

the [CLS] token in the output layer suggests that

for most tasks, with the exception of STS-B, RTE

and QNLI, the [SEP] gets attended the most, as

shown in Figure 7. Based on manual inspection,

for the mentioned remaining tasks, the greatest at-

tention weights correspond to the punctuation to-

kens, which are in a sense similar to [SEP].

4.6 Disabling self-attention heads

Since there does seem to be a certain degree of

specialization for different heads, we investigated

the effects of disabling different heads in BERT

and the resulting effects on task performance.

Since BERT relies heavily on the learned attention

weights, we define disabling a head as modifying

the attention values of a head to be constant a =
1

L

for every token in the input sentence, where L is

the length of the sentence. Thus, every token re-

ceives the same attention, effectively disabling the

learned attention patterns while maintaining the

information flow of the original model. Note that

by using this framework, we can disable an arbi-

trary number of heads, ranging from a single head

per model to the whole layer or multiple layers.

Results Our experiments suggest that certain

heads have a detrimental effect on the overall per-

formance of BERT, and this trend holds for all the

chosen tasks. Unexpectedly, disabling some heads

leads not to a drop in accuracy, as one would ex-

pect, but to an increase in performance. This is ef-
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Figure 8: Performance of the model while disabling one head at a time. The orange line indicates the baseline

performance with no disabled heads. Darker colors correspond to greater performance scores.

Figure 9: Performance of the model while disabling one layer (that is, all 12 heads in this layer) at a time. The

orange line indicates the baseline performance with no disabled layers. Darker colors correspond to greater per-

formance scores.

fect is different across tasks and datasets. While

disabling some heads improves the results, dis-

abling the others hurts the results. However, it is

important to note that across all tasks and datasets,

disabling some heads leads to an increase in per-

formance. The gain from disabling a single head

is different for different tasks, ranging from the

minimum absolute gain of 0.1% for STS-B, to the

maximum of 1.2% for MRPC (see Figure 8). In

fact, for some tasks, such as MRPC and RTE, dis-

abling a random head gives, on average, an in-

crease in performance. Furthermore, disabling a

whole layer, that is, all 12 heads in a given layer,

also improves the results. Figure 9 shows the re-

sulting model performance on the target GLUE

tasks when different layers are disabled. Notably,

disabling the first layer in the RTE task gives a

significant boost, resulting in an absolute perfor-

mance gain of 3.2%. However, effects of this oper-

ation vary across tasks, and for QNLI and MNLI,

it produces a performance drop of up to -0.2%.

5 Discussion

In general, our results suggest that even the

smaller base BERT model is significantly over-

parametrized. This is supported by the discov-

ery of repeated self-attention patterns in different

heads, as well as the fact that disabling both sin-

gle and multiple heads is not detrimental to model

performance and in some cases even improves it.

We found no evidence that attention patterns

that are mappable onto core frame-semantic re-

lations actually improve BERT’s performance. 2

out of 144 heads that seem to be “responsible” for

these relations (see Section 4.2) do not appear to

be important in any of the GLUE tasks: disabling

of either one does not lead to a drop of accuracy.

This implies that fine-tuned BERT does not rely on

this piece of semantic information and prioritizes

other features instead.

For instance, we noticed that both STS-B and

RTE fine-tuned models rely on attention in the

same pair of heads (head 1 in the fourth layer, and

head 12 in the second layer), as shown in Figure 8.

We manually checked the attention maps in those

heads for a set of random inputs, and established

that both of them have high weights for words that

appear in both sentences of the input examples.

This most likely means that word-by-word com-

parison of the two sentences provides a solid strat-

egy of making a classification prediction for STS-

B and RTE. We were not able to find a conceptu-
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ally similar interpretation of heads important for

other tasks.

6 Conclusion

In this work, we proposed a set of methods for an-

alyzing self-attention mechanisms of BERT, com-

paring attention patterns for the pre-trained and

fine-tuned versions of BERT.

Our most surprising finding is that, although

attention is the key BERT’s underlying mecha-

nism, the model can benefit from attention “dis-

abling”. Moreover, we demonstrated that there is

redundancy in the information encoded by differ-

ent heads and the same patterns get consistently

repeated regardless of the target task. We be-

lieve that these two findings together suggest a

further direction for research on BERT interpre-

tation, namely, model pruning and finding an opti-

mal sub-architecture reducing data repetition.

One of the directions for future research would

be to study self-attention patterns in different lan-

guages, especially verb-final langauges and those

with free word order. It is possible that English has

relatively lower variety of self-attention patterns,

as the subject-predicate relation happens to coin-

cide with the following-previous token pattern.
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