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Abstract

Functional correlation between oscillatory neural and muscular signals during tremor can be

revealed by coherence estimation. The coherence value in a defined frequency range reveals the

interaction strength between the two signals. However, coherence estimation does not provide

directional information, preventing the further dissection of the relationship between the two

interacting signals. We have therefore investigated causal correlations between the subthalamic

nucleus (STN) and muscle in Parkinsonian tremor using adaptive Granger autoregressive (AR)

modeling. During resting tremor we analyzed the inter-dependence of local field potentials (LFPs)

recorded from the STN and surface electromyograms (EMGs) recorded from the contralateral

forearm muscles using an adaptive Granger causality based on AR modeling with a running window

to reveal the time-dependent causal influences between the LFP and EMG signals in comparison

with coherence estimation. Our results showed that during persistent tremor, there was a

directional causality predominantly from EMGs to LFPs corresponding to the significant coherence

between LFPs and EMGs at the tremor frequency; and over episodes of transient resting tremor,
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the inter-dependence between EMGs and LFPs was bi-directional and alternatively varied with time.

Further time–frequency analysis showed a significant suppression in the beta band (10–30Hz) power

of the STN LFPs preceded the onset of resting tremor which was presented as the increases in the

power at the tremor frequency (3.0–4.5Hz) in both STN LFPs and surface EMGs. We conclude that

the functional correlation between the STN and muscle is dynamic, bi-directional, and dependent on

the tremor status. The Granger causality and time–frequency analysis are effective to characterize the

dynamic correlation of the transient or intermittent events between simultaneously recorded neural

and muscular signals at the same and across different frequencies.

r 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The electrical signals produced by the nervous system offer a unique opportunity to
explore the brain processes in real time. Electroencephalogram (EEG) recorded from the
scalp has been extensively used in clinical diagnostic and basic neuroscience research,
which has proved essential in understanding of the function of the cerebral cortex in
healthy subjects and patients since the pivotal pioneering work of Hans Berger [1].
Recently, the therapy of deep brain stimulation (DBS) makes it possible to carry out
recordings from deep structures of human brain [2]. The local field potentials (LFPs)
recorded directly via the implanted DBS electrode reflect the coherent neuronal population
activity [3]. Such recordings are valuable for understanding the pathophysiology of
disorders and provide insights into the basic mechanisms of brain functions such as
movement control, perception, memory formation, and even conscious awareness.
Furthermore, these signals provide the information on the dynamic functional coupling
of the different levels of the human nervous system.

Analysis of functional coupling between muscular activity and simultaneously recorded
oscillatory neural activity at different levels of the motor system has led not only to a better
understanding of the pathophysiological mechanisms of movement disorders [4] but also
to better localization of targets for DBS [5]. One widely used method of estimating the
functional coupling between two oscillatory signals is the magnitude-squared coherence
(MSC). The MSC is a normalized cross-spectral density function, and measures the
strength of association and relative linearity between two stationary processes on a scale
from zero to one [6–8]. The coherence value indicates the strength of the coupling in the
frequency domain between two signals. The conditional coupling among multiple signals
may be further measured by partial coherence [9,10]. However, these techniques based on
correlation or coherence are not sufficient to describe the interdependence among signals.
Similar significant coherence estimation may appear in both systems with and without
feedback. Thus, it does not help to elucidate any causal relationships within the system.
Therefore, to fully understand information processing at different levels of the motor
system, directional interaction analysis to reveal causal influence between signals is
essential to uncover the basic mechanisms underlying the motor system.

The causal relations were described initially as probabilistic concept, which is that one
variable may be caused by the other if it can be better predicted by incorporating
knowledge of the second one. Granger formulated the concept in terms of predictability
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based on the linear regression models of stochastic processes [11]. The causality was
expressed as one time series is caused by the other one if its prediction error at the present
time can be reduced by including the past of the second one in the model. Geweke’s work
based on multivariate autoregressive (AR) process expended Granger causality into the
spectral representation [12] and conditional causality measurement [13]. In a recent study,
Granger analysis was performed for oscillatory field potential activity in the beta
(14–30Hz) frequency range among sensorimotor cortical recording sites during a GO/
NO–GO visual pattern discrimination task in monkeys [14]. Some other equivalent
methods, for instance directed transfer function [15], partial directed coherence [16], were
also used to describe the information flow in the brain structure [17,18], and recently the
causal inference based on a graphical model was further developed [19] and applied to
evaluate the connectivity in neural systems [20].
Stationarity of the neural and muscular signals usually relates to the state or specific

physiological/pathological condition over which the signal is recorded. Most of the neural
signals exhibit non-stationary characteristics to some extent. In particular, the tremor
activity can be transient and intermittent. To investigate the dynamic changing of the causal
relationship between the neural and muscular signals, the time-variant causality analysis is
needed. Moreover the time–frequency analysis has the advantage of obtaining the dynamic
information in both time and frequency domains and investigating the interaction across
frequency. In the present study, we performed windowed Granger causality analysis to
quantify the time-dependent coupling between two simultaneously recorded neural and
muscular signals. LFPs were recorded via the DBS electrode implanted in the subthalamic
nucleus (STN). The electromyograms (EMGs) recorded from the skin surface over
the selected muscles can be considered a stochastic (zero–mean) process resulting from the
electrical activity of activated muscle fibers. In contrast to oscillatory neural signals, the
physiological output from the central motor system is usually encoded in the ‘envelope’ of
the compound EMG signal rather than in the individual action potentials of muscle fibers.
We pre-processed the EMG signals, validated our AR models, and investigated influence of
noise and the time-dependent causality with running window. We then used Granger
causality analysis to reveal any causal correlation between STN LFPs and the EMGs of
forearm muscles in Parkinsonian patients with sustained or intermittent resting tremor. The
dynamic changes in the components at the tremor frequency and the beta frequency band of
the STN LFPs over a transient tremor episode was further investigated using short-time
Fourier transform in both time and frequency domains.
2. Methods

2.1. Description of coherence and Granger causality

AR representations of wide-sense stationary time series x1(t) and x2(t) are

x1ðtÞ ¼
X1
k¼1

a1ðkÞx1ðt� kÞ þ u1ðtÞ, (1)

x2ðtÞ ¼
X1
k¼1

a2ðkÞx2ðt� kÞ þ u2ðtÞ, (2)
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where the parameters a1(k) and a2(k) are the model coefficients, u1(t) and u2(t) are the
prediction error when x1(t) and x2(t) are predicted from its own past, respectively.
The variance of u1(t) and u2(t) are S1 and S2.

The linear dependence between these two signals can be expressed as a bivariate AR
model

x1ðtÞ ¼
X1
k¼1

a11ðkÞx1ðt� kÞ þ
X1
k¼1

a12ðkÞx2ðt� kÞ þ v1ðtÞ, (3)

x2ðtÞ ¼
X1
k¼1

a21ðkÞx1ðt� kÞ þ
X1
k¼1

a22ðkÞx2ðt� kÞ þ v2ðtÞ, (4)

where the parameters aij(k) are the model coefficients, v1(t) is the prediction error when
x1(t) is predicted from its own past and past of x2(t), and similarly for v2(t). The above
equations can be expressed in the matrix form as X(t) ¼ [x1(t), x2(t)]

T, V(t) ¼ [v1(t), v2(t)]
T

and

AðkÞ ¼ �
a11ðkÞ a12ðkÞ

a21ðkÞ a22ðkÞ

" #

(superscript T stands for transpose), then

X ðtÞ ¼ �
X1
k¼1

AðkÞX ðt� kÞ þ V ðtÞ. (5)

Let A(0) ¼ I, the identity matrix, Eq. (5) can be re-written as

X1
k¼0

AðkÞX ðt� kÞ ¼ V ðtÞ. (6)

The spectral relationship of Eq. (6) can be written as A(f)X(f) ¼ V(f), in which X(f) ¼
A�1(f)V(f) ¼ H(f)V(f) and

Aðf Þ ¼
X1
k¼0

AðkÞe�ik2pf . (7)

The power spectral matrix of the signals is then given by

Sðf Þ ¼ Xðf ÞX�ðf Þ ¼ Hðf ÞVðf ÞV�ðf ÞH�ðf Þ ¼ Hðf Þ
X

H�ðf Þ,

where * stands for conjugate transpose

S ¼
S11 S12

S21 S22

" #
,

is the co-variance matrix of v1(t) and v2(t) and, and

Sðf Þ ¼
S11ðf Þ S12ðf Þ

S21ðf Þ S22ðf Þ

" #
,

is the spectral matrix of x1(t) and x2(t) and, where S11(f) and S22(f) are the auto-spectra of
x1(t) and x2(t) and S12(f) and S21(f) are their cross-spectra.
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The MSC is defined as the normalized cross-spectral density by the autospectral
densities [7,21]:

g2xyðf Þ ¼
S12ðf Þ
�� ��2

S11ðf ÞS22ðf Þ
.

The measure of Granger causality from x2(t) and x1(t) is defined as Fx2!x1
¼ lnðS1=S11Þ.

Fx2!x1
is nonnegative. If S1 ¼ S11, F x2!x1

¼ 0 which indicates x2(t) does not cause x1(t)
[12]. The measure of Fx2!x1

is invariant when x2(t) and x1(t) are rescaled or pre-multiplied
by different invertible lag operators. Symmetrically, the measure of causality from x1(t) to
x2(t) is defined as Fx1!x2

¼ lnðS2=S22Þ.
The causality Fx2!x1

measures the reduction in the total variance of predictive errors of
x1(t) when past x2(t) is added for prediction and used as their causality measure Fx2!x1

.
The percentage reduction of the variance R2 ¼ 1� e�F x2!x1 suggests the degree of x1(t)
relating to the history of x2(t).

F x2!x1
can be decomposed in frequency domain [12] as

F x1!x2
ðf Þ ¼ ln

S22ðf Þ
�� ��

S22ðf Þ �H21ðf ÞðS11 � S2
12=S22ÞH

�
21ðf Þ

�� ��
and

F x2!x1
ðf Þ ¼ ln

S11ðf Þ
�� ��

S11ðf Þ �H12ðf ÞðS22 � S2
12=S11ÞH

�
12ðf Þ

�� �� .
The normalized causality measures are given as

R2
x2!x1
ðf Þ ¼ 1� e�F x2!x1

ðf Þ, (8)

R2
x1!x2
ðf Þ ¼ 1� e�F x1!x2

ðf Þ, (9)

in the scale of 0 to 1.

2.2. Selection and validation of AR models

The optimal model order is determined according to the criteria, which are usually based
on the statistics constructed from prediction errors. Akaike’s information criterion (AIC)
AIC(i) ¼ N log(det(Ŝi)+2L2i is the most commonly used one, where Ŝi is the estimate of
the prediction error covariance matrix assuming an ith-order model, N is the number of
data points and L is the number of variables. AIC should be computed only for a
maximum value of i of 3

ffiffiffiffiffi
N
p

=L in order to produce reliable results. The optimal model
order corresponds to the minimum of AIC(i).
The model can be validated by assessing the quality of the model fitness of the prediction

ratio [22], which measures how much the model can explain the variance of the signal, and
the percentage of the variance contributed from the model in the total variance. This
provides objective criteria on whether the model is capable of characterize the system
dynamics. For perfect fitness, the prediction error is zero. If the model is correct and the
true parameter values are estimated properly, the prediction error would be white noise. If
the autocorrelation function shows pronounced patterns, such as the ripples or slow
decline at low lags, it suggests model inadequacy.
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We determined the optimal model order for recordings from each patient according to
AIC and validated the model with the prediction ratio and autocorrelation of the
prediction error.

2.3. Short-window coherence and causality analysis

To obtain the time-dependent evolution of coherence and causality estimations in
frequency of the signals considered to be locally stationary [23], estimations were
performed using a running time-window. The window has a relative short duration with
overlapping, so the estimation reflects the properties of the time-localized signals. By
successively sliding the window over time and adaptively estimating the model parameters
in each window, one can obtain a coherence or causality distribution of the signals in
time–frequency domain.

In the present study, we selected a 3s window as it is longer than three times of the model
order, and gives adequate time and frequency resolutions for observing the resting tremor
of predominant 4.8Hz within a band of 0–30Hz with events of its onset and offset
occurring over a few seconds.

2.4. Short-time fourier transform

STFT is Fourier spectra analysis with time-windows of limited length and maps time-
domain signals onto an integrated time–frequency spectrogram. The frequency character-
istics are localized by the pre-defined time-window. The STFT of signal x(t) is defined as

STFTðt; f Þ ¼

Z
xðtÞg�ðt� tÞe�j2pf t dt. (10)

For a digital signal x(k), k ¼ 0yL�1, STFT is extended to

STFTðk; nÞ ¼
XL�1
i¼0

xðiÞg�ði � kÞW�ni
L ¼ STFTðt; f Þ

��
t¼kDt;f¼n=ðLDtÞ

, (11)

where Dt is the sampling interval, and g( � ) is a symmetric window of usually a short time
duration. STFT localizes the signal using the time-window running through the signal to
obtain a windowed spectrum of signal x(t) at time t, to multiply the signal by the window
function g( � ) centered at time t, and then to compute the Fourier transform of the product.
The window function has a relative short duration, so the Fourier transform of the product
reflects the frequency properties of the time-localized signal. By successively sliding the
window over time, one can obtain a distribution of the signal in time–frequency domain.
The presentation of the spectrogram can be smoothed further when the overlapping of
windows is applied, as each time step for plotting the spectrogram becomes less than the
window width. Furthermore, window overlapping increases data points for more accurate
subsequent regression analysis.

The results short-time Fourier transform is usually presented as a spectrogram.

SPðk; nÞ ¼
XL�1
i¼0

xðiÞg�ði � kÞW�ni
L

�����
�����
2

. (12)

It gives the energy distribution of the signal along both time and frequency axis.
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In the present study, we selected a Hanning window of 3 s in length for the reason that
we intended to observe the intermittent resting tremor of predominant 4.8Hz within a
band of 0–30Hz, the events of its onset and offset occurred over a few seconds, and the
signals were sampled at a rate of 4000Hz. This setting gives a time resolution of 3 s and a
frequency resolution of 0.3Hz approximately, which are adequate for our purpose.

2.5. Signal recording and pre-processing

The study was approved by the local research ethics committee, and informed consent
was obtained from each of five patients with resting tremor due to PD who underwent
chronic stimulation in both STNs at the Radcliffe Infirmary, Oxford. Detailed surgical
procedures and target localization have been described previously [24]. Patients underwent
bilateral implantation of quadripolar DBS electrodes (3389, Medtronic, Mineapolis, USA)
in STN. The implanted DBS electrode had 4� 1.5mm contacts, each separated by 0.5mm.
The bipolar recordings were made 4–6 days post-operatively from adjacent pairs of the
externalized electrode. Localization of the electrode was confirmed by post-operative
magnetic resonance imaging. EMGs were recorded using surface electrodes placed in a
tripolar configuration over the tremulous forearm extensor and flexors. Signals were
amplified using isolated CED 1902 amplifiers (� 10,000 for LFPs and � 1000 for EMGs),
filtered at 0.5–500Hz and digitized using CED 1401 mark II at 4000Hz using Spike2
(Cambridge Electronic Design, Cambridge, UK).
The EMGs were high-pass filtered above 15Hz using wavelet transforms to remove the

motion artifacts. Then the EMGs were rectified in order to extract the EMG envelope
signal. Both rectified EMGs and LFPs were low-pass filtered (corner frequency: 30Hz).
Then both signals were down-sampled to 100Hz and detrended for further coherence,
causality and time–frequency analysis. All signals were processed using MATLAB
(Version 6.5, MathWorks Inc., Natick, MA, USA).

3. Results

3.1. Pre-processing

The surface EMGs were a compound signal of multi-unit activity and had a broad
frequency distribution. The tremor-related activity, presented as synchronized rhythmic
bursts at 5Hz (Fig. 1(A)) independent of the individual muscle fiber action potentials. The
tremor bursts were isolated firstly by performing full-wave rectification (Fig. 1(B)) and
further by extracting the envelope following low-pass filtering the rectified EMGs and
down-sampling at 100Hz (Fig. 1(C)). Similar filtering and down sampling were performed
on the LFP signals.

3.2. Selection and validation of AR model

The optimal model order of the bivariate AR model of each pair of LFP and EMG
signals was determined from the AIC curve (Fig. 2). The AIC curve dropped as the model
order increased and it became flat when the order was larger than 17 in this particular case.
The selected model for each individual signal pair was then validated by the prediction

error. The prediction ratio of LFPs was 0.72, 0.74, 0.74 and 0.75 and that of EMGs was
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0.91, 0.92, 0.93 and 0.94 when the model order was 10, 15, 20 and 25. Although the
efficiency of the model was not significantly improved by increasing the order, the structure
of the prediction error changed. When the model order was 10 and 15, the auto-correlation
of the prediction error exhibited gradually decreasing pattern with ripples along the time
delay axis (Fig. 3(A) and (B)); whereas when the order was 20 and 25, there was only one
sharp peak at zero time delay (Fig. 3(C) and (D)). In this particular case, an order of 20
was selected.
3.3. Influence of noise on coherence and causality analyses

The influence of noise on coherence and causality was assessed by adding white noise to
the EMG signal. A pair of LFP and EMG signals with 0%, 20%, 40%, 60%, 80% and
100% white noise in amplitude was analyzed for coherence and causality and compared.
With increases in noise level, the coherence estimates at the tremor frequency of 5.2Hz
decreased from 0.96 at 0% noise to 0.87 at 100% noise (Fig. 4). Interestingly, the influence
of noise on causality estimates was related to the directional correlation between the LFPs
and EMGs: the causality value at the tremor frequency of 5.2Hz increased as the noise
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level increased when the causality value was insignificant from LFPs to EMGs; whereas the
effect of noise on causality estimation was reversed when the causality value is significant
from EMGs to LFPs (Fig. 4).

3.4. Coherence and causality estimation between STN LFPs and EMGs in PD patients with

persistent resting tremor

The coherence and causality were computed between STN LFPs and EMGs from four
PD patients during persistent resting tremor (Fig. 5). The coherence estimate at the tremor
frequency was 0.8370.13 (mean7SD) averaged across 4 patients. The mean causality was
0.1770.04 from LFPs to EMGs; whereas 0.6670.14 (po0.01, paired t-test) from EMGs
to LFPs at the tremor frequency.

3.5. Time-dependent coherence and causality estimation between STN LFPs and EMGs over

intermittent tremor

The windowed coherence and causality analyses were performed to reveal the dynamic
changes in the correlation between the STN LFPs and EMGs over a period of intermittent
resting tremor in one of the four patients. As the tremor being unstable over time
(Fig. 6(A)), the coherence (Fig. 6(B) and (E)) and causality (Fig. 6(C), (D) and (F))
estimates varied accordingly at the tremor (4.5Hz) and the double-tremor (9.0Hz)
frequencies. In this particular case, intermittent tremor appeared at most of the time, and
there was predominant causality from EMGs to LFPs; whereas the causality changed to
the opposite direction when tremor activity reduced or even ceased (Fig. 6(F)).

3.6. Dynamic changes in the tremor and beta band activity of the STN

The dynamic changes of the simultaneously recorded STN LFPs and EMGs over a
period of intermittent resting tremor were investigated using STFT. Fig. 7 shows the raw
signals and the spectrogram of simultaneously recorded STN LFPs (Fig. 7(A)) and surface
EMGs of the contralateral forearm extensor (Fig. 7(B)) over the onset of resting tremor. In
relation to the onset of resting tremor, the spectrogram of the STN LFPs shows a
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Fig. 4. The influence of white noise on coherence and causality estimation between STN LFPs and EMGs.
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Fig. 5. Coherence and causality analysis of four PD patients with persistent resting tremor.
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significant suppression in the range of 10–30Hz (the beta band) appears around the 12th to
13th second and an increase in power at the tremor frequency of 4.6Hz appearing at the
18th second. Meanwhile, rhythmic tremor bursts appears in the EMGs at the 18th second
in association with two strong narrow bands at the tremor and double-tremor frequencies
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Fig. 6. STN LFPs and EMGs of intermittent tremor (A), time-dependant coherence (C) and causality

spectrograms (B and D) and their mean values around tremor frequency (E and F).
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and a general increase in activity across the entire displayed frequency range in the EMG
spectrogram. The power values over the beta band (10–30Hz) of LFP spectrogram
and tremor band of both LFP and EMG spectrograms were averaged and compared
(Fig. 7(C)). The power of the STN LFPs in the beta band decreased significantly about
5–6 s preceding the power increases at the tremor frequency in both STN LFPs and EMGs
over the onset of resting tremor.

4. Discussion

We used Granger causality to analyze the directional influences between the LFPs of the
STN and EMGs of the contralateral arm muscles in patients with Parkinsonian resting
tremor to compare with standard coherence estimation. Windowed coherence and
causality analyses and time–frequency analysis could be used to reveal time-dependent
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changes related to the intermittent tremor at and across tremor and beta band frequencies.
The pre-processing of EMG signals, selection and validation of AR models and influence
of signal noise were investigated.

Whereas LFPs and EEGs are compound neural signals, surface EMGs result from
spatial and temporal interference between muscle motor unit action potentials. Action
potentials in the surface EMGs exhibit a broad frequency distribution up to 500Hz.
Tremor causes synchronized bursts of action potentials in the surface EMGs, but the
features of the tremor burst are independent of those of the action potentials. Actually they
are encoded in the envelope of the EMG bursts. Therefore, pre-processing the surface
EMGs to extract the tremor burst envelope is essential for further correlation analysis.
Full-wave rectification is an effective way to do this and enhance the tremor component in
the EMGs. Further low-pass filtering may reduce high-frequency noise which is above the
frequency range of interest (o30Hz). Finally, down-sampling the EMGs completes the
extraction of the tremor envelope signal.

The proper selection and validation of an AR model is necessary for further analysis but
is not straightforward in practice. A linear model is usually a simple starting point. In this
study, the validation of a model is based on the statistics derived from the prediction
error, for instance, the prediction ratio and autocorrelation of prediction error. On the one
hand, these criteria are objective for determining the efficiency, fitness and propriety of a
model structure. On the other hand, there may be more factors contributing to the
variability of a system giving a model of a low prediction ratio and unclear
autocorrelation. In this case, a non-linear or time-dependent model is more suitable to
characterize the system. The prediction ratio was in the range from 70% to 97% when an
AR model was identified at the optimal order with proper autocorrelation structure of
prediction error. Furthermore, we selected and validated the AR model adaptively for each
pair of LFP-EMG signals.

Both coherence and causality analysis may be influenced by waveform distortion.
Neither LFPs nor EMG envelopes are perfect sine waves, which leads to production of
harmonics. In addition, signal noise is a significant influential factor. The noise decreases
the efficiency of the coherence estimation so that the estimates are smaller than their true
values. For causality estimation, the noise reduced the proportion of tremor-related
component in EMG signal and increased the amplitude of the prediction error in the
bivariate AR model. As a result, the noise in EMG signal decreases the causality measure
in one direction and increases in the other direction. In an extreme situation, the high level
noise or the non-tremor-related activity in the LFPs or EMGs may obscure the true
causality. In this study, the significant causality was found from muscle to STN during
stable Parkinsonian resting tremor.

Dynamic correlation across time and frequency between the intermittent tremor-related
activity in the STN and muscles were quantified using windowed coherence and causality
analyses. For this purpose, the AR model provides adequate frequency resolution even
when a short data segment is used. The length of running window determines the time
resolution. The length of time window is determined as it is large enough to cover the entire
cycle of the dominant component in the signals. In practice, the reliable identification of a
model with order 20 needs one second long LFPs and EMGs recording at least.
Stationarity of the signals is another issue when the windowed causality analysis is
considered. It usually relates to the state or specific physiological or pathological condition
over which the signals are recorded.
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Previous work has found that beta suppression precedes timed voluntary hand
movements following a visual cue [25] and the degree of synchronization of STN activity
in the beta band may be related to motor programming and movement initiation [26]. Our
present results of the interaction between the beta band and tremor frequency activity in
STN LFPs revealed using short-time Fourier transform showed that there was a significant
correlation over time between the powers of these two components in different frequency
bands. The suppression in beta band activity in the STN preceded the onset of activity at
the tremor frequency in the STN and muscle. We speculate that the beta activity may
present a resting state of the STN, which may be suppressed over the tremor occurrence.
In conclusion, the Granger causality and time–frequency analysis are effective

approaches to characterize the dynamic causal correlation of the transient or intermittent
events between simultaneously recorded neural and muscular signals at the same and cross
different frequencies. The directional inter-dependence of the tremor-related STN LFP-
EMG coupling varied with time and highly related to the tremor states.
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