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Abstract— Lighting in modern-day devices is often discrete.
The sharp onsets and offsets of light are known to induce a
steady-state visually evoked potential (SSVEP) in the electroen-
cephalogram (EEG) at low frequencies. However, it is not well-
known how the brain processes visual flicker at the threshold
of conscious perception and beyond. To shed more light on this,
we ran an EEG study in which we asked participants (N=6)
to discriminate on a behavioral level between visual stimuli
in which they perceived flicker and those that they perceived
as constant wave light. We found that high frequency flicker
which is not perceived consciously anymore still elicits a neural
response in the corresponding frequency band of EEG, con-
tralateral to the stimulated hemifield. The main contribution of
this paper is to show the benefit of machine learning techniques
for investigating this effect of subconscious processing: Common
Spatial Pattern (CSP) filtering in combination with classification
based on Linear Discriminant Analysis (LDA) could be used
to reveal the effect for additional participants and stimuli,
with high statistical significance. We conclude that machine
learning techniques are a valuable extension of conventional
neurophysiological analysis that can substantially boost the
sensitivity to subconscious effects, such as the processing of
imperceptible flicker.

I. INTRODUCTION

Understanding human perception of visual flicker is of
importance both for basic research on the human visual
system and for optimizing the design and manufacturing of
light sources. In the past decades, artificial lighting changed
from continuous to discrete (i.e., flickering) light based on
LEDs. The conventional approach for assessing perception of
flicker is based on behavioral data, such as subjective reports.
The approach taken here, however, is to record and analyze
EEG data in addition to behavioral responses. Previous EEG
studies have shown that visual flicker of up to 50Hz can
be perceived consciously for light sources fixated with the
eye, inducing a neural response with the same dominant
frequency as the stimulus frequency, the so-called steady-
state visually evoked potential (SSVEP) [1], [2], [3]. It has
also been shown that the sensitivity for perceiving flicker in
the visual periphery is at a substantially higher level [4]. The
aim of the present study was to assess whether a flickering
light source in the visual periphery elicits a neural SSVEP
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response, even if flicker is not perceived consciously, as
well as to evaluate the potential benefits of machine learning
techniques for revealing this effect.

A. Motivation for the Use of EEG

Generally speaking, the potential benefits of neurophysio-
logical data are manifold. First, neural data might provide
a more objective measure than behavioral data, as men-
tal processing is less influenced by subjective evaluation.
Second, the compliance of participants is not necessarily
required, apart from their general willingness to partake in
the study. The most important aspect is the potential of neu-
rophysiological data for revealing subconscious processing
of stimuli, that is processing which is not reflected on the
behavioral level. This subconscious processing might lead to
lapses of concentration or growing dissatisfaction of a user
over time. Thus, neurophysiological measures seem to have
the potential to complement behavioral approaches at the
threshold of perception, as was recently shown for marginally
noisy audio stimuli [5]. The neurophysiological measure
of choice needs to provide a high temporal resolution for
capturing the fine-grained temporal differences in the visual
signals. Additionally, it needs to be affordable and relatively
mobile for potential on-site applications. All of these require-
ments are met by electroencephalography (EEG). In recent
years, methods developed within research on EEG-based
Brain Computer Interfaces (BCIs, [6]) are increasingly used
for investigating questions beyond communication and con-
trol [7]. Based on such methods, this paper presents an initial
approach towards applying machine learning techniques on
EEG recordings in order to assess (sub)conscious processing
of flicker in the visual cortex.

B. Machine Learning Approach

EEG data in the frequency range above 50Hz suffers
from an unfavorable signal-to-noise ratio, as the human EEG
spectrum follows a 1/f distribution (i.e., EEG power declines
with increasing frequency). In order to improve the signal-
to-noise ratio, we utilized Common Spatial Pattern (CSP)
analysis [8], a powerful tool frequently used in BCIs that are
based on the modulation of brain rhythms [9], [10]. Roughly
speaking, CSP analysis provides spatial filters that maximize
the difference in amplitude between two classes of bandpass-
filtered signals. For details on the use of these spatial filters
in the context of single-trial EEG analysis, refer to [11].
With regard to the classification of EEG data, conventional



Linear Discriminant Analysis (LDA, [12]) has proven to be
a suitable classification method for CSP features [11].

The performance of classifiers is commonly evaluated
based on the receiver operating characteristic (ROC, [13]).
In the so-called ROC curve, the true positive rate is plotted
against the false positive rate [14]. The area under this curve
(AUC) can then be calculated as a condensed measure of
classification performance [15].

II. MATERIAL AND METHODS

A. Paradigm and Apparatus

Six right-handed participants (2 males, 4 females, mean
age 26.83) performed a detection task. They were asked
to differentiate on a behavioral level between flickering
and non-flickering stimuli in a dark room. Throughout the
experiment, participants fixated a red LED in front of them.
In the left visual hemifield, stimuli were presented using an
LED light source fabricated by Philips Research (Aachen,
Germany) that subtended a visual angle of 20 deg, ranging
from 10-30 deg. A checkerboard pattern was mounted on
the light source (side length of checkers: 2cm), in order to
enhance the susceptibility of the visual cortex to flicker [16].
Setup and LED light source are shown in Figure 1.

Participants indicated whether they saw flicker in the
stimulus or not by pressing a button (left hand: flicker
seen; right hand: no flicker seen). Concurrently, EEG data
was recorded using a 64-channel actiCAP active electrode
system (Brain Products, Munich, Germany). Each stimulus
was presented for 2500ms with a variable stimulus onset
asynchrony, as the presentation of the next stimulus was
triggered by the response of the participant to the previous
stimulus.

B. Stimulus Selection

As the focus of interest was on flickering stimuli at
the threshold of perception, stimuli were selected based
on a pre-test in order to account for individual differences
between participants. For each participant, the critical flicker
frequency was determined in the range between 40 and
120Hz, using the psychophysical method of ascending and
descending limits. In the following, critical flicker frequency
(CFF) denotes the lowest frequency for which a given
participant started to miss the flicker of a stimulus to a
substantial degree (more than half of the trials). Based on
the results of this test, four target flicker frequencies (S1-
S4) were chosen: one at a frequency reliably below the CFF
(S1), one centered at the CFF (S2), and two frequencies
above the CFF (S3, S4). The average detection rate in the
experiment showed a steep decrease from S1 (98%) to S2
(15%), from where it levelled out (2% for S3 and S4). An
overview of stimulation frequencies used in the experiment is
provided in Table I. This table also shows the detection rates
in the experiment for each stimulus and participant, i.e., the
percentage of trials for which participants indicated that they
perceived flicker. For technical reasons, the constant wave
stimulus (CW) was implemented as flickering light at 500Hz
which was reported correctly in 99% of the trials on average.

TABLE I
STIMULATION FREQUENCIES [HZ] AND DETECTION RATES [%] PER

PARTICIPANT. FOR COLORED CELLS, A NEURAL RESPONSE TO FLICKER

WAS FOUND (p < 0.05), SHOWN BY BOTH T-TESTS AND CSP+LDA
(ORANGE) OR BY CSP+LDA ONLY (YELLOW). NOTE THAT HITS OF

STIMULUS S1 WERE CONSIDERED AND MISSES OF S2-4.

Participant S1:hit S2:miss S3:miss S4:miss

VPdbe 40Hz : 100% 60Hz : 1% 83Hz : 0% 95Hz : 0%
VPik 50Hz : 99% 70Hz : 40% 85Hz : 0% 100Hz : 0%
VPdbf 50Hz : 96% 70Hz : 11% 85Hz : 1% 100Hz : 1%
VPdbd 40Hz : 98% 50Hz : 28% 60Hz : 0% 70Hz : 0%
VPow 50Hz : 99% 70Hz : 9% 85Hz : 8% 100Hz : 8%
VPfat 50Hz : 97% 70Hz : 3% 85Hz : 0% 100Hz : 1%

Fig. 1. Setup of the experiment with LED light source. The room was not
illuminated during the experiment.

In the actual experiment, the stimuli were presented to each
participant in 10 blocks of 150 stimuli each (randomized
order). This resulted in a total of 300 trials per participant
for each of the five stimulus classes (S1-4, CW).

C. Preprocessing and Classification

We investigated whether flicker in a stimulus was pro-
cessed in the visual cortex of a participant or not. For each
trial, we extracted the power in the EEG frequency band
corresponding to stimulation frequency. This is based on the
assumption that neural processing of flicker increases power
relative to a baseline. As baseline, we used the power in
the corresponding frequency band in the EEG data recorded
during presentation of the constant wave stimulus (CW).

For assessing the neurophysiological data, t-values were
then calculated for each electrode site, comparing log power
of the flicker trials to log power in the CW trials. It is
important to note that only correct rejects of CW were
considered. These were compared with S1 trials where flicker
was correctly recognized (hits), as well as with trials of
stimulus class S2-4, where flicker was missed.

With regard to classification, the signal was first band-
pass filtered for a given frequency, using a Butterworth
filter of order 5 with a passband of width 2Hz around
the frequency of interest. Then, we trained a classifier to
distinguish between trials where flicker was present in a
given stimulus class but not reported (S2-4, misses) and those
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Fig. 2. T-scaled scalp maps and CSP filters for participant VPdbd (top view on the head with nose pointing upwards). Correct rejects of CW are compared
with hits of S1 and misses of S2-4, respectively. Top: T-values plotted as scalp maps. Significant results are encircled by bold black curves (p < 0.05).
Bottom: CSP filters extracted from the EEG data and then used for training the LDA-based classifiers (note that the algebraic sign of the filters can be
neglected in this context).

where participants correctly recognized that it was absent
(CW, correct rejects). For training and testing, 20-fold cross
validation with LDA was used. The training data was first
preprocessed by applying CSP in order to improve the signal-
to-noise ratio, as well as to find filters that maximize the
amplitude difference between two classes of interest [11].
Data was considered in the interval [500 2500ms] post-
stimulus, using recordings from all electrode sites except
those frontal to the F-row.

III. RESULTS
A. Neurophysiology

As a first step, spectral power was calculated for the target
frequency and compared to that of the CW stimulus in the
same frequency band using t-tests. As expected, we found
that occipital electrode sites contralateral to the stimulated
hemifield showed enhanced spectral power at the target
frequencies. For half of the participants, this even held true
for frequencies that were not perceived consciously anymore
(S2 misses). The t-scaled scalp maps for participant VPdbd
are depicted exemplarily in the top row of Figure 2.

B. Classification
We then used a machine learning approach typically taken

in BCI research, first filtering the (training) data using CSP
and then applying an LDA based classifier. Our aim was to
assess in how far these methods would help in revealing more
cases of subconscious processing: a modulation of power
in the frequency band of stimulation, even if a participant
reports not to perceive flicker. For each participant and
stimulus class, we trained a classifier to discriminate between
those trials where flicker was present, but not reported (S2-
4, misses) and those where flicker was absent and correctly

reported as such (CW, correct rejects). It is crucial to note
that these trials are indistinguishable on a behavioral level,
suggesting that the stimuli were perceived in the same way.

Our machine learning approach was successful not only in
confirming the initial findings based on t-values, but also in
detecting subconscious processing for additional participants
and stimuli. The added value is visualized in Table I: The
effects found with t-tests are marked in orange, all of which
could be confirmed with our machine learning approach.
Marked in yellow are those additional conditions for which
we found statistically significant results that could not be
revealed using t-tests.

Classification performance based on AUC values is visual-
ized in Figure 3. Remarkably, we could not only considerably
extend the sensitivity to subconscious processing. The results
of the machine learning approach are also highly statistically
significant for four out of six participants for missed flicker in
stimulus S2 (p < 0.01). For participant VPdbd, AUC values
at level p < 0.01 were reached even for stimuli S3 and S4.
This might be explained by the fact that frequencies S3 and
S4 were rather low for this participant compared to the others
(cf. Table I, based on a pre-test).

As a sanity check, we used the same methods to compare
the neural response elicited by CW and by stimulus S1,
where flicker was invariably recognized easily by participants
(mean detection rate: 98%). For both classes, we only con-
sidered trials where participants reported the absence (CW)
or presence (S1) of flicker correctly. We found statistically
significant effects for all participants, except VPfat.

Surprisingly, classification between S2 misses versus CW
was oftentimes more successful than for S1 hits versus CW.
This was probably caused by the use of 50Hz as S1 stimulus
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Fig. 3. AUC values for all participants, resulting from classification with
LDA, based on the spectral power in the stimulation frequency (CSP filtering
of the training data, 20-fold crossvalidation). Correct rejects of CW are
compared to hits of S1 hits and misses of S2-4. Significance at levels
p < 0.05 and p < 0.01 is marked with one and two stars, respectively.

for most participants (see Table I), which may have been
contaminated with line noise. Tellingly, for both participants
where this was not the case, AUC values for S1 hits were
close to those of S2 misses (VPdbe) or higher (VPdbd).

Finally, it is important to note that the morphology of the
CSP filters used for training the classifiers is neurophysio-
logically plausible. This is shown exemplarily for participant
VPdbd in Figure 2. It can be seen that the morphology of
the t-scaled plots of S1 and S2 (top row of the Figure) is
reflected well in the corresponding CSP filters (bottom row).
More importantly, the filters show a high similarity across
conditions (the difference in algebraic signs can be ignored
in this context). This supports our assumption that flicker was
processed even for stimuli S3 and S4, for which subconscious
processing could only be revealed with our machine learning
approach, but not by using t-tests.

IV. CONCLUSIONS

In this EEG study, we investigated how the visual cortex
processes high-frequency visual flicker at the threshold of
perception. The main novelty of this paper lies in showing
how advanced machine learning techniques can be used for
revealing these neural correlates of flicker, even if it is only
processed subconsciously. From a neurophysiological point
of view, the results show that the spectral power at the stimu-
lation frequencies is enhanced compared to stimulation with
constant wave light (contralateral to the stimulated hemi-
field). Remarkably, this neural response to high-frequency
flicker can be found with t-tests for half of the participants,
even when they report not to perceive flicker anymore
(S2 misses). We succeeded in substantially extending these
findings by applying a machine learning approach typically
used for BCIs, namely by filtering the EEG data spatially
with CSP and then using classification based on LDA. Not
only did this approach verify the neurophysiological findings.
It also revealed this effect of subconscious processing for
additional participants and stimuli, as summarized in Table I.
Therefore, our conclusion is two-fold. First, even though

participants reported to perceive a flickering stimulus at
the threshold of perception as being temporally uniform,
flicker is still processed subconsciously in the majority of
participants and trials. Second, even though this effect is
hidden for the naked eye in most cases, it can be robustly
revealed by applying advanced machine learning techniques
(CSP filtering and LDA). On the one hand, these results
substantiate EEG as an investigative tool that allows to tap
perceptual processes on a subconscious level, in particular
when combined with advanced machine learning techniques.
On the other hand, these findings are relevant to manufac-
turers of light sources, as they imply that it is advisable to
use frequencies substantially above the behavioral perception
threshold in order to minimize the possibility of provoking
(subconscious) effects.
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